From a990de90fe41456a23e58bd087d2f107d321f3a1 Mon Sep 17 00:00:00 2001 From: Valentin Popov Date: Fri, 19 Jul 2024 16:37:58 +0400 Subject: Deleted vendor folder --- vendor/miniz_oxide/src/inflate/core.rs | 1992 -------------------------------- 1 file changed, 1992 deletions(-) delete mode 100644 vendor/miniz_oxide/src/inflate/core.rs (limited to 'vendor/miniz_oxide/src/inflate/core.rs') diff --git a/vendor/miniz_oxide/src/inflate/core.rs b/vendor/miniz_oxide/src/inflate/core.rs deleted file mode 100644 index 6db2449..0000000 --- a/vendor/miniz_oxide/src/inflate/core.rs +++ /dev/null @@ -1,1992 +0,0 @@ -//! Streaming decompression functionality. - -use super::*; -use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER}; - -use ::core::convert::TryInto; -use ::core::{cmp, slice}; - -use self::output_buffer::OutputBuffer; - -pub const TINFL_LZ_DICT_SIZE: usize = 32_768; - -/// A struct containing huffman code lengths and the huffman code tree used by the decompressor. -struct HuffmanTable { - /// Length of the code at each index. - pub code_size: [u8; MAX_HUFF_SYMBOLS_0], - /// Fast lookup table for shorter huffman codes. - /// - /// See `HuffmanTable::fast_lookup`. - pub look_up: [i16; FAST_LOOKUP_SIZE as usize], - /// Full huffman tree. - /// - /// Positive values are edge nodes/symbols, negative values are - /// parent nodes/references to other nodes. - pub tree: [i16; MAX_HUFF_TREE_SIZE], -} - -impl HuffmanTable { - const fn new() -> HuffmanTable { - HuffmanTable { - code_size: [0; MAX_HUFF_SYMBOLS_0], - look_up: [0; FAST_LOOKUP_SIZE as usize], - tree: [0; MAX_HUFF_TREE_SIZE], - } - } - - /// Look for a symbol in the fast lookup table. - /// The symbol is stored in the lower 9 bits, the length in the next 6. - /// If the returned value is negative, the code wasn't found in the - /// fast lookup table and the full tree has to be traversed to find the code. - #[inline] - fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 { - self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize] - } - - /// Get the symbol and the code length from the huffman tree. - #[inline] - fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u32) -> (i32, u32) { - let mut symbol = fast_symbol; - // We step through the tree until we encounter a positive value, which indicates a - // symbol. - loop { - // symbol here indicates the position of the left (0) node, if the next bit is 1 - // we add 1 to the lookup position to get the right node. - symbol = i32::from(self.tree[(!symbol + ((bit_buf >> code_len) & 1) as i32) as usize]); - code_len += 1; - if symbol >= 0 { - break; - } - } - (symbol, code_len) - } - - #[inline] - /// Look up a symbol and code length from the bits in the provided bit buffer. - /// - /// Returns Some(symbol, length) on success, - /// None if the length is 0. - /// - /// It's possible we could avoid checking for 0 if we can guarantee a sane table. - /// TODO: Check if a smaller type for code_len helps performance. - fn lookup(&self, bit_buf: BitBuffer) -> Option<(i32, u32)> { - let symbol = self.fast_lookup(bit_buf).into(); - if symbol >= 0 { - if (symbol >> 9) as u32 != 0 { - Some((symbol, (symbol >> 9) as u32)) - } else { - // Zero-length code. - None - } - } else { - // We didn't get a symbol from the fast lookup table, so check the tree instead. - Some(self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS.into())) - } - } -} - -/// The number of huffman tables used. -const MAX_HUFF_TABLES: usize = 3; -/// The length of the first (literal/length) huffman table. -const MAX_HUFF_SYMBOLS_0: usize = 288; -/// The length of the second (distance) huffman table. -const MAX_HUFF_SYMBOLS_1: usize = 32; -/// The length of the last (huffman code length) huffman table. -const _MAX_HUFF_SYMBOLS_2: usize = 19; -/// The maximum length of a code that can be looked up in the fast lookup table. -const FAST_LOOKUP_BITS: u8 = 10; -/// The size of the fast lookup table. -const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS; -const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2; -const LITLEN_TABLE: usize = 0; -const DIST_TABLE: usize = 1; -const HUFFLEN_TABLE: usize = 2; - -/// Flags to [`decompress()`] to control how inflation works. -/// -/// These define bits for a bitmask argument. -pub mod inflate_flags { - /// Should we try to parse a zlib header? - /// - /// If unset, the function will expect an RFC1951 deflate stream. If set, it will expect a - /// RFC1950 zlib wrapper around the deflate stream. - pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1; - - /// There will be more input that hasn't been given to the decompressor yet. - /// - /// This is useful when you want to decompress what you have so far, - /// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a - /// network connection). When [`decompress()`][super::decompress] reaches the end of the input - /// without finding the end of the compressed stream, it will return - /// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set, - /// indicating that you should get more data before calling again. If not set, it will return - /// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress] - /// suggesting the stream is corrupt, since you claimed it was all there. - pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2; - - /// The output buffer should not wrap around. - pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4; - - /// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream. - /// - /// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this. - /// - /// NOTE: Enabling/disabling this between calls to decompress will result in an incorrect - /// checksum. - pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8; - - /// Ignore adler32 checksum even if we are inflating a zlib stream. - /// - /// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled. - /// - /// NOTE: This flag does not exist in miniz as it does not support this and is a - /// custom addition for miniz_oxide. - /// - /// NOTE: Should not be changed from enabled to disabled after decompression has started, - /// this will result in checksum failure (outside the unlikely event where the checksum happens - /// to match anyway). - pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64; -} - -use self::inflate_flags::*; - -const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4]; - -#[cfg(target_pointer_width = "64")] -type BitBuffer = u64; - -#[cfg(not(target_pointer_width = "64"))] -type BitBuffer = u32; - -/// Main decompression struct. -/// -pub struct DecompressorOxide { - /// Current state of the decompressor. - state: core::State, - /// Number of bits in the bit buffer. - num_bits: u32, - /// Zlib CMF - z_header0: u32, - /// Zlib FLG - z_header1: u32, - /// Adler32 checksum from the zlib header. - z_adler32: u32, - /// 1 if the current block is the last block, 0 otherwise. - finish: u32, - /// The type of the current block. - block_type: u32, - /// 1 if the adler32 value should be checked. - check_adler32: u32, - /// Last match distance. - dist: u32, - /// Variable used for match length, symbols, and a number of other things. - counter: u32, - /// Number of extra bits for the last length or distance code. - num_extra: u32, - /// Number of entries in each huffman table. - table_sizes: [u32; MAX_HUFF_TABLES], - /// Buffer of input data. - bit_buf: BitBuffer, - /// Huffman tables. - tables: [HuffmanTable; MAX_HUFF_TABLES], - /// Raw block header. - raw_header: [u8; 4], - /// Huffman length codes. - len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], -} - -impl DecompressorOxide { - /// Create a new tinfl_decompressor with all fields set to 0. - pub fn new() -> DecompressorOxide { - DecompressorOxide::default() - } - - /// Set the current state to `Start`. - #[inline] - pub fn init(&mut self) { - // The rest of the data is reset or overwritten when used. - self.state = core::State::Start; - } - - /// Returns the adler32 checksum of the currently decompressed data. - /// Note: Will return Some(1) if decompressing zlib but ignoring adler32. - #[inline] - pub fn adler32(&self) -> Option { - if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 { - Some(self.check_adler32) - } else { - None - } - } - - /// Returns the adler32 that was read from the zlib header if it exists. - #[inline] - pub fn adler32_header(&self) -> Option { - if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 { - Some(self.z_adler32) - } else { - None - } - } -} - -impl Default for DecompressorOxide { - /// Create a new tinfl_decompressor with all fields set to 0. - #[inline(always)] - fn default() -> Self { - DecompressorOxide { - state: core::State::Start, - num_bits: 0, - z_header0: 0, - z_header1: 0, - z_adler32: 0, - finish: 0, - block_type: 0, - check_adler32: 0, - dist: 0, - counter: 0, - num_extra: 0, - table_sizes: [0; MAX_HUFF_TABLES], - bit_buf: 0, - // TODO:(oyvindln) Check that copies here are optimized out in release mode. - tables: [ - HuffmanTable::new(), - HuffmanTable::new(), - HuffmanTable::new(), - ], - raw_header: [0; 4], - len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], - } - } -} - -#[derive(Copy, Clone, PartialEq, Eq, Debug)] -#[non_exhaustive] -enum State { - Start = 0, - ReadZlibCmf, - ReadZlibFlg, - ReadBlockHeader, - BlockTypeNoCompression, - RawHeader, - RawMemcpy1, - RawMemcpy2, - ReadTableSizes, - ReadHufflenTableCodeSize, - ReadLitlenDistTablesCodeSize, - ReadExtraBitsCodeSize, - DecodeLitlen, - WriteSymbol, - ReadExtraBitsLitlen, - DecodeDistance, - ReadExtraBitsDistance, - RawReadFirstByte, - RawStoreFirstByte, - WriteLenBytesToEnd, - BlockDone, - HuffDecodeOuterLoop1, - HuffDecodeOuterLoop2, - ReadAdler32, - - DoneForever, - - // Failure states. - BlockTypeUnexpected, - BadCodeSizeSum, - BadDistOrLiteralTableLength, - BadTotalSymbols, - BadZlibHeader, - DistanceOutOfBounds, - BadRawLength, - BadCodeSizeDistPrevLookup, - InvalidLitlen, - InvalidDist, - InvalidCodeLen, -} - -impl State { - fn is_failure(self) -> bool { - match self { - BlockTypeUnexpected => true, - BadCodeSizeSum => true, - BadDistOrLiteralTableLength => true, - BadTotalSymbols => true, - BadZlibHeader => true, - DistanceOutOfBounds => true, - BadRawLength => true, - BadCodeSizeDistPrevLookup => true, - InvalidLitlen => true, - InvalidDist => true, - _ => false, - } - } - - #[inline] - fn begin(&mut self, new_state: State) { - *self = new_state; - } -} - -use self::State::*; - -// Not sure why miniz uses 32-bit values for these, maybe alignment/cache again? -// # Optimization -// We add a extra value at the end and make the tables 32 elements long -// so we can use a mask to avoid bounds checks. -// The invalid values are set to something high enough to avoid underflowing -// the match length. -/// Base length for each length code. -/// -/// The base is used together with the value of the extra bits to decode the actual -/// length/distance values in a match. -#[rustfmt::skip] -const LENGTH_BASE: [u16; 32] = [ - 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, - 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512 -]; - -/// Number of extra bits for each length code. -#[rustfmt::skip] -const LENGTH_EXTRA: [u8; 32] = [ - 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, - 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0 -]; - -/// Base length for each distance code. -#[rustfmt::skip] -const DIST_BASE: [u16; 32] = [ - 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, - 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, - 2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577, 32_768, 32_768 -]; - -/// Number of extra bits for each distance code. -#[rustfmt::skip] -const DIST_EXTRA: [u8; 32] = [ - 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, - 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13 -]; - -/// The mask used when indexing the base/extra arrays. -const BASE_EXTRA_MASK: usize = 32 - 1; - -/// Sets the value of all the elements of the slice to `val`. -#[inline] -fn memset(slice: &mut [T], val: T) { - for x in slice { - *x = val - } -} - -/// Read an le u16 value from the slice iterator. -/// -/// # Panics -/// Panics if there are less than two bytes left. -#[inline] -fn read_u16_le(iter: &mut slice::Iter) -> u16 { - let ret = { - let two_bytes = iter.as_ref()[..2].try_into().unwrap(); - u16::from_le_bytes(two_bytes) - }; - iter.nth(1); - ret -} - -/// Read an le u32 value from the slice iterator. -/// -/// # Panics -/// Panics if there are less than four bytes left. -#[inline(always)] -#[cfg(target_pointer_width = "64")] -fn read_u32_le(iter: &mut slice::Iter) -> u32 { - let ret = { - let four_bytes: [u8; 4] = iter.as_ref()[..4].try_into().unwrap(); - u32::from_le_bytes(four_bytes) - }; - iter.nth(3); - ret -} - -/// Ensure that there is data in the bit buffer. -/// -/// On 64-bit platform, we use a 64-bit value so this will -/// result in there being at least 32 bits in the bit buffer. -/// This function assumes that there is at least 4 bytes left in the input buffer. -#[inline(always)] -#[cfg(target_pointer_width = "64")] -fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter) { - // Read four bytes into the buffer at once. - if l.num_bits < 30 { - l.bit_buf |= BitBuffer::from(read_u32_le(in_iter)) << l.num_bits; - l.num_bits += 32; - } -} - -/// Same as previous, but for non-64-bit platforms. -/// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer. -#[inline(always)] -#[cfg(not(target_pointer_width = "64"))] -fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut slice::Iter) { - // If the buffer is 32-bit wide, read 2 bytes instead. - if l.num_bits < 15 { - l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; - l.num_bits += 16; - } -} - -/// Check that the zlib header is correct and that there is enough space in the buffer -/// for the window size specified in the header. -/// -/// See https://tools.ietf.org/html/rfc1950 -#[inline] -fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action { - let mut failed = - // cmf + flg should be divisible by 31. - (((cmf * 256) + flg) % 31 != 0) || - // If this flag is set, a dictionary was used for this zlib compressed data. - // This is currently not supported by miniz or miniz-oxide - ((flg & 0b0010_0000) != 0) || - // Compression method. Only 8(DEFLATE) is defined by the standard. - ((cmf & 15) != 8); - - let window_size = 1 << ((cmf >> 4) + 8); - if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 { - // Bail if the buffer is wrapping and the window size is larger than the buffer. - failed |= (mask + 1) < window_size; - } - - // Zlib doesn't allow window sizes above 32 * 1024. - failed |= window_size > 32_768; - - if failed { - Action::Jump(BadZlibHeader) - } else { - Action::Jump(ReadBlockHeader) - } -} - -enum Action { - None, - Jump(State), - End(TINFLStatus), -} - -/// Try to decode the next huffman code, and puts it in the counter field of the decompressor -/// if successful. -/// -/// # Returns -/// The specified action returned from `f` on success, -/// `Action::End` if there are not enough data left to decode a symbol. -fn decode_huffman_code( - r: &mut DecompressorOxide, - l: &mut LocalVars, - table: usize, - flags: u32, - in_iter: &mut slice::Iter, - f: F, -) -> Action -where - F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action, -{ - // As the huffman codes can be up to 15 bits long we need at least 15 bits - // ready in the bit buffer to start decoding the next huffman code. - if l.num_bits < 15 { - // First, make sure there is enough data in the bit buffer to decode a huffman code. - if in_iter.len() < 2 { - // If there is less than 2 bytes left in the input buffer, we try to look up - // the huffman code with what's available, and return if that doesn't succeed. - // Original explanation in miniz: - // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes - // * remaining in the input buffer falls below 2. */ - // /* It reads just enough bytes from the input stream that are needed to decode - // * the next Huffman code (and absolutely no more). It works by trying to fully - // * decode a */ - // /* Huffman code by using whatever bits are currently present in the bit buffer. - // * If this fails, it reads another byte, and tries again until it succeeds or - // * until the */ - // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ - loop { - let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf)); - - if temp >= 0 { - let code_len = (temp >> 9) as u32; - if (code_len != 0) && (l.num_bits >= code_len) { - break; - } - } else if l.num_bits > FAST_LOOKUP_BITS.into() { - let mut code_len = u32::from(FAST_LOOKUP_BITS); - loop { - temp = i32::from( - r.tables[table].tree - [(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize], - ); - code_len += 1; - if temp >= 0 || l.num_bits < code_len + 1 { - break; - } - } - if temp >= 0 { - break; - } - } - - // TODO: miniz jumps straight to here after getting here again after failing to read - // a byte. - // Doing that lets miniz avoid re-doing the lookup that that was done in the - // previous call. - let mut byte = 0; - if let a @ Action::End(_) = read_byte(in_iter, flags, |b| { - byte = b; - Action::None - }) { - return a; - }; - - // Do this outside closure for now to avoid borrowing r. - l.bit_buf |= BitBuffer::from(byte) << l.num_bits; - l.num_bits += 8; - - if l.num_bits >= 15 { - break; - } - } - } else { - // There is enough data in the input buffer, so read the next two bytes - // and add them to the bit buffer. - // Unwrapping here is fine since we just checked that there are at least two - // bytes left. - l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; - l.num_bits += 16; - } - } - - // We now have at least 15 bits in the input buffer. - let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf)); - let code_len; - // If the symbol was found in the fast lookup table. - if symbol >= 0 { - // Get the length value from the top bits. - // As we shift down the sign bit, converting to an unsigned value - // shouldn't overflow. - code_len = (symbol >> 9) as u32; - // Mask out the length value. - symbol &= 511; - } else { - let res = r.tables[table].tree_lookup(symbol, l.bit_buf, u32::from(FAST_LOOKUP_BITS)); - symbol = res.0; - code_len = res.1 as u32; - }; - - if code_len == 0 { - return Action::Jump(InvalidCodeLen); - } - - l.bit_buf >>= code_len as u32; - l.num_bits -= code_len; - f(r, l, symbol) -} - -/// Try to read one byte from `in_iter` and call `f` with the read byte as an argument, -/// returning the result. -/// If reading fails, `Action::End is returned` -#[inline] -fn read_byte(in_iter: &mut slice::Iter, flags: u32, f: F) -> Action -where - F: FnOnce(u8) -> Action, -{ - match in_iter.next() { - None => end_of_input(flags), - Some(&byte) => f(byte), - } -} - -// TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always)) -/// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an -/// an argument after reading, returning the result of that function, or `Action::End` if there are -/// not enough bytes left. -#[inline] -#[allow(clippy::while_immutable_condition)] -fn read_bits( - l: &mut LocalVars, - amount: u32, - in_iter: &mut slice::Iter, - flags: u32, - f: F, -) -> Action -where - F: FnOnce(&mut LocalVars, BitBuffer) -> Action, -{ - // Clippy gives a false positive warning here due to the closure. - // Read enough bytes from the input iterator to cover the number of bits we want. - while l.num_bits < amount { - match read_byte(in_iter, flags, |byte| { - l.bit_buf |= BitBuffer::from(byte) << l.num_bits; - l.num_bits += 8; - Action::None - }) { - Action::None => (), - // If there are not enough bytes in the input iterator, return and signal that we need - // more. - action => return action, - } - } - - let bits = l.bit_buf & ((1 << amount) - 1); - l.bit_buf >>= amount; - l.num_bits -= amount; - f(l, bits) -} - -#[inline] -fn pad_to_bytes(l: &mut LocalVars, in_iter: &mut slice::Iter, flags: u32, f: F) -> Action -where - F: FnOnce(&mut LocalVars) -> Action, -{ - let num_bits = l.num_bits & 7; - read_bits(l, num_bits, in_iter, flags, |l, _| f(l)) -} - -#[inline] -fn end_of_input(flags: u32) -> Action { - Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 { - TINFLStatus::NeedsMoreInput - } else { - TINFLStatus::FailedCannotMakeProgress - }) -} - -#[inline] -fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 { - let res = cmp::min(l.num_bits >> 3, max); - l.num_bits -= res << 3; - res -} - -fn start_static_table(r: &mut DecompressorOxide) { - r.table_sizes[LITLEN_TABLE] = 288; - r.table_sizes[DIST_TABLE] = 32; - memset(&mut r.tables[LITLEN_TABLE].code_size[0..144], 8); - memset(&mut r.tables[LITLEN_TABLE].code_size[144..256], 9); - memset(&mut r.tables[LITLEN_TABLE].code_size[256..280], 7); - memset(&mut r.tables[LITLEN_TABLE].code_size[280..288], 8); - memset(&mut r.tables[DIST_TABLE].code_size[0..32], 5); -} - -static REVERSED_BITS_LOOKUP: [u32; 1024] = { - let mut table = [0; 1024]; - - let mut i = 0; - while i < 1024 { - table[i] = (i as u32).reverse_bits(); - i += 1; - } - - table -}; - -fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Action { - loop { - let table = &mut r.tables[r.block_type as usize]; - let table_size = r.table_sizes[r.block_type as usize] as usize; - let mut total_symbols = [0u32; 16]; - let mut next_code = [0u32; 17]; - memset(&mut table.look_up[..], 0); - memset(&mut table.tree[..], 0); - - for &code_size in &table.code_size[..table_size] { - total_symbols[code_size as usize] += 1; - } - - let mut used_symbols = 0; - let mut total = 0; - for i in 1..16 { - used_symbols += total_symbols[i]; - total += total_symbols[i]; - total <<= 1; - next_code[i + 1] = total; - } - - if total != 65_536 && used_symbols > 1 { - return Action::Jump(BadTotalSymbols); - } - - let mut tree_next = -1; - for symbol_index in 0..table_size { - let mut rev_code = 0; - let code_size = table.code_size[symbol_index]; - if code_size == 0 { - continue; - } - - let mut cur_code = next_code[code_size as usize]; - next_code[code_size as usize] += 1; - - let n = cur_code & (u32::MAX >> (32 - code_size)); - - let mut rev_code = if n < 1024 { - REVERSED_BITS_LOOKUP[n as usize] >> (32 - code_size) - } else { - for _ in 0..code_size { - rev_code = (rev_code << 1) | (cur_code & 1); - cur_code >>= 1; - } - rev_code - }; - - if code_size <= FAST_LOOKUP_BITS { - let k = (i16::from(code_size) << 9) | symbol_index as i16; - while rev_code < FAST_LOOKUP_SIZE { - table.look_up[rev_code as usize] = k; - rev_code += 1 << code_size; - } - continue; - } - - let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize]; - if tree_cur == 0 { - table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next as i16; - tree_cur = tree_next; - tree_next -= 2; - } - - rev_code >>= FAST_LOOKUP_BITS - 1; - for _ in FAST_LOOKUP_BITS + 1..code_size { - rev_code >>= 1; - tree_cur -= (rev_code & 1) as i16; - if table.tree[(-tree_cur - 1) as usize] == 0 { - table.tree[(-tree_cur - 1) as usize] = tree_next as i16; - tree_cur = tree_next; - tree_next -= 2; - } else { - tree_cur = table.tree[(-tree_cur - 1) as usize]; - } - } - - rev_code >>= 1; - tree_cur -= (rev_code & 1) as i16; - table.tree[(-tree_cur - 1) as usize] = symbol_index as i16; - } - - if r.block_type == 2 { - l.counter = 0; - return Action::Jump(ReadLitlenDistTablesCodeSize); - } - - if r.block_type == 0 { - break; - } - r.block_type -= 1; - } - - l.counter = 0; - Action::Jump(DecodeLitlen) -} - -// A helper macro for generating the state machine. -// -// As Rust doesn't have fallthrough on matches, we have to return to the match statement -// and jump for each state change. (Which would ideally be optimized away, but often isn't.) -macro_rules! generate_state { - ($state: ident, $state_machine: tt, $f: expr) => { - loop { - match $f { - Action::None => continue, - Action::Jump(new_state) => { - $state = new_state; - continue $state_machine; - }, - Action::End(result) => break $state_machine result, - } - } - }; -} - -#[derive(Copy, Clone)] -struct LocalVars { - pub bit_buf: BitBuffer, - pub num_bits: u32, - pub dist: u32, - pub counter: u32, - pub num_extra: u32, -} - -#[inline] -fn transfer( - out_slice: &mut [u8], - mut source_pos: usize, - mut out_pos: usize, - match_len: usize, - out_buf_size_mask: usize, -) { - // special case that comes up surprisingly often. in the case that `source_pos` - // is 1 less than `out_pos`, we can say that the entire range will be the same - // value and optimize this to be a simple `memset` - let source_diff = if source_pos > out_pos { - source_pos - out_pos - } else { - out_pos - source_pos - }; - if out_buf_size_mask == usize::MAX && source_diff == 1 && out_pos > source_pos { - let init = out_slice[out_pos - 1]; - let end = (match_len >> 2) * 4 + out_pos; - - out_slice[out_pos..end].fill(init); - out_pos = end; - source_pos = end - 1; - // if the difference between `source_pos` and `out_pos` is greater than 3, we - // can do slightly better than the naive case by copying everything at once - } else if out_buf_size_mask == usize::MAX && source_diff >= 4 && out_pos > source_pos { - for _ in 0..match_len >> 2 { - out_slice.copy_within(source_pos..=source_pos + 3, out_pos); - source_pos += 4; - out_pos += 4; - } - } else { - for _ in 0..match_len >> 2 { - out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; - out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; - out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; - out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask]; - source_pos += 4; - out_pos += 4; - } - } - - match match_len & 3 { - 0 => (), - 1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask], - 2 => { - out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; - out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; - } - 3 => { - out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; - out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; - out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; - } - _ => unreachable!(), - } -} - -/// Presumes that there is at least match_len bytes in output left. -#[inline] -fn apply_match( - out_slice: &mut [u8], - out_pos: usize, - dist: usize, - match_len: usize, - out_buf_size_mask: usize, -) { - debug_assert!(out_pos + match_len <= out_slice.len()); - - let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask; - - if match_len == 3 { - // Fast path for match len 3. - out_slice[out_pos] = out_slice[source_pos]; - out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; - out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; - return; - } - - if cfg!(not(any(target_arch = "x86", target_arch = "x86_64"))) { - // We are not on x86 so copy manually. - transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); - return; - } - - if source_pos >= out_pos && (source_pos - out_pos) < match_len { - transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); - } else if match_len <= dist && source_pos + match_len < out_slice.len() { - // Destination and source segments does not intersect and source does not wrap. - if source_pos < out_pos { - let (from_slice, to_slice) = out_slice.split_at_mut(out_pos); - to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]); - } else { - let (to_slice, from_slice) = out_slice.split_at_mut(source_pos); - to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]); - } - } else { - transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); - } -} - -/// Fast inner decompression loop which is run while there is at least -/// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer -/// (The maximum one match would need + 1). -/// -/// This was inspired by a similar optimization in zlib, which uses this info to do -/// faster unchecked copies of multiple bytes at a time. -/// Currently we don't do this here, but this function does avoid having to jump through the -/// big match loop on each state change(as rust does not have fallthrough or gotos at the moment), -/// and already improves decompression speed a fair bit. -fn decompress_fast( - r: &mut DecompressorOxide, - in_iter: &mut slice::Iter, - out_buf: &mut OutputBuffer, - flags: u32, - local_vars: &mut LocalVars, - out_buf_size_mask: usize, -) -> (TINFLStatus, State) { - // Make a local copy of the most used variables, to avoid having to update and read from values - // in a random memory location and to encourage more register use. - let mut l = *local_vars; - let mut state; - - let status: TINFLStatus = 'o: loop { - state = State::DecodeLitlen; - loop { - // This function assumes that there is at least 259 bytes left in the output buffer, - // and that there is at least 14 bytes left in the input buffer. 14 input bytes: - // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist) - // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes - // We need the one extra byte as we may write one length and one full match - // before checking again. - if out_buf.bytes_left() < 259 || in_iter.len() < 14 { - state = State::DecodeLitlen; - break 'o TINFLStatus::Done; - } - - fill_bit_buffer(&mut l, in_iter); - - if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { - l.counter = symbol as u32; - l.bit_buf >>= code_len; - l.num_bits -= code_len; - - if (l.counter & 256) != 0 { - // The symbol is not a literal. - break; - } else { - // If we have a 32-bit buffer we need to read another two bytes now - // to have enough bits to keep going. - if cfg!(not(target_pointer_width = "64")) { - fill_bit_buffer(&mut l, in_iter); - } - - if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { - l.bit_buf >>= code_len; - l.num_bits -= code_len; - // The previous symbol was a literal, so write it directly and check - // the next one. - out_buf.write_byte(l.counter as u8); - if (symbol & 256) != 0 { - l.counter = symbol as u32; - // The symbol is a length value. - break; - } else { - // The symbol is a literal, so write it directly and continue. - out_buf.write_byte(symbol as u8); - } - } else { - state.begin(InvalidCodeLen); - break 'o TINFLStatus::Failed; - } - } - } else { - state.begin(InvalidCodeLen); - break 'o TINFLStatus::Failed; - } - } - - // Mask the top bits since they may contain length info. - l.counter &= 511; - if l.counter == 256 { - // We hit the end of block symbol. - state.begin(BlockDone); - break 'o TINFLStatus::Done; - } else if l.counter > 285 { - // Invalid code. - // We already verified earlier that the code is > 256. - state.begin(InvalidLitlen); - break 'o TINFLStatus::Failed; - } else { - // The symbol was a length code. - // # Optimization - // Mask the value to avoid bounds checks - // We could use get_unchecked later if can statically verify that - // this will never go out of bounds. - l.num_extra = u32::from(LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]); - l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); - // Length and distance codes have a number of extra bits depending on - // the base, which together with the base gives us the exact value. - - fill_bit_buffer(&mut l, in_iter); - if l.num_extra != 0 { - let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); - l.bit_buf >>= l.num_extra; - l.num_bits -= l.num_extra; - l.counter += extra_bits as u32; - } - - // We found a length code, so a distance code should follow. - - if cfg!(not(target_pointer_width = "64")) { - fill_bit_buffer(&mut l, in_iter); - } - - if let Some((mut symbol, code_len)) = r.tables[DIST_TABLE].lookup(l.bit_buf) { - symbol &= 511; - l.bit_buf >>= code_len; - l.num_bits -= code_len; - if symbol > 29 { - state.begin(InvalidDist); - break 'o TINFLStatus::Failed; - } - - l.num_extra = u32::from(DIST_EXTRA[symbol as usize]); - l.dist = u32::from(DIST_BASE[symbol as usize]); - } else { - state.begin(InvalidCodeLen); - break 'o TINFLStatus::Failed; - } - - if l.num_extra != 0 { - fill_bit_buffer(&mut l, in_iter); - let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); - l.bit_buf >>= l.num_extra; - l.num_bits -= l.num_extra; - l.dist += extra_bits as u32; - } - - let position = out_buf.position(); - if l.dist as usize > out_buf.position() - && (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) - { - // We encountered a distance that refers a position before - // the start of the decoded data, so we can't continue. - state.begin(DistanceOutOfBounds); - break TINFLStatus::Failed; - } - - apply_match( - out_buf.get_mut(), - position, - l.dist as usize, - l.counter as usize, - out_buf_size_mask, - ); - - out_buf.set_position(position + l.counter as usize); - } - }; - - *local_vars = l; - (status, state) -} - -/// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is -/// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the -/// deflate stream. -/// -/// # Arguments -/// -/// `r` is a [`DecompressorOxide`] struct with the state of this stream. -/// -/// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will -/// start at the first byte of this buffer. -/// -/// `out` is a reference to the buffer that will store the decompressed data, and that -/// stores previously decompressed data if any. -/// -/// * The offset given by `out_pos` indicates where in the output buffer slice writing should start. -/// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a -/// wrapping manner, and it's size is required to be a power of 2. -/// * The decompression function normally needs access to 32KiB of the previously decompressed data -///(or to the beginning of the decompressed data if less than 32KiB has been decompressed.) -/// - If this data is not available, decompression may fail. -/// - Some deflate compressors allow specifying a window size which limits match distances to -/// less than this, or alternatively an RLE mode where matches will only refer to the previous byte -/// and thus allows a smaller output buffer. The window size can be specified in the zlib -/// header structure, however, the header data should not be relied on to be correct. -/// -/// `flags` indicates settings and status to the decompression function. -/// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided -/// in a subsequent call to this function. -/// * See the the [`inflate_flags`] module for details on other flags. -/// -/// # Returns -/// -/// Returns a tuple containing the status of the compressor, the number of input bytes read, and the -/// number of bytes output to `out`. -/// -/// This function shouldn't panic pending any bugs. -pub fn decompress( - r: &mut DecompressorOxide, - in_buf: &[u8], - out: &mut [u8], - out_pos: usize, - flags: u32, -) -> (TINFLStatus, usize, usize) { - let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 { - usize::max_value() - } else { - // In the case of zero len, any attempt to write would produce HasMoreOutput, - // so to gracefully process the case of there really being no output, - // set the mask to all zeros. - out.len().saturating_sub(1) - }; - - // Ensure the output buffer's size is a power of 2, unless the output buffer - // is large enough to hold the entire output file (in which case it doesn't - // matter). - // Also make sure that the output buffer position is not past the end of the output buffer. - if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() { - return (TINFLStatus::BadParam, 0, 0); - } - - let mut in_iter = in_buf.iter(); - - let mut state = r.state; - - let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos); - - // Make a local copy of the important variables here so we can work with them on the stack. - let mut l = LocalVars { - bit_buf: r.bit_buf, - num_bits: r.num_bits, - dist: r.dist, - counter: r.counter, - num_extra: r.num_extra, - }; - - let mut status = 'state_machine: loop { - match state { - Start => generate_state!(state, 'state_machine, { - l.bit_buf = 0; - l.num_bits = 0; - l.dist = 0; - l.counter = 0; - l.num_extra = 0; - r.z_header0 = 0; - r.z_header1 = 0; - r.z_adler32 = 1; - r.check_adler32 = 1; - if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { - Action::Jump(State::ReadZlibCmf) - } else { - Action::Jump(State::ReadBlockHeader) - } - }), - - ReadZlibCmf => generate_state!(state, 'state_machine, { - read_byte(&mut in_iter, flags, |cmf| { - r.z_header0 = u32::from(cmf); - Action::Jump(State::ReadZlibFlg) - }) - }), - - ReadZlibFlg => generate_state!(state, 'state_machine, { - read_byte(&mut in_iter, flags, |flg| { - r.z_header1 = u32::from(flg); - validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask) - }) - }), - - // Read the block header and jump to the relevant section depending on the block type. - ReadBlockHeader => generate_state!(state, 'state_machine, { - read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { - r.finish = (bits & 1) as u32; - r.block_type = (bits >> 1) as u32 & 3; - match r.block_type { - 0 => Action::Jump(BlockTypeNoCompression), - 1 => { - start_static_table(r); - init_tree(r, l) - }, - 2 => { - l.counter = 0; - Action::Jump(ReadTableSizes) - }, - 3 => Action::Jump(BlockTypeUnexpected), - _ => unreachable!() - } - }) - }), - - // Raw/Stored/uncompressed block. - BlockTypeNoCompression => generate_state!(state, 'state_machine, { - pad_to_bytes(&mut l, &mut in_iter, flags, |l| { - l.counter = 0; - Action::Jump(RawHeader) - }) - }), - - // Check that the raw block header is correct. - RawHeader => generate_state!(state, 'state_machine, { - if l.counter < 4 { - // Read block length and block length check. - if l.num_bits != 0 { - read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { - r.raw_header[l.counter as usize] = bits as u8; - l.counter += 1; - Action::None - }) - } else { - read_byte(&mut in_iter, flags, |byte| { - r.raw_header[l.counter as usize] = byte; - l.counter += 1; - Action::None - }) - } - } else { - // Check if the length value of a raw block is correct. - // The 2 first (2-byte) words in a raw header are the length and the - // ones complement of the length. - let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8); - let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8); - let valid = length == !check; - l.counter = length.into(); - - if !valid { - Action::Jump(BadRawLength) - } else if l.counter == 0 { - // Empty raw block. Sometimes used for synchronization. - Action::Jump(BlockDone) - } else if l.num_bits != 0 { - // There is some data in the bit buffer, so we need to write that first. - Action::Jump(RawReadFirstByte) - } else { - // The bit buffer is empty, so memcpy the rest of the uncompressed data from - // the block. - Action::Jump(RawMemcpy1) - } - } - }), - - // Read the byte from the bit buffer. - RawReadFirstByte => generate_state!(state, 'state_machine, { - read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { - l.dist = bits as u32; - Action::Jump(RawStoreFirstByte) - }) - }), - - // Write the byte we just read to the output buffer. - RawStoreFirstByte => generate_state!(state, 'state_machine, { - if out_buf.bytes_left() == 0 { - Action::End(TINFLStatus::HasMoreOutput) - } else { - out_buf.write_byte(l.dist as u8); - l.counter -= 1; - if l.counter == 0 || l.num_bits == 0 { - Action::Jump(RawMemcpy1) - } else { - // There is still some data left in the bit buffer that needs to be output. - // TODO: Changed this to jump to `RawReadfirstbyte` rather than - // `RawStoreFirstByte` as that seemed to be the correct path, but this - // needs testing. - Action::Jump(RawReadFirstByte) - } - } - }), - - RawMemcpy1 => generate_state!(state, 'state_machine, { - if l.counter == 0 { - Action::Jump(BlockDone) - } else if out_buf.bytes_left() == 0 { - Action::End(TINFLStatus::HasMoreOutput) - } else { - Action::Jump(RawMemcpy2) - } - }), - - RawMemcpy2 => generate_state!(state, 'state_machine, { - if in_iter.len() > 0 { - // Copy as many raw bytes as possible from the input to the output using memcpy. - // Raw block lengths are limited to 64 * 1024, so casting through usize and u32 - // is not an issue. - let space_left = out_buf.bytes_left(); - let bytes_to_copy = cmp::min(cmp::min( - space_left, - in_iter.len()), - l.counter as usize - ); - - out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]); - - (&mut in_iter).nth(bytes_to_copy - 1); - l.counter -= bytes_to_copy as u32; - Action::Jump(RawMemcpy1) - } else { - end_of_input(flags) - } - }), - - // Read how many huffman codes/symbols are used for each table. - ReadTableSizes => generate_state!(state, 'state_machine, { - if l.counter < 3 { - let num_bits = [5, 5, 4][l.counter as usize]; - read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| { - r.table_sizes[l.counter as usize] = - bits as u32 + u32::from(MIN_TABLE_SIZES[l.counter as usize]); - l.counter += 1; - Action::None - }) - } else { - memset(&mut r.tables[HUFFLEN_TABLE].code_size[..], 0); - l.counter = 0; - // Check that the litlen and distance are within spec. - // litlen table should be <=286 acc to the RFC and - // additionally zlib rejects dist table sizes larger than 30. - // NOTE this the final sizes after adding back predefined values, not - // raw value in the data. - // See miniz_oxide issue #130 and https://github.com/madler/zlib/issues/82. - if r.table_sizes[LITLEN_TABLE] <= 286 && r.table_sizes[DIST_TABLE] <= 30 { - Action::Jump(ReadHufflenTableCodeSize) - } - else { - Action::Jump(BadDistOrLiteralTableLength) - } - } - }), - - // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used - // to decode the lengths of the main tables. - ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, { - if l.counter < r.table_sizes[HUFFLEN_TABLE] { - read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { - // These lengths are not stored in a normal ascending order, but rather one - // specified by the deflate specification intended to put the most used - // values at the front as trailing zero lengths do not have to be stored. - r.tables[HUFFLEN_TABLE] - .code_size[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] = - bits as u8; - l.counter += 1; - Action::None - }) - } else { - r.table_sizes[HUFFLEN_TABLE] = 19; - init_tree(r, &mut l) - } - }), - - ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, { - if l.counter < r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] { - decode_huffman_code( - r, &mut l, HUFFLEN_TABLE, - flags, &mut in_iter, |r, l, symbol| { - l.dist = symbol as u32; - if l.dist < 16 { - r.len_codes[l.counter as usize] = l.dist as u8; - l.counter += 1; - Action::None - } else if l.dist == 16 && l.counter == 0 { - Action::Jump(BadCodeSizeDistPrevLookup) - } else { - l.num_extra = [2, 3, 7][l.dist as usize - 16]; - Action::Jump(ReadExtraBitsCodeSize) - } - } - ) - } else if l.counter != r.table_sizes[LITLEN_TABLE] + r.table_sizes[DIST_TABLE] { - Action::Jump(BadCodeSizeSum) - } else { - r.tables[LITLEN_TABLE].code_size[..r.table_sizes[LITLEN_TABLE] as usize] - .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]); - - let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize; - let dist_table_end = (r.table_sizes[LITLEN_TABLE] + - r.table_sizes[DIST_TABLE]) as usize; - r.tables[DIST_TABLE].code_size[..r.table_sizes[DIST_TABLE] as usize] - .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]); - - r.block_type -= 1; - init_tree(r, &mut l) - } - }), - - ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, { - let num_extra = l.num_extra; - read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| { - // Mask to avoid a bounds check. - extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3]; - let val = if l.dist == 16 { - r.len_codes[l.counter as usize - 1] - } else { - 0 - }; - - memset( - &mut r.len_codes[ - l.counter as usize..l.counter as usize + extra_bits as usize - ], - val, - ); - l.counter += extra_bits as u32; - Action::Jump(ReadLitlenDistTablesCodeSize) - }) - }), - - DecodeLitlen => generate_state!(state, 'state_machine, { - if in_iter.len() < 4 || out_buf.bytes_left() < 2 { - // See if we can decode a literal with the data we have left. - // Jumps to next state (WriteSymbol) if successful. - decode_huffman_code( - r, - &mut l, - LITLEN_TABLE, - flags, - &mut in_iter, - |_r, l, symbol| { - l.counter = symbol as u32; - Action::Jump(WriteSymbol) - }, - ) - } else if - // If there is enough space, use the fast inner decompression - // function. - out_buf.bytes_left() >= 259 && - in_iter.len() >= 14 - { - let (status, new_state) = decompress_fast( - r, - &mut in_iter, - &mut out_buf, - flags, - &mut l, - out_buf_size_mask, - ); - - state = new_state; - if status == TINFLStatus::Done { - Action::Jump(new_state) - } else { - Action::End(status) - } - } else { - fill_bit_buffer(&mut l, &mut in_iter); - - if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { - - l.counter = symbol as u32; - l.bit_buf >>= code_len; - l.num_bits -= code_len; - - if (l.counter & 256) != 0 { - // The symbol is not a literal. - Action::Jump(HuffDecodeOuterLoop1) - } else { - // If we have a 32-bit buffer we need to read another two bytes now - // to have enough bits to keep going. - if cfg!(not(target_pointer_width = "64")) { - fill_bit_buffer(&mut l, &mut in_iter); - } - - if let Some((symbol, code_len)) = r.tables[LITLEN_TABLE].lookup(l.bit_buf) { - - l.bit_buf >>= code_len; - l.num_bits -= code_len; - // The previous symbol was a literal, so write it directly and check - // the next one. - out_buf.write_byte(l.counter as u8); - if (symbol & 256) != 0 { - l.counter = symbol as u32; - // The symbol is a length value. - Action::Jump(HuffDecodeOuterLoop1) - } else { - // The symbol is a literal, so write it directly and continue. - out_buf.write_byte(symbol as u8); - Action::None - } - } else { - Action::Jump(InvalidCodeLen) - } - } - } else { - Action::Jump(InvalidCodeLen) - } - } - }), - - WriteSymbol => generate_state!(state, 'state_machine, { - if l.counter >= 256 { - Action::Jump(HuffDecodeOuterLoop1) - } else if out_buf.bytes_left() > 0 { - out_buf.write_byte(l.counter as u8); - Action::Jump(DecodeLitlen) - } else { - Action::End(TINFLStatus::HasMoreOutput) - } - }), - - HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, { - // Mask the top bits since they may contain length info. - l.counter &= 511; - - if l.counter - == 256 { - // We hit the end of block symbol. - Action::Jump(BlockDone) - } else if l.counter > 285 { - // Invalid code. - // We already verified earlier that the code is > 256. - Action::Jump(InvalidLitlen) - } else { - // # Optimization - // Mask the value to avoid bounds checks - // We could use get_unchecked later if can statically verify that - // this will never go out of bounds. - l.num_extra = - u32::from(LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]); - l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); - // Length and distance codes have a number of extra bits depending on - // the base, which together with the base gives us the exact value. - if l.num_extra != 0 { - Action::Jump(ReadExtraBitsLitlen) - } else { - Action::Jump(DecodeDistance) - } - } - }), - - ReadExtraBitsLitlen => generate_state!(state, 'state_machine, { - let num_extra = l.num_extra; - read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { - l.counter += extra_bits as u32; - Action::Jump(DecodeDistance) - }) - }), - - DecodeDistance => generate_state!(state, 'state_machine, { - // Try to read a huffman code from the input buffer and look up what - // length code the decoded symbol refers to. - decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| { - if symbol > 29 { - // Invalid distance code. - return Action::Jump(InvalidDist) - } - // # Optimization - // Mask the value to avoid bounds checks - // We could use get_unchecked later if can statically verify that - // this will never go out of bounds. - l.num_extra = u32::from(DIST_EXTRA[symbol as usize & BASE_EXTRA_MASK]); - l.dist = u32::from(DIST_BASE[symbol as usize & BASE_EXTRA_MASK]); - if l.num_extra != 0 { - // ReadEXTRA_BITS_DISTACNE - Action::Jump(ReadExtraBitsDistance) - } else { - Action::Jump(HuffDecodeOuterLoop2) - } - }) - }), - - ReadExtraBitsDistance => generate_state!(state, 'state_machine, { - let num_extra = l.num_extra; - read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { - l.dist += extra_bits as u32; - Action::Jump(HuffDecodeOuterLoop2) - }) - }), - - HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, { - if l.dist as usize > out_buf.position() && - (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) - { - // We encountered a distance that refers a position before - // the start of the decoded data, so we can't continue. - Action::Jump(DistanceOutOfBounds) - } else { - let out_pos = out_buf.position(); - let source_pos = out_buf.position() - .wrapping_sub(l.dist as usize) & out_buf_size_mask; - - let out_len = out_buf.get_ref().len() as usize; - let match_end_pos = out_buf.position() + l.counter as usize; - - if match_end_pos > out_len || - // miniz doesn't do this check here. Not sure how it makes sure - // that this case doesn't happen. - (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize) - { - // Not enough space for all of the data in the output buffer, - // so copy what we have space for. - if l.counter == 0 { - Action::Jump(DecodeLitlen) - } else { - Action::Jump(WriteLenBytesToEnd) - } - } else { - apply_match( - out_buf.get_mut(), - out_pos, - l.dist as usize, - l.counter as usize, - out_buf_size_mask - ); - out_buf.set_position(out_pos + l.counter as usize); - Action::Jump(DecodeLitlen) - } - } - }), - - WriteLenBytesToEnd => generate_state!(state, 'state_machine, { - if out_buf.bytes_left() > 0 { - let out_pos = out_buf.position(); - let source_pos = out_buf.position() - .wrapping_sub(l.dist as usize) & out_buf_size_mask; - - - let len = cmp::min(out_buf.bytes_left(), l.counter as usize); - - transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask); - - out_buf.set_position(out_pos + len); - l.counter -= len as u32; - if l.counter == 0 { - Action::Jump(DecodeLitlen) - } else { - Action::None - } - } else { - Action::End(TINFLStatus::HasMoreOutput) - } - }), - - BlockDone => generate_state!(state, 'state_machine, { - // End once we've read the last block. - if r.finish != 0 { - pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None); - - let in_consumed = in_buf.len() - in_iter.len(); - let undo = undo_bytes(&mut l, in_consumed as u32) as usize; - in_iter = in_buf[in_consumed - undo..].iter(); - - l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1; - debug_assert_eq!(l.num_bits, 0); - - if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { - l.counter = 0; - Action::Jump(ReadAdler32) - } else { - Action::Jump(DoneForever) - } - } else { - Action::Jump(ReadBlockHeader) - } - }), - - ReadAdler32 => generate_state!(state, 'state_machine, { - if l.counter < 4 { - if l.num_bits != 0 { - read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { - r.z_adler32 <<= 8; - r.z_adler32 |= bits as u32; - l.counter += 1; - Action::None - }) - } else { - read_byte(&mut in_iter, flags, |byte| { - r.z_adler32 <<= 8; - r.z_adler32 |= u32::from(byte); - l.counter += 1; - Action::None - }) - } - } else { - Action::Jump(DoneForever) - } - }), - - // We are done. - DoneForever => break TINFLStatus::Done, - - // Anything else indicates failure. - // BadZlibHeader | BadRawLength | BadDistOrLiteralTableLength | BlockTypeUnexpected | - // DistanceOutOfBounds | - // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen | - // InvalidDist | InvalidCodeLen - _ => break TINFLStatus::Failed, - }; - }; - - let in_undo = if status != TINFLStatus::NeedsMoreInput - && status != TINFLStatus::FailedCannotMakeProgress - { - undo_bytes(&mut l, (in_buf.len() - in_iter.len()) as u32) as usize - } else { - 0 - }; - - // Make sure HasMoreOutput overrides NeedsMoreInput if the output buffer is full. - // (Unless the missing input is the adler32 value in which case we don't need to write anything.) - // TODO: May want to see if we can do this in a better way. - if status == TINFLStatus::NeedsMoreInput - && out_buf.bytes_left() == 0 - && state != State::ReadAdler32 - { - status = TINFLStatus::HasMoreOutput - } - - r.state = state; - r.bit_buf = l.bit_buf; - r.num_bits = l.num_bits; - r.dist = l.dist; - r.counter = l.counter; - r.num_extra = l.num_extra; - - r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1; - - // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if - // requested. - let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 { - flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0 - } else { - // If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum. - false - }; - if need_adler && status as i32 >= 0 { - let out_buf_pos = out_buf.position(); - r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]); - - // disabled so that random input from fuzzer would not be rejected early, - // before it has a chance to reach interesting parts of code - if !cfg!(fuzzing) { - // Once we are done, check if the checksum matches with the one provided in the zlib header. - if status == TINFLStatus::Done - && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 - && r.check_adler32 != r.z_adler32 - { - status = TINFLStatus::Adler32Mismatch; - } - } - } - - ( - status, - in_buf.len() - in_iter.len() - in_undo, - out_buf.position() - out_pos, - ) -} - -#[cfg(test)] -mod test { - use super::*; - - //TODO: Fix these. - - fn tinfl_decompress_oxide<'i>( - r: &mut DecompressorOxide, - input_buffer: &'i [u8], - output_buffer: &mut [u8], - flags: u32, - ) -> (TINFLStatus, &'i [u8], usize) { - let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags); - (status, &input_buffer[in_pos..], out_pos) - } - - #[test] - fn decompress_zlib() { - let encoded = [ - 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, - ]; - let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER; - - let mut b = DecompressorOxide::new(); - const LEN: usize = 32; - let mut b_buf = vec![0; LEN]; - - // This should fail with the out buffer being to small. - let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags); - - assert_eq!(b_status.0, TINFLStatus::Failed); - - let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; - - b = DecompressorOxide::new(); - - // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail. - let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags); - - assert_eq!(b_buf[..b_status.2], b"Hello, zlib!"[..]); - assert_eq!(b_status.0, TINFLStatus::Done); - } - - #[test] - fn raw_block() { - const LEN: usize = 64; - - let text = b"Hello, zlib!"; - let encoded = { - let len = text.len(); - let notlen = !len; - let mut encoded = vec![ - 1, - len as u8, - (len >> 8) as u8, - notlen as u8, - (notlen >> 8) as u8, - ]; - encoded.extend_from_slice(&text[..]); - encoded - }; - - //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER | - let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; - - let mut b = DecompressorOxide::new(); - - let mut b_buf = vec![0; LEN]; - - let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], b_buf.as_mut_slice(), flags); - assert_eq!(b_buf[..b_status.2], text[..]); - assert_eq!(b_status.0, TINFLStatus::Done); - } - - fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) { - let ret = table.lookup(bit_buf).unwrap(); - (ret.0 & 511, ret.1) - } - - #[test] - fn fixed_table_lookup() { - let mut d = DecompressorOxide::new(); - d.block_type = 1; - start_static_table(&mut d); - let mut l = LocalVars { - bit_buf: d.bit_buf, - num_bits: d.num_bits, - dist: d.dist, - counter: d.counter, - num_extra: d.num_extra, - }; - init_tree(&mut d, &mut l); - let llt = &d.tables[LITLEN_TABLE]; - let dt = &d.tables[DIST_TABLE]; - assert_eq!(masked_lookup(llt, 0b00001100), (0, 8)); - assert_eq!(masked_lookup(llt, 0b00011110), (72, 8)); - assert_eq!(masked_lookup(llt, 0b01011110), (74, 8)); - assert_eq!(masked_lookup(llt, 0b11111101), (143, 8)); - assert_eq!(masked_lookup(llt, 0b000010011), (144, 9)); - assert_eq!(masked_lookup(llt, 0b111111111), (255, 9)); - assert_eq!(masked_lookup(llt, 0b00000000), (256, 7)); - assert_eq!(masked_lookup(llt, 0b1110100), (279, 7)); - assert_eq!(masked_lookup(llt, 0b00000011), (280, 8)); - assert_eq!(masked_lookup(llt, 0b11100011), (287, 8)); - - assert_eq!(masked_lookup(dt, 0), (0, 5)); - assert_eq!(masked_lookup(dt, 20), (5, 5)); - } - - fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) { - let mut r = DecompressorOxide::default(); - let mut output_buf = vec![0; 1024 * 32]; - let flags = if zlib { - inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER - } else { - 0 - } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF - | TINFL_FLAG_HAS_MORE_INPUT; - let (d_status, _in_bytes, _out_bytes) = - decompress(&mut r, input, &mut output_buf, 0, flags); - assert_eq!(expected_status, d_status); - assert_eq!(expected_state, r.state); - } - - #[test] - fn bogus_input() { - use self::check_result as cr; - const F: TINFLStatus = TINFLStatus::Failed; - const OK: TINFLStatus = TINFLStatus::Done; - // Bad CM. - cr(&[0x77, 0x85], F, State::BadZlibHeader, true); - // Bad window size (but check is correct). - cr(&[0x88, 0x98], F, State::BadZlibHeader, true); - // Bad check bits. - cr(&[0x78, 0x98], F, State::BadZlibHeader, true); - - // Too many code lengths. (From inflate library issues) - cr( - b"M\xff\xffM*\xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM", - F, - State::BadDistOrLiteralTableLength, - false, - ); - - // Bad CLEN (also from inflate library issues) - cr( - b"\xdd\xff\xff*M\x94ffffffffff", - F, - State::BadDistOrLiteralTableLength, - false, - ); - - // Port of inflate coverage tests from zlib-ng - // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c - let c = |a, b, c| cr(a, b, c, false); - - // Invalid uncompressed/raw block length. - c(&[0, 0, 0, 0, 0], F, State::BadRawLength); - // Ok empty uncompressed block. - c(&[3, 0], OK, State::DoneForever); - // Invalid block type. - c(&[6], F, State::BlockTypeUnexpected); - // Ok uncompressed block. - c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever); - // Too many litlens, we handle this later than zlib, so this test won't - // give the same result. - // c(&[0xfc, 0, 0], F, State::BadTotalSymbols); - // Invalid set of code lengths - TODO Check if this is the correct error for this. - c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols); - // Invalid repeat in list of code lengths. - // (Try to repeat a non-existent code.) - c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup); - // Missing end of block code (should we have a separate error for this?) - fails on further input - // c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols); - // Invalid set of literals/lengths - c( - &[ - 4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0, - ], - F, - State::BadTotalSymbols, - ); - // Invalid set of distances _ needsmoreinput - // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols); - // Invalid distance code - c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist); - - // Distance refers to position before the start - c( - &[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], - F, - State::DistanceOutOfBounds, - ); - - // Trailer - // Bad gzip trailer checksum GZip header not handled by miniz_oxide - //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) - // Bad gzip trailer length - //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) - } - - #[test] - fn empty_output_buffer_non_wrapping() { - let encoded = [ - 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, - ]; - let flags = TINFL_FLAG_COMPUTE_ADLER32 - | TINFL_FLAG_PARSE_ZLIB_HEADER - | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; - let mut r = DecompressorOxide::new(); - let mut output_buf = vec![]; - // Check that we handle an empty buffer properly and not panicking. - // https://github.com/Frommi/miniz_oxide/issues/23 - let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); - assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0)); - } - - #[test] - fn empty_output_buffer_wrapping() { - let encoded = [ - 0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00, - ]; - let flags = TINFL_FLAG_COMPUTE_ADLER32; - let mut r = DecompressorOxide::new(); - let mut output_buf = vec![]; - // Check that we handle an empty buffer properly and not panicking. - // https://github.com/Frommi/miniz_oxide/issues/23 - let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); - assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0)); - } -} -- cgit v1.2.3