From a990de90fe41456a23e58bd087d2f107d321f3a1 Mon Sep 17 00:00:00 2001 From: Valentin Popov Date: Fri, 19 Jul 2024 16:37:58 +0400 Subject: Deleted vendor folder --- vendor/num-rational/src/lib.rs | 3106 ---------------------------------------- vendor/num-rational/src/pow.rs | 173 --- 2 files changed, 3279 deletions(-) delete mode 100644 vendor/num-rational/src/lib.rs delete mode 100644 vendor/num-rational/src/pow.rs (limited to 'vendor/num-rational/src') diff --git a/vendor/num-rational/src/lib.rs b/vendor/num-rational/src/lib.rs deleted file mode 100644 index bf209ad..0000000 --- a/vendor/num-rational/src/lib.rs +++ /dev/null @@ -1,3106 +0,0 @@ -// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT -// file at the top-level directory of this distribution and at -// http://rust-lang.org/COPYRIGHT. -// -// Licensed under the Apache License, Version 2.0 or the MIT license -// , at your -// option. This file may not be copied, modified, or distributed -// except according to those terms. - -//! Rational numbers -//! -//! ## Compatibility -//! -//! The `num-rational` crate is tested for rustc 1.31 and greater. - -#![doc(html_root_url = "https://docs.rs/num-rational/0.4")] -#![no_std] -// Ratio ops often use other "suspicious" ops -#![allow(clippy::suspicious_arithmetic_impl)] -#![allow(clippy::suspicious_op_assign_impl)] - -#[cfg(feature = "std")] -#[macro_use] -extern crate std; - -use core::cmp; -use core::fmt; -use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex}; -use core::hash::{Hash, Hasher}; -use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub}; -use core::str::FromStr; -#[cfg(feature = "std")] -use std::error::Error; - -#[cfg(feature = "num-bigint")] -use num_bigint::{BigInt, BigUint, Sign, ToBigInt}; - -use num_integer::Integer; -use num_traits::float::FloatCore; -use num_traits::ToPrimitive; -use num_traits::{ - Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Inv, Num, NumCast, One, - Pow, Signed, Zero, -}; - -mod pow; - -/// Represents the ratio between two numbers. -#[derive(Copy, Clone, Debug)] -#[allow(missing_docs)] -pub struct Ratio { - /// Numerator. - numer: T, - /// Denominator. - denom: T, -} - -/// Alias for a `Ratio` of machine-sized integers. -#[deprecated( - since = "0.4.0", - note = "it's better to use a specific size, like `Rational32` or `Rational64`" -)] -pub type Rational = Ratio; -/// Alias for a `Ratio` of 32-bit-sized integers. -pub type Rational32 = Ratio; -/// Alias for a `Ratio` of 64-bit-sized integers. -pub type Rational64 = Ratio; - -#[cfg(feature = "num-bigint")] -/// Alias for arbitrary precision rationals. -pub type BigRational = Ratio; - -/// These method are `const` for Rust 1.31 and later. -impl Ratio { - /// Creates a `Ratio` without checking for `denom == 0` or reducing. - /// - /// **There are several methods that will panic if used on a `Ratio` with - /// `denom == 0`.** - #[inline] - pub const fn new_raw(numer: T, denom: T) -> Ratio { - Ratio { numer, denom } - } - - /// Gets an immutable reference to the numerator. - #[inline] - pub const fn numer(&self) -> &T { - &self.numer - } - - /// Gets an immutable reference to the denominator. - #[inline] - pub const fn denom(&self) -> &T { - &self.denom - } -} - -impl Ratio { - /// Creates a new `Ratio`. - /// - /// **Panics if `denom` is zero.** - #[inline] - pub fn new(numer: T, denom: T) -> Ratio { - let mut ret = Ratio::new_raw(numer, denom); - ret.reduce(); - ret - } - - /// Creates a `Ratio` representing the integer `t`. - #[inline] - pub fn from_integer(t: T) -> Ratio { - Ratio::new_raw(t, One::one()) - } - - /// Converts to an integer, rounding towards zero. - #[inline] - pub fn to_integer(&self) -> T { - self.trunc().numer - } - - /// Returns true if the rational number is an integer (denominator is 1). - #[inline] - pub fn is_integer(&self) -> bool { - self.denom.is_one() - } - - /// Puts self into lowest terms, with `denom` > 0. - /// - /// **Panics if `denom` is zero.** - fn reduce(&mut self) { - if self.denom.is_zero() { - panic!("denominator == 0"); - } - if self.numer.is_zero() { - self.denom.set_one(); - return; - } - if self.numer == self.denom { - self.set_one(); - return; - } - let g: T = self.numer.gcd(&self.denom); - - // FIXME(#5992): assignment operator overloads - // T: Clone + Integer != T: Clone + NumAssign - - #[inline] - fn replace_with(x: &mut T, f: impl FnOnce(T) -> T) { - let y = core::mem::replace(x, T::zero()); - *x = f(y); - } - - // self.numer /= g; - replace_with(&mut self.numer, |x| x / g.clone()); - - // self.denom /= g; - replace_with(&mut self.denom, |x| x / g); - - // keep denom positive! - if self.denom < T::zero() { - replace_with(&mut self.numer, |x| T::zero() - x); - replace_with(&mut self.denom, |x| T::zero() - x); - } - } - - /// Returns a reduced copy of self. - /// - /// In general, it is not necessary to use this method, as the only - /// method of procuring a non-reduced fraction is through `new_raw`. - /// - /// **Panics if `denom` is zero.** - pub fn reduced(&self) -> Ratio { - let mut ret = self.clone(); - ret.reduce(); - ret - } - - /// Returns the reciprocal. - /// - /// **Panics if the `Ratio` is zero.** - #[inline] - pub fn recip(&self) -> Ratio { - self.clone().into_recip() - } - - #[inline] - fn into_recip(self) -> Ratio { - match self.numer.cmp(&T::zero()) { - cmp::Ordering::Equal => panic!("division by zero"), - cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer), - cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer), - } - } - - /// Rounds towards minus infinity. - #[inline] - pub fn floor(&self) -> Ratio { - if *self < Zero::zero() { - let one: T = One::one(); - Ratio::from_integer( - (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), - ) - } else { - Ratio::from_integer(self.numer.clone() / self.denom.clone()) - } - } - - /// Rounds towards plus infinity. - #[inline] - pub fn ceil(&self) -> Ratio { - if *self < Zero::zero() { - Ratio::from_integer(self.numer.clone() / self.denom.clone()) - } else { - let one: T = One::one(); - Ratio::from_integer( - (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), - ) - } - } - - /// Rounds to the nearest integer. Rounds half-way cases away from zero. - #[inline] - pub fn round(&self) -> Ratio { - let zero: Ratio = Zero::zero(); - let one: T = One::one(); - let two: T = one.clone() + one.clone(); - - // Find unsigned fractional part of rational number - let mut fractional = self.fract(); - if fractional < zero { - fractional = zero - fractional - }; - - // The algorithm compares the unsigned fractional part with 1/2, that - // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use - // a >= (b/2)+1. This avoids overflow issues. - let half_or_larger = if fractional.denom.is_even() { - fractional.numer >= fractional.denom / two - } else { - fractional.numer >= (fractional.denom / two) + one - }; - - if half_or_larger { - let one: Ratio = One::one(); - if *self >= Zero::zero() { - self.trunc() + one - } else { - self.trunc() - one - } - } else { - self.trunc() - } - } - - /// Rounds towards zero. - #[inline] - pub fn trunc(&self) -> Ratio { - Ratio::from_integer(self.numer.clone() / self.denom.clone()) - } - - /// Returns the fractional part of a number, with division rounded towards zero. - /// - /// Satisfies `self == self.trunc() + self.fract()`. - #[inline] - pub fn fract(&self) -> Ratio { - Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) - } - - /// Raises the `Ratio` to the power of an exponent. - #[inline] - pub fn pow(&self, expon: i32) -> Ratio - where - for<'a> &'a T: Pow, - { - Pow::pow(self, expon) - } -} - -#[cfg(feature = "num-bigint")] -impl Ratio { - /// Converts a float into a rational number. - pub fn from_float(f: T) -> Option { - if !f.is_finite() { - return None; - } - let (mantissa, exponent, sign) = f.integer_decode(); - let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; - if exponent < 0 { - let one: BigInt = One::one(); - let denom: BigInt = one << ((-exponent) as usize); - let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); - Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) - } else { - let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); - numer <<= exponent as usize; - Some(Ratio::from_integer(BigInt::from_biguint( - bigint_sign, - numer, - ))) - } - } -} - -impl Default for Ratio { - /// Returns zero - fn default() -> Self { - Ratio::zero() - } -} - -// From integer -impl From for Ratio -where - T: Clone + Integer, -{ - fn from(x: T) -> Ratio { - Ratio::from_integer(x) - } -} - -// From pair (through the `new` constructor) -impl From<(T, T)> for Ratio -where - T: Clone + Integer, -{ - fn from(pair: (T, T)) -> Ratio { - Ratio::new(pair.0, pair.1) - } -} - -// Comparisons - -// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy -// for those multiplications to overflow fixed-size integers, so we need to take care. - -impl Ord for Ratio { - #[inline] - fn cmp(&self, other: &Self) -> cmp::Ordering { - // With equal denominators, the numerators can be directly compared - if self.denom == other.denom { - let ord = self.numer.cmp(&other.numer); - return if self.denom < T::zero() { - ord.reverse() - } else { - ord - }; - } - - // With equal numerators, the denominators can be inversely compared - if self.numer == other.numer { - if self.numer.is_zero() { - return cmp::Ordering::Equal; - } - let ord = self.denom.cmp(&other.denom); - return if self.numer < T::zero() { - ord - } else { - ord.reverse() - }; - } - - // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the - // division below, or even always avoid it for BigInt and BigUint. - // FIXME- future breaking change to add Checked* to Integer? - - // Compare as floored integers and remainders - let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); - let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); - match self_int.cmp(&other_int) { - cmp::Ordering::Greater => cmp::Ordering::Greater, - cmp::Ordering::Less => cmp::Ordering::Less, - cmp::Ordering::Equal => { - match (self_rem.is_zero(), other_rem.is_zero()) { - (true, true) => cmp::Ordering::Equal, - (true, false) => cmp::Ordering::Less, - (false, true) => cmp::Ordering::Greater, - (false, false) => { - // Compare the reciprocals of the remaining fractions in reverse - let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); - let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); - self_recip.cmp(&other_recip).reverse() - } - } - } - } - } -} - -impl PartialOrd for Ratio { - #[inline] - fn partial_cmp(&self, other: &Self) -> Option { - Some(self.cmp(other)) - } -} - -impl PartialEq for Ratio { - #[inline] - fn eq(&self, other: &Self) -> bool { - self.cmp(other) == cmp::Ordering::Equal - } -} - -impl Eq for Ratio {} - -// NB: We can't just `#[derive(Hash)]`, because it needs to agree -// with `Eq` even for non-reduced ratios. -impl Hash for Ratio { - fn hash(&self, state: &mut H) { - recurse(&self.numer, &self.denom, state); - - fn recurse(numer: &T, denom: &T, state: &mut H) { - if !denom.is_zero() { - let (int, rem) = numer.div_mod_floor(denom); - int.hash(state); - recurse(denom, &rem, state); - } else { - denom.hash(state); - } - } - } -} - -mod iter_sum_product { - use crate::Ratio; - use core::iter::{Product, Sum}; - use num_integer::Integer; - use num_traits::{One, Zero}; - - impl Sum for Ratio { - fn sum(iter: I) -> Self - where - I: Iterator>, - { - iter.fold(Self::zero(), |sum, num| sum + num) - } - } - - impl<'a, T: Integer + Clone> Sum<&'a Ratio> for Ratio { - fn sum(iter: I) -> Self - where - I: Iterator>, - { - iter.fold(Self::zero(), |sum, num| sum + num) - } - } - - impl Product for Ratio { - fn product(iter: I) -> Self - where - I: Iterator>, - { - iter.fold(Self::one(), |prod, num| prod * num) - } - } - - impl<'a, T: Integer + Clone> Product<&'a Ratio> for Ratio { - fn product(iter: I) -> Self - where - I: Iterator>, - { - iter.fold(Self::one(), |prod, num| prod * num) - } - } -} - -mod opassign { - use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; - - use crate::Ratio; - use num_integer::Integer; - use num_traits::NumAssign; - - impl AddAssign for Ratio { - fn add_assign(&mut self, other: Ratio) { - if self.denom == other.denom { - self.numer += other.numer - } else { - let lcm = self.denom.lcm(&other.denom); - let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); - let rhs_numer = other.numer * (lcm.clone() / other.denom); - self.numer = lhs_numer + rhs_numer; - self.denom = lcm; - } - self.reduce(); - } - } - - // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) - impl DivAssign for Ratio { - fn div_assign(&mut self, other: Ratio) { - let gcd_ac = self.numer.gcd(&other.numer); - let gcd_bd = self.denom.gcd(&other.denom); - self.numer /= gcd_ac.clone(); - self.numer *= other.denom / gcd_bd.clone(); - self.denom /= gcd_bd; - self.denom *= other.numer / gcd_ac; - self.reduce(); // TODO: remove this line. see #8. - } - } - - // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) - impl MulAssign for Ratio { - fn mul_assign(&mut self, other: Ratio) { - let gcd_ad = self.numer.gcd(&other.denom); - let gcd_bc = self.denom.gcd(&other.numer); - self.numer /= gcd_ad.clone(); - self.numer *= other.numer / gcd_bc.clone(); - self.denom /= gcd_bc; - self.denom *= other.denom / gcd_ad; - self.reduce(); // TODO: remove this line. see #8. - } - } - - impl RemAssign for Ratio { - fn rem_assign(&mut self, other: Ratio) { - if self.denom == other.denom { - self.numer %= other.numer - } else { - let lcm = self.denom.lcm(&other.denom); - let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); - let rhs_numer = other.numer * (lcm.clone() / other.denom); - self.numer = lhs_numer % rhs_numer; - self.denom = lcm; - } - self.reduce(); - } - } - - impl SubAssign for Ratio { - fn sub_assign(&mut self, other: Ratio) { - if self.denom == other.denom { - self.numer -= other.numer - } else { - let lcm = self.denom.lcm(&other.denom); - let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); - let rhs_numer = other.numer * (lcm.clone() / other.denom); - self.numer = lhs_numer - rhs_numer; - self.denom = lcm; - } - self.reduce(); - } - } - - // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b - impl AddAssign for Ratio { - fn add_assign(&mut self, other: T) { - self.numer += self.denom.clone() * other; - self.reduce(); - } - } - - impl DivAssign for Ratio { - fn div_assign(&mut self, other: T) { - let gcd = self.numer.gcd(&other); - self.numer /= gcd.clone(); - self.denom *= other / gcd; - self.reduce(); // TODO: remove this line. see #8. - } - } - - impl MulAssign for Ratio { - fn mul_assign(&mut self, other: T) { - let gcd = self.denom.gcd(&other); - self.denom /= gcd.clone(); - self.numer *= other / gcd; - self.reduce(); // TODO: remove this line. see #8. - } - } - - // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b - impl RemAssign for Ratio { - fn rem_assign(&mut self, other: T) { - self.numer %= self.denom.clone() * other; - self.reduce(); - } - } - - // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b - impl SubAssign for Ratio { - fn sub_assign(&mut self, other: T) { - self.numer -= self.denom.clone() * other; - self.reduce(); - } - } - - macro_rules! forward_op_assign { - (impl $imp:ident, $method:ident) => { - impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio> for Ratio { - #[inline] - fn $method(&mut self, other: &Ratio) { - self.$method(other.clone()) - } - } - impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio { - #[inline] - fn $method(&mut self, other: &T) { - self.$method(other.clone()) - } - } - }; - } - - forward_op_assign!(impl AddAssign, add_assign); - forward_op_assign!(impl DivAssign, div_assign); - forward_op_assign!(impl MulAssign, mul_assign); - forward_op_assign!(impl RemAssign, rem_assign); - forward_op_assign!(impl SubAssign, sub_assign); -} - -macro_rules! forward_ref_ref_binop { - (impl $imp:ident, $method:ident) => { - impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio> for &'a Ratio { - type Output = Ratio; - - #[inline] - fn $method(self, other: &'b Ratio) -> Ratio { - self.clone().$method(other.clone()) - } - } - impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio { - type Output = Ratio; - - #[inline] - fn $method(self, other: &'b T) -> Ratio { - self.clone().$method(other.clone()) - } - } - }; -} - -macro_rules! forward_ref_val_binop { - (impl $imp:ident, $method:ident) => { - impl<'a, T> $imp> for &'a Ratio - where - T: Clone + Integer, - { - type Output = Ratio; - - #[inline] - fn $method(self, other: Ratio) -> Ratio { - self.clone().$method(other) - } - } - impl<'a, T> $imp for &'a Ratio - where - T: Clone + Integer, - { - type Output = Ratio; - - #[inline] - fn $method(self, other: T) -> Ratio { - self.clone().$method(other) - } - } - }; -} - -macro_rules! forward_val_ref_binop { - (impl $imp:ident, $method:ident) => { - impl<'a, T> $imp<&'a Ratio> for Ratio - where - T: Clone + Integer, - { - type Output = Ratio; - - #[inline] - fn $method(self, other: &Ratio) -> Ratio { - self.$method(other.clone()) - } - } - impl<'a, T> $imp<&'a T> for Ratio - where - T: Clone + Integer, - { - type Output = Ratio; - - #[inline] - fn $method(self, other: &T) -> Ratio { - self.$method(other.clone()) - } - } - }; -} - -macro_rules! forward_all_binop { - (impl $imp:ident, $method:ident) => { - forward_ref_ref_binop!(impl $imp, $method); - forward_ref_val_binop!(impl $imp, $method); - forward_val_ref_binop!(impl $imp, $method); - }; -} - -// Arithmetic -forward_all_binop!(impl Mul, mul); -// a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) -impl Mul> for Ratio -where - T: Clone + Integer, -{ - type Output = Ratio; - #[inline] - fn mul(self, rhs: Ratio) -> Ratio { - let gcd_ad = self.numer.gcd(&rhs.denom); - let gcd_bc = self.denom.gcd(&rhs.numer); - Ratio::new( - self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), - self.denom / gcd_bc * (rhs.denom / gcd_ad), - ) - } -} -// a/b * c/1 = (a*c) / (b*1) = (a*c) / b -impl Mul for Ratio -where - T: Clone + Integer, -{ - type Output = Ratio; - #[inline] - fn mul(self, rhs: T) -> Ratio { - let gcd = self.denom.gcd(&rhs); - Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) - } -} - -forward_all_binop!(impl Div, div); -// (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) -impl Div> for Ratio -where - T: Clone + Integer, -{ - type Output = Ratio; - - #[inline] - fn div(self, rhs: Ratio) -> Ratio { - let gcd_ac = self.numer.gcd(&rhs.numer); - let gcd_bd = self.denom.gcd(&rhs.denom); - Ratio::new( - self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), - self.denom / gcd_bd * (rhs.numer / gcd_ac), - ) - } -} -// (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) -impl Div for Ratio -where - T: Clone + Integer, -{ - type Output = Ratio; - - #[inline] - fn div(self, rhs: T) -> Ratio { - let gcd = self.numer.gcd(&rhs); - Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) - } -} - -macro_rules! arith_impl { - (impl $imp:ident, $method:ident) => { - forward_all_binop!(impl $imp, $method); - // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) - impl $imp> for Ratio { - type Output = Ratio; - #[inline] - fn $method(self, rhs: Ratio) -> Ratio { - if self.denom == rhs.denom { - return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); - } - let lcm = self.denom.lcm(&rhs.denom); - let lhs_numer = self.numer * (lcm.clone() / self.denom); - let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); - Ratio::new(lhs_numer.$method(rhs_numer), lcm) - } - } - // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern - impl $imp for Ratio { - type Output = Ratio; - #[inline] - fn $method(self, rhs: T) -> Ratio { - Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) - } - } - }; -} - -arith_impl!(impl Add, add); -arith_impl!(impl Sub, sub); -arith_impl!(impl Rem, rem); - -// a/b * c/d = (a*c)/(b*d) -impl CheckedMul for Ratio -where - T: Clone + Integer + CheckedMul, -{ - #[inline] - fn checked_mul(&self, rhs: &Ratio) -> Option> { - let gcd_ad = self.numer.gcd(&rhs.denom); - let gcd_bc = self.denom.gcd(&rhs.numer); - Some(Ratio::new( - (self.numer.clone() / gcd_ad.clone()) - .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?, - (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?, - )) - } -} - -// (a/b) / (c/d) = (a*d)/(b*c) -impl CheckedDiv for Ratio -where - T: Clone + Integer + CheckedMul, -{ - #[inline] - fn checked_div(&self, rhs: &Ratio) -> Option> { - if rhs.is_zero() { - return None; - } - let (numer, denom) = if self.denom == rhs.denom { - (self.numer.clone(), rhs.numer.clone()) - } else if self.numer == rhs.numer { - (rhs.denom.clone(), self.denom.clone()) - } else { - let gcd_ac = self.numer.gcd(&rhs.numer); - let gcd_bd = self.denom.gcd(&rhs.denom); - ( - (self.numer.clone() / gcd_ac.clone()) - .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?, - (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?, - ) - }; - // Manual `reduce()`, avoiding sharp edges - if denom.is_zero() { - None - } else if numer.is_zero() { - Some(Self::zero()) - } else if numer == denom { - Some(Self::one()) - } else { - let g = numer.gcd(&denom); - let numer = numer / g.clone(); - let denom = denom / g; - let raw = if denom < T::zero() { - // We need to keep denom positive, but 2's-complement MIN may - // overflow negation -- instead we can check multiplying -1. - let n1 = T::zero() - T::one(); - Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?) - } else { - Ratio::new_raw(numer, denom) - }; - Some(raw) - } - } -} - -// As arith_impl! but for Checked{Add,Sub} traits -macro_rules! checked_arith_impl { - (impl $imp:ident, $method:ident) => { - impl $imp for Ratio { - #[inline] - fn $method(&self, rhs: &Ratio) -> Option> { - let gcd = self.denom.clone().gcd(&rhs.denom); - let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?; - let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?; - let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?; - Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm)) - } - } - }; -} - -// a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) -checked_arith_impl!(impl CheckedAdd, checked_add); - -// a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) -checked_arith_impl!(impl CheckedSub, checked_sub); - -impl Neg for Ratio -where - T: Clone + Integer + Neg, -{ - type Output = Ratio; - - #[inline] - fn neg(self) -> Ratio { - Ratio::new_raw(-self.numer, self.denom) - } -} - -impl<'a, T> Neg for &'a Ratio -where - T: Clone + Integer + Neg, -{ - type Output = Ratio; - - #[inline] - fn neg(self) -> Ratio { - -self.clone() - } -} - -impl Inv for Ratio -where - T: Clone + Integer, -{ - type Output = Ratio; - - #[inline] - fn inv(self) -> Ratio { - self.recip() - } -} - -impl<'a, T> Inv for &'a Ratio -where - T: Clone + Integer, -{ - type Output = Ratio; - - #[inline] - fn inv(self) -> Ratio { - self.recip() - } -} - -// Constants -impl Zero for Ratio { - #[inline] - fn zero() -> Ratio { - Ratio::new_raw(Zero::zero(), One::one()) - } - - #[inline] - fn is_zero(&self) -> bool { - self.numer.is_zero() - } - - #[inline] - fn set_zero(&mut self) { - self.numer.set_zero(); - self.denom.set_one(); - } -} - -impl One for Ratio { - #[inline] - fn one() -> Ratio { - Ratio::new_raw(One::one(), One::one()) - } - - #[inline] - fn is_one(&self) -> bool { - self.numer == self.denom - } - - #[inline] - fn set_one(&mut self) { - self.numer.set_one(); - self.denom.set_one(); - } -} - -impl Num for Ratio { - type FromStrRadixErr = ParseRatioError; - - /// Parses `numer/denom` where the numbers are in base `radix`. - fn from_str_radix(s: &str, radix: u32) -> Result, ParseRatioError> { - if s.splitn(2, '/').count() == 2 { - let mut parts = s.splitn(2, '/').map(|ss| { - T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { - kind: RatioErrorKind::ParseError, - }) - }); - let numer: T = parts.next().unwrap()?; - let denom: T = parts.next().unwrap()?; - if denom.is_zero() { - Err(ParseRatioError { - kind: RatioErrorKind::ZeroDenominator, - }) - } else { - Ok(Ratio::new(numer, denom)) - } - } else { - Err(ParseRatioError { - kind: RatioErrorKind::ParseError, - }) - } - } -} - -impl Signed for Ratio { - #[inline] - fn abs(&self) -> Ratio { - if self.is_negative() { - -self.clone() - } else { - self.clone() - } - } - - #[inline] - fn abs_sub(&self, other: &Ratio) -> Ratio { - if *self <= *other { - Zero::zero() - } else { - self - other - } - } - - #[inline] - fn signum(&self) -> Ratio { - if self.is_positive() { - Self::one() - } else if self.is_zero() { - Self::zero() - } else { - -Self::one() - } - } - - #[inline] - fn is_positive(&self) -> bool { - (self.numer.is_positive() && self.denom.is_positive()) - || (self.numer.is_negative() && self.denom.is_negative()) - } - - #[inline] - fn is_negative(&self) -> bool { - (self.numer.is_negative() && self.denom.is_positive()) - || (self.numer.is_positive() && self.denom.is_negative()) - } -} - -// String conversions -macro_rules! impl_formatting { - ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => { - impl $fmt_trait for Ratio { - #[cfg(feature = "std")] - fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { - let pre_pad = if self.denom.is_one() { - format!($fmt_str, self.numer) - } else { - if f.alternate() { - format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom) - } else { - format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom) - } - }; - // TODO: replace with strip_prefix, when stabalized - let (pre_pad, non_negative) = { - if pre_pad.starts_with("-") { - (&pre_pad[1..], false) - } else { - (&pre_pad[..], true) - } - }; - f.pad_integral(non_negative, $prefix, pre_pad) - } - #[cfg(not(feature = "std"))] - fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { - let plus = if f.sign_plus() && self.numer >= T::zero() { - "+" - } else { - "" - }; - if self.denom.is_one() { - if f.alternate() { - write!(f, concat!("{}", $fmt_alt), plus, self.numer) - } else { - write!(f, concat!("{}", $fmt_str), plus, self.numer) - } - } else { - if f.alternate() { - write!( - f, - concat!("{}", $fmt_alt, "/", $fmt_alt), - plus, self.numer, self.denom - ) - } else { - write!( - f, - concat!("{}", $fmt_str, "/", $fmt_str), - plus, self.numer, self.denom - ) - } - } - } - } - }; -} - -impl_formatting!(Display, "", "{}", "{:#}"); -impl_formatting!(Octal, "0o", "{:o}", "{:#o}"); -impl_formatting!(Binary, "0b", "{:b}", "{:#b}"); -impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}"); -impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}"); -impl_formatting!(LowerExp, "", "{:e}", "{:#e}"); -impl_formatting!(UpperExp, "", "{:E}", "{:#E}"); - -impl FromStr for Ratio { - type Err = ParseRatioError; - - /// Parses `numer/denom` or just `numer`. - fn from_str(s: &str) -> Result, ParseRatioError> { - let mut split = s.splitn(2, '/'); - - let n = split.next().ok_or(ParseRatioError { - kind: RatioErrorKind::ParseError, - })?; - let num = FromStr::from_str(n).map_err(|_| ParseRatioError { - kind: RatioErrorKind::ParseError, - })?; - - let d = split.next().unwrap_or("1"); - let den = FromStr::from_str(d).map_err(|_| ParseRatioError { - kind: RatioErrorKind::ParseError, - })?; - - if Zero::is_zero(&den) { - Err(ParseRatioError { - kind: RatioErrorKind::ZeroDenominator, - }) - } else { - Ok(Ratio::new(num, den)) - } - } -} - -impl Into<(T, T)> for Ratio { - fn into(self) -> (T, T) { - (self.numer, self.denom) - } -} - -#[cfg(feature = "serde")] -impl serde::Serialize for Ratio -where - T: serde::Serialize + Clone + Integer + PartialOrd, -{ - fn serialize(&self, serializer: S) -> Result - where - S: serde::Serializer, - { - (self.numer(), self.denom()).serialize(serializer) - } -} - -#[cfg(feature = "serde")] -impl<'de, T> serde::Deserialize<'de> for Ratio -where - T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, -{ - fn deserialize(deserializer: D) -> Result - where - D: serde::Deserializer<'de>, - { - use serde::de::Error; - use serde::de::Unexpected; - let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?; - if denom.is_zero() { - Err(Error::invalid_value( - Unexpected::Signed(0), - &"a ratio with non-zero denominator", - )) - } else { - Ok(Ratio::new_raw(numer, denom)) - } - } -} - -// FIXME: Bubble up specific errors -#[derive(Copy, Clone, Debug, PartialEq)] -pub struct ParseRatioError { - kind: RatioErrorKind, -} - -#[derive(Copy, Clone, Debug, PartialEq)] -enum RatioErrorKind { - ParseError, - ZeroDenominator, -} - -impl fmt::Display for ParseRatioError { - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - self.kind.description().fmt(f) - } -} - -#[cfg(feature = "std")] -impl Error for ParseRatioError { - #[allow(deprecated)] - fn description(&self) -> &str { - self.kind.description() - } -} - -impl RatioErrorKind { - fn description(&self) -> &'static str { - match *self { - RatioErrorKind::ParseError => "failed to parse integer", - RatioErrorKind::ZeroDenominator => "zero value denominator", - } - } -} - -#[cfg(feature = "num-bigint")] -impl FromPrimitive for Ratio { - fn from_i64(n: i64) -> Option { - Some(Ratio::from_integer(n.into())) - } - - fn from_i128(n: i128) -> Option { - Some(Ratio::from_integer(n.into())) - } - - fn from_u64(n: u64) -> Option { - Some(Ratio::from_integer(n.into())) - } - - fn from_u128(n: u128) -> Option { - Some(Ratio::from_integer(n.into())) - } - - fn from_f32(n: f32) -> Option { - Ratio::from_float(n) - } - - fn from_f64(n: f64) -> Option { - Ratio::from_float(n) - } -} - -macro_rules! from_primitive_integer { - ($typ:ty, $approx:ident) => { - impl FromPrimitive for Ratio<$typ> { - fn from_i64(n: i64) -> Option { - <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) - } - - fn from_i128(n: i128) -> Option { - <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) - } - - fn from_u64(n: u64) -> Option { - <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) - } - - fn from_u128(n: u128) -> Option { - <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) - } - - fn from_f32(n: f32) -> Option { - $approx(n, 10e-20, 30) - } - - fn from_f64(n: f64) -> Option { - $approx(n, 10e-20, 30) - } - } - }; -} - -from_primitive_integer!(i8, approximate_float); -from_primitive_integer!(i16, approximate_float); -from_primitive_integer!(i32, approximate_float); -from_primitive_integer!(i64, approximate_float); -from_primitive_integer!(i128, approximate_float); -from_primitive_integer!(isize, approximate_float); - -from_primitive_integer!(u8, approximate_float_unsigned); -from_primitive_integer!(u16, approximate_float_unsigned); -from_primitive_integer!(u32, approximate_float_unsigned); -from_primitive_integer!(u64, approximate_float_unsigned); -from_primitive_integer!(u128, approximate_float_unsigned); -from_primitive_integer!(usize, approximate_float_unsigned); - -impl Ratio { - pub fn approximate_float(f: F) -> Option> { - // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems - // to work well. Might want to choose something based on the types in the future, e.g. - // T::max().recip() and T::bits() or something similar. - let epsilon = ::from(10e-20).expect("Can't convert 10e-20"); - approximate_float(f, epsilon, 30) - } -} - -fn approximate_float(val: F, max_error: F, max_iterations: usize) -> Option> -where - T: Integer + Signed + Bounded + NumCast + Clone, - F: FloatCore + NumCast, -{ - let negative = val.is_sign_negative(); - let abs_val = val.abs(); - - let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?; - - // Make negative again if needed - Some(if negative { r.neg() } else { r }) -} - -// No Unsigned constraint because this also works on positive integers and is called -// like that, see above -fn approximate_float_unsigned(val: F, max_error: F, max_iterations: usize) -> Option> -where - T: Integer + Bounded + NumCast + Clone, - F: FloatCore + NumCast, -{ - // Continued fractions algorithm - // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac - - if val < F::zero() || val.is_nan() { - return None; - } - - let mut q = val; - let mut n0 = T::zero(); - let mut d0 = T::one(); - let mut n1 = T::one(); - let mut d1 = T::zero(); - - let t_max = T::max_value(); - let t_max_f = ::from(t_max.clone())?; - - // 1/epsilon > T::MAX - let epsilon = t_max_f.recip(); - - // Overflow - if q > t_max_f { - return None; - } - - for _ in 0..max_iterations { - let a = match ::from(q) { - None => break, - Some(a) => a, - }; - - let a_f = match ::from(a.clone()) { - None => break, - Some(a_f) => a_f, - }; - let f = q - a_f; - - // Prevent overflow - if !a.is_zero() - && (n1 > t_max.clone() / a.clone() - || d1 > t_max.clone() / a.clone() - || a.clone() * n1.clone() > t_max.clone() - n0.clone() - || a.clone() * d1.clone() > t_max.clone() - d0.clone()) - { - break; - } - - let n = a.clone() * n1.clone() + n0.clone(); - let d = a.clone() * d1.clone() + d0.clone(); - - n0 = n1; - d0 = d1; - n1 = n.clone(); - d1 = d.clone(); - - // Simplify fraction. Doing so here instead of at the end - // allows us to get closer to the target value without overflows - let g = Integer::gcd(&n1, &d1); - if !g.is_zero() { - n1 = n1 / g.clone(); - d1 = d1 / g.clone(); - } - - // Close enough? - let (n_f, d_f) = match (::from(n), ::from(d)) { - (Some(n_f), Some(d_f)) => (n_f, d_f), - _ => break, - }; - if (n_f / d_f - val).abs() < max_error { - break; - } - - // Prevent division by ~0 - if f < epsilon { - break; - } - q = f.recip(); - } - - // Overflow - if d1.is_zero() { - return None; - } - - Some(Ratio::new(n1, d1)) -} - -#[cfg(not(feature = "num-bigint"))] -macro_rules! to_primitive_small { - ($($type_name:ty)*) => ($( - impl ToPrimitive for Ratio<$type_name> { - fn to_i64(&self) -> Option { - self.to_integer().to_i64() - } - - fn to_i128(&self) -> Option { - self.to_integer().to_i128() - } - - fn to_u64(&self) -> Option { - self.to_integer().to_u64() - } - - fn to_u128(&self) -> Option { - self.to_integer().to_u128() - } - - fn to_f64(&self) -> Option { - let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap(); - if float.is_nan() { - None - } else { - Some(float) - } - } - } - )*) -} - -#[cfg(not(feature = "num-bigint"))] -to_primitive_small!(u8 i8 u16 i16 u32 i32); - -#[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))] -to_primitive_small!(usize isize); - -#[cfg(not(feature = "num-bigint"))] -macro_rules! to_primitive_64 { - ($($type_name:ty)*) => ($( - impl ToPrimitive for Ratio<$type_name> { - fn to_i64(&self) -> Option { - self.to_integer().to_i64() - } - - fn to_i128(&self) -> Option { - self.to_integer().to_i128() - } - - fn to_u64(&self) -> Option { - self.to_integer().to_u64() - } - - fn to_u128(&self) -> Option { - self.to_integer().to_u128() - } - - fn to_f64(&self) -> Option { - let float = ratio_to_f64( - self.numer as i128, - self.denom as i128 - ); - if float.is_nan() { - None - } else { - Some(float) - } - } - } - )*) -} - -#[cfg(not(feature = "num-bigint"))] -to_primitive_64!(u64 i64); - -#[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))] -to_primitive_64!(usize isize); - -#[cfg(feature = "num-bigint")] -impl ToPrimitive for Ratio { - fn to_i64(&self) -> Option { - self.to_integer().to_i64() - } - - fn to_i128(&self) -> Option { - self.to_integer().to_i128() - } - - fn to_u64(&self) -> Option { - self.to_integer().to_u64() - } - - fn to_u128(&self) -> Option { - self.to_integer().to_u128() - } - - fn to_f64(&self) -> Option { - let float = match (self.numer.to_i64(), self.denom.to_i64()) { - (Some(numer), Some(denom)) => ratio_to_f64( - >::from(numer), - >::from(denom), - ), - _ => { - let numer: BigInt = self.numer.to_bigint()?; - let denom: BigInt = self.denom.to_bigint()?; - ratio_to_f64(numer, denom) - } - }; - if float.is_nan() { - None - } else { - Some(float) - } - } -} - -trait Bits { - fn bits(&self) -> u64; -} - -#[cfg(feature = "num-bigint")] -impl Bits for BigInt { - fn bits(&self) -> u64 { - self.bits() - } -} - -impl Bits for i128 { - fn bits(&self) -> u64 { - (128 - self.wrapping_abs().leading_zeros()).into() - } -} - -/// Converts a ratio of `T` to an f64. -/// -/// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than -/// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`. -fn ratio_to_f64 + ToPrimitive>( - numer: T, - denom: T, -) -> f64 { - use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX}; - - assert_eq!( - RADIX, 2, - "only floating point implementations with radix 2 are supported" - ); - - // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64. - const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS; - const MIN_EXACT_INT: i64 = -MAX_EXACT_INT; - - let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap(); - if !flo_sign.is_normal() { - return flo_sign; - } - - // Fast track: both sides can losslessly be converted to f64s. In this case, letting the - // FPU do the job is faster and easier. In any other case, converting to f64s may lead - // to an inexact result: https://stackoverflow.com/questions/56641441/. - if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) { - if MIN_EXACT_INT <= n && n <= MAX_EXACT_INT && MIN_EXACT_INT <= d && d <= MAX_EXACT_INT { - return n.to_f64().unwrap() / d.to_f64().unwrap(); - } - } - - // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will - // be used as the mantissa of the resulting float, and the remaining two are for rounding. - // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or - // 56 bits. - let mut numer = numer.abs(); - let mut denom = denom.abs(); - let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) { - Some(diff) => (true, diff), - None => (false, denom.bits() - numer.bits()), - }; - - // Filter out overflows and underflows. After this step, the signed difference fits in an - // isize. - if is_diff_positive && absolute_diff > MAX_EXP as u64 { - return INFINITY * flo_sign; - } - if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 { - return 0.0 * flo_sign; - } - let diff = if is_diff_positive { - absolute_diff.to_isize().unwrap() - } else { - -absolute_diff.to_isize().unwrap() - }; - - // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the - // quotient is going to be subnormal, in which case it may have fewer bits. - let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2; - if shift >= 0 { - denom <<= shift as usize - } else { - numer <<= -shift as usize - }; - - let (quotient, remainder) = numer.div_rem(&denom); - - // This is guaranteed to fit since we've set up quotient to be at most 56 bits. - let mut quotient = quotient.to_u64().unwrap(); - let n_rounding_bits = { - let quotient_bits = 64 - quotient.leading_zeros() as isize; - let subnormal_bits = MIN_EXP as isize - shift; - quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize - } as usize; - debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3); - let rounding_bit_mask = (1u64 << n_rounding_bits) - 1; - - // Round to 53 bits with round-to-even. For rounding, we need to take into account both - // our rounding bits and the division's remainder. - let ls_bit = quotient & (1u64 << n_rounding_bits) != 0; - let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0; - let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0; - if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) { - quotient += 1u64 << n_rounding_bits; - } - quotient &= !rounding_bit_mask; - - // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3 - // trailing zeros, so there is no risk of a rounding error here. - let q_float = quotient as f64 * flo_sign; - ldexp(q_float, shift as i32) -} - -/// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not -/// representable. -fn ldexp(x: f64, exp: i32) -> f64 { - use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX}; - - assert_eq!( - RADIX, 2, - "only floating point implementations with radix 2 are supported" - ); - - const EXPONENT_MASK: u64 = 0x7ff << 52; - const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe; - const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32; - - if x.is_zero() || x.is_infinite() || x.is_nan() { - return x; - } - - // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize. - if exp > 3 * MAX_EXP { - return INFINITY * x.signum(); - } else if exp < -3 * MAX_EXP { - return 0.0 * x.signum(); - } - - // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range. - let (bits, curr_exp) = if !x.is_normal() { - // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of - // precision or rounding. - let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER); - let bits = normal_x.to_bits(); - // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. - ( - bits, - ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER, - ) - } else { - let bits = x.to_bits(); - let curr_exp = (bits & EXPONENT_MASK) >> 52; - // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. - (bits, curr_exp as i32) - }; - - // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between - // -2*MAX_EXP and 2*MAX_EXP. - let new_exp = curr_exp + exp; - - if new_exp > MAX_UNSIGNED_EXPONENT { - INFINITY * x.signum() - } else if new_exp > 0 { - // Normal case: exponent is not too large nor subnormal. - let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); - f64::from_bits(new_bits) - } else if new_exp >= -(MANTISSA_DIGITS as i32) { - // Result is subnormal but may not be zero. - // In this case, we increase the exponent by 54 to make it normal, then multiply the end - // result by 2^-53. This results in a single multiplication with no prior rounding error, - // so there is no risk of double rounding. - let new_exp = new_exp + MIN_SUBNORMAL_POWER; - debug_assert!(new_exp >= 0); - let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); - f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER) - } else { - // Result is zero. - return 0.0 * x.signum(); - } -} - -#[cfg(test)] -#[cfg(feature = "std")] -fn hash(x: &T) -> u64 { - use std::collections::hash_map::RandomState; - use std::hash::BuildHasher; - let mut hasher = ::Hasher::new(); - x.hash(&mut hasher); - hasher.finish() -} - -#[cfg(test)] -mod test { - use super::ldexp; - #[cfg(all(feature = "num-bigint"))] - use super::BigInt; - #[cfg(feature = "num-bigint")] - use super::BigRational; - use super::{Ratio, Rational64}; - - use core::f64; - use core::i32; - use core::i64; - use core::str::FromStr; - use num_integer::Integer; - use num_traits::ToPrimitive; - use num_traits::{FromPrimitive, One, Pow, Signed, Zero}; - - pub const _0: Rational64 = Ratio { numer: 0, denom: 1 }; - pub const _1: Rational64 = Ratio { numer: 1, denom: 1 }; - pub const _2: Rational64 = Ratio { numer: 2, denom: 1 }; - pub const _NEG2: Rational64 = Ratio { - numer: -2, - denom: 1, - }; - pub const _8: Rational64 = Ratio { numer: 8, denom: 1 }; - pub const _15: Rational64 = Ratio { - numer: 15, - denom: 1, - }; - pub const _16: Rational64 = Ratio { - numer: 16, - denom: 1, - }; - - pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 }; - pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 }; - pub const _1_15: Rational64 = Ratio { - numer: 1, - denom: 15, - }; - pub const _1_16: Rational64 = Ratio { - numer: 1, - denom: 16, - }; - pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 }; - pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 }; - pub const _NEG1_2: Rational64 = Ratio { - numer: -1, - denom: 2, - }; - pub const _1_NEG2: Rational64 = Ratio { - numer: 1, - denom: -2, - }; - pub const _NEG1_NEG2: Rational64 = Ratio { - numer: -1, - denom: -2, - }; - pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 }; - pub const _NEG1_3: Rational64 = Ratio { - numer: -1, - denom: 3, - }; - pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 }; - pub const _NEG2_3: Rational64 = Ratio { - numer: -2, - denom: 3, - }; - pub const _MIN: Rational64 = Ratio { - numer: i64::MIN, - denom: 1, - }; - pub const _MIN_P1: Rational64 = Ratio { - numer: i64::MIN + 1, - denom: 1, - }; - pub const _MAX: Rational64 = Ratio { - numer: i64::MAX, - denom: 1, - }; - pub const _MAX_M1: Rational64 = Ratio { - numer: i64::MAX - 1, - denom: 1, - }; - pub const _BILLION: Rational64 = Ratio { - numer: 1_000_000_000, - denom: 1, - }; - - #[cfg(feature = "num-bigint")] - pub fn to_big(n: Rational64) -> BigRational { - Ratio::new( - FromPrimitive::from_i64(n.numer).unwrap(), - FromPrimitive::from_i64(n.denom).unwrap(), - ) - } - #[cfg(not(feature = "num-bigint"))] - pub fn to_big(n: Rational64) -> Rational64 { - Ratio::new( - FromPrimitive::from_i64(n.numer).unwrap(), - FromPrimitive::from_i64(n.denom).unwrap(), - ) - } - - #[test] - fn test_test_constants() { - // check our constants are what Ratio::new etc. would make. - assert_eq!(_0, Zero::zero()); - assert_eq!(_1, One::one()); - assert_eq!(_2, Ratio::from_integer(2)); - assert_eq!(_1_2, Ratio::new(1, 2)); - assert_eq!(_3_2, Ratio::new(3, 2)); - assert_eq!(_NEG1_2, Ratio::new(-1, 2)); - assert_eq!(_2, From::from(2)); - } - - #[test] - fn test_new_reduce() { - assert_eq!(Ratio::new(2, 2), One::one()); - assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); - assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); - } - #[test] - #[should_panic] - fn test_new_zero() { - let _a = Ratio::new(1, 0); - } - - #[test] - fn test_approximate_float() { - assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); - assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); - assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); - assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); - assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); - assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); - - assert_eq!(Ratio::::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); - assert_eq!(Ratio::::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); - assert_eq!(Ratio::::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); - assert_eq!(Ratio::::from_f32(127.5f32), None); - assert_eq!(Ratio::::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); - assert_eq!( - Ratio::::from_f32(-126.5f32), - Some(Ratio::new(-126i8, 1)) - ); - assert_eq!( - Ratio::::from_f32(-127.0f32), - Some(Ratio::new(-127i8, 1)) - ); - assert_eq!(Ratio::::from_f32(-127.5f32), None); - - assert_eq!(Ratio::::from_f32(-127f32), None); - assert_eq!(Ratio::::from_f32(127f32), Some(Ratio::new(127u8, 1))); - assert_eq!(Ratio::::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); - assert_eq!(Ratio::::from_f32(256f32), None); - - assert_eq!(Ratio::::from_f64(-10e200), None); - assert_eq!(Ratio::::from_f64(10e200), None); - assert_eq!(Ratio::::from_f64(f64::INFINITY), None); - assert_eq!(Ratio::::from_f64(f64::NEG_INFINITY), None); - assert_eq!(Ratio::::from_f64(f64::NAN), None); - assert_eq!( - Ratio::::from_f64(f64::EPSILON), - Some(Ratio::new(1, 4503599627370496)) - ); - assert_eq!(Ratio::::from_f64(0.0), Some(Ratio::new(0, 1))); - assert_eq!(Ratio::::from_f64(-0.0), Some(Ratio::new(0, 1))); - } - - #[test] - #[allow(clippy::eq_op)] - fn test_cmp() { - assert!(_0 == _0 && _1 == _1); - assert!(_0 != _1 && _1 != _0); - assert!(_0 < _1 && !(_1 < _0)); - assert!(_1 > _0 && !(_0 > _1)); - - assert!(_0 <= _0 && _1 <= _1); - assert!(_0 <= _1 && !(_1 <= _0)); - - assert!(_0 >= _0 && _1 >= _1); - assert!(_1 >= _0 && !(_0 >= _1)); - - let _0_2: Rational64 = Ratio::new_raw(0, 2); - assert_eq!(_0, _0_2); - } - - #[test] - fn test_cmp_overflow() { - use core::cmp::Ordering; - - // issue #7 example: - let big = Ratio::new(128u8, 1); - let small = big.recip(); - assert!(big > small); - - // try a few that are closer together - // (some matching numer, some matching denom, some neither) - let ratios = [ - Ratio::new(125_i8, 127_i8), - Ratio::new(63_i8, 64_i8), - Ratio::new(124_i8, 125_i8), - Ratio::new(125_i8, 126_i8), - Ratio::new(126_i8, 127_i8), - Ratio::new(127_i8, 126_i8), - ]; - - fn check_cmp(a: Ratio, b: Ratio, ord: Ordering) { - #[cfg(feature = "std")] - println!("comparing {} and {}", a, b); - assert_eq!(a.cmp(&b), ord); - assert_eq!(b.cmp(&a), ord.reverse()); - } - - for (i, &a) in ratios.iter().enumerate() { - check_cmp(a, a, Ordering::Equal); - check_cmp(-a, a, Ordering::Less); - for &b in &ratios[i + 1..] { - check_cmp(a, b, Ordering::Less); - check_cmp(-a, -b, Ordering::Greater); - check_cmp(a.recip(), b.recip(), Ordering::Greater); - check_cmp(-a.recip(), -b.recip(), Ordering::Less); - } - } - } - - #[test] - fn test_to_integer() { - assert_eq!(_0.to_integer(), 0); - assert_eq!(_1.to_integer(), 1); - assert_eq!(_2.to_integer(), 2); - assert_eq!(_1_2.to_integer(), 0); - assert_eq!(_3_2.to_integer(), 1); - assert_eq!(_NEG1_2.to_integer(), 0); - } - - #[test] - fn test_numer() { - assert_eq!(_0.numer(), &0); - assert_eq!(_1.numer(), &1); - assert_eq!(_2.numer(), &2); - assert_eq!(_1_2.numer(), &1); - assert_eq!(_3_2.numer(), &3); - assert_eq!(_NEG1_2.numer(), &(-1)); - } - #[test] - fn test_denom() { - assert_eq!(_0.denom(), &1); - assert_eq!(_1.denom(), &1); - assert_eq!(_2.denom(), &1); - assert_eq!(_1_2.denom(), &2); - assert_eq!(_3_2.denom(), &2); - assert_eq!(_NEG1_2.denom(), &2); - } - - #[test] - fn test_is_integer() { - assert!(_0.is_integer()); - assert!(_1.is_integer()); - assert!(_2.is_integer()); - assert!(!_1_2.is_integer()); - assert!(!_3_2.is_integer()); - assert!(!_NEG1_2.is_integer()); - } - - #[cfg(not(feature = "std"))] - use core::fmt::{self, Write}; - #[cfg(not(feature = "std"))] - #[derive(Debug)] - struct NoStdTester { - cursor: usize, - buf: [u8; NoStdTester::BUF_SIZE], - } - - #[cfg(not(feature = "std"))] - impl NoStdTester { - fn new() -> NoStdTester { - NoStdTester { - buf: [0; Self::BUF_SIZE], - cursor: 0, - } - } - - fn clear(&mut self) { - self.buf = [0; Self::BUF_SIZE]; - self.cursor = 0; - } - - const WRITE_ERR: &'static str = "Formatted output too long"; - const BUF_SIZE: usize = 32; - } - - #[cfg(not(feature = "std"))] - impl Write for NoStdTester { - fn write_str(&mut self, s: &str) -> fmt::Result { - for byte in s.bytes() { - self.buf[self.cursor] = byte; - self.cursor += 1; - if self.cursor >= self.buf.len() { - return Err(fmt::Error {}); - } - } - Ok(()) - } - } - - #[cfg(not(feature = "std"))] - impl PartialEq for NoStdTester { - fn eq(&self, other: &str) -> bool { - let other = other.as_bytes(); - for index in 0..self.cursor { - if self.buf.get(index) != other.get(index) { - return false; - } - } - true - } - } - - macro_rules! assert_fmt_eq { - ($fmt_args:expr, $string:expr) => { - #[cfg(not(feature = "std"))] - { - let mut tester = NoStdTester::new(); - write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR); - assert_eq!(tester, *$string); - tester.clear(); - } - #[cfg(feature = "std")] - { - assert_eq!(std::fmt::format($fmt_args), $string); - } - }; - } - - #[test] - fn test_show() { - // Test: - // :b :o :x, :X, :? - // alternate or not (#) - // positive and negative - // padding - // does not test precision (i.e. truncation) - assert_fmt_eq!(format_args!("{}", _2), "2"); - assert_fmt_eq!(format_args!("{:+}", _2), "+2"); - assert_fmt_eq!(format_args!("{:-}", _2), "2"); - assert_fmt_eq!(format_args!("{}", _1_2), "1/2"); - assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); // test negatives - assert_fmt_eq!(format_args!("{}", _0), "0"); - assert_fmt_eq!(format_args!("{}", -_2), "-2"); - assert_fmt_eq!(format_args!("{:+}", -_2), "-2"); - assert_fmt_eq!(format_args!("{:b}", _2), "10"); - assert_fmt_eq!(format_args!("{:#b}", _2), "0b10"); - assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10"); - assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10"); - assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10"); - assert_fmt_eq!(format_args!("{:b}", _0), "0"); - assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10"); - // no std does not support padding - #[cfg(feature = "std")] - assert_eq!(&format!("{:010b}", _1_2), "0000001/10"); - #[cfg(feature = "std")] - assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10"); - let half_i8: Ratio = Ratio::new(1_i8, 2_i8); - assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10"); - assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10"); - #[cfg(feature = "std")] - assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001"); - - assert_fmt_eq!(format_args!("{:o}", _8), "10"); - assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10"); - assert_fmt_eq!(format_args!("{:o}", _0), "0"); - assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10"); - #[cfg(feature = "std")] - assert_eq!(&format!("{:010o}", _1_8), "0000001/10"); - #[cfg(feature = "std")] - assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10"); - assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2"); - assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2"); - - assert_fmt_eq!(format_args!("{:x}", _16), "10"); - assert_fmt_eq!(format_args!("{:x}", _15), "f"); - assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10"); - assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f"); - assert_fmt_eq!(format_args!("{:x}", _0), "0"); - assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10"); - #[cfg(feature = "std")] - assert_eq!(&format!("{:010x}", _1_16), "0000001/10"); - #[cfg(feature = "std")] - assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10"); - assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2"); - assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2"); - - assert_fmt_eq!(format_args!("{:X}", _16), "10"); - assert_fmt_eq!(format_args!("{:X}", _15), "F"); - assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10"); - assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F"); - assert_fmt_eq!(format_args!("{:X}", _0), "0"); - assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10"); - #[cfg(feature = "std")] - assert_eq!(format!("{:010X}", _1_16), "0000001/10"); - #[cfg(feature = "std")] - assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10"); - assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2"); - assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2"); - - #[cfg(has_int_exp_fmt)] - { - assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0"); - assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0"); - assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0"); - assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9"); - assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9"); - assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9"); - assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9"); - - assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0"); - assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0"); - assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0"); - assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9"); - assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9"); - assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9"); - assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9"); - } - } - - mod arith { - use super::super::{Ratio, Rational64}; - use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; - use core::fmt::Debug; - use num_integer::Integer; - use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; - - #[test] - fn test_add() { - fn test(a: Rational64, b: Rational64, c: Rational64) { - assert_eq!(a + b, c); - assert_eq!( - { - let mut x = a; - x += b; - x - }, - c - ); - assert_eq!(to_big(a) + to_big(b), to_big(c)); - assert_eq!(a.checked_add(&b), Some(c)); - assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); - } - fn test_assign(a: Rational64, b: i64, c: Rational64) { - assert_eq!(a + b, c); - assert_eq!( - { - let mut x = a; - x += b; - x - }, - c - ); - } - - test(_1, _1_2, _3_2); - test(_1, _1, _2); - test(_1_2, _3_2, _2); - test(_1_2, _NEG1_2, _0); - test_assign(_1_2, 1, _3_2); - } - - #[test] - fn test_add_overflow() { - // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) - // to Ratio(1+1, T::max_value()) for each integer type. - // Previously, this calculation would overflow. - fn test_add_typed_overflow() - where - T: Integer + Bounded + Clone + Debug + NumAssign, - { - let _1_max = Ratio::new(T::one(), T::max_value()); - let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); - assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); - assert_eq!( - { - let mut tmp = _1_max.clone(); - tmp += _1_max; - tmp - }, - _2_max - ); - } - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - test_add_typed_overflow::(); - } - - #[test] - fn test_sub() { - fn test(a: Rational64, b: Rational64, c: Rational64) { - assert_eq!(a - b, c); - assert_eq!( - { - let mut x = a; - x -= b; - x - }, - c - ); - assert_eq!(to_big(a) - to_big(b), to_big(c)); - assert_eq!(a.checked_sub(&b), Some(c)); - assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); - } - fn test_assign(a: Rational64, b: i64, c: Rational64) { - assert_eq!(a - b, c); - assert_eq!( - { - let mut x = a; - x -= b; - x - }, - c - ); - } - - test(_1, _1_2, _1_2); - test(_3_2, _1_2, _1); - test(_1, _NEG1_2, _3_2); - test_assign(_1_2, 1, _NEG1_2); - } - - #[test] - fn test_sub_overflow() { - // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() - // for each integer type. Previously, this calculation would overflow. - fn test_sub_typed_overflow() - where - T: Integer + Bounded + Clone + Debug + NumAssign, - { - let _1_max: Ratio = Ratio::new(T::one(), T::max_value()); - assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); - { - let mut tmp: Ratio = _1_max.clone(); - tmp -= _1_max; - assert!(T::is_zero(&tmp.numer)); - } - } - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - test_sub_typed_overflow::(); - } - - #[test] - fn test_mul() { - fn test(a: Rational64, b: Rational64, c: Rational64) { - assert_eq!(a * b, c); - assert_eq!( - { - let mut x = a; - x *= b; - x - }, - c - ); - assert_eq!(to_big(a) * to_big(b), to_big(c)); - assert_eq!(a.checked_mul(&b), Some(c)); - assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); - } - fn test_assign(a: Rational64, b: i64, c: Rational64) { - assert_eq!(a * b, c); - assert_eq!( - { - let mut x = a; - x *= b; - x - }, - c - ); - } - - test(_1, _1_2, _1_2); - test(_1_2, _3_2, Ratio::new(3, 4)); - test(_1_2, _NEG1_2, Ratio::new(-1, 4)); - test_assign(_1_2, 2, _1); - } - - #[test] - fn test_mul_overflow() { - fn test_mul_typed_overflow() - where - T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, - { - let two = T::one() + T::one(); - let _3 = T::one() + T::one() + T::one(); - - // 1/big * 2/3 = 1/(max/4*3), where big is max/2 - // make big = max/2, but also divisible by 2 - let big = T::max_value() / two.clone() / two.clone() * two.clone(); - let _1_big: Ratio = Ratio::new(T::one(), big.clone()); - let _2_3: Ratio = Ratio::new(two.clone(), _3.clone()); - assert_eq!(None, big.clone().checked_mul(&_3.clone())); - let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); - assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); - assert_eq!( - Some(expected.clone()), - _1_big.clone().checked_mul(&_2_3.clone()) - ); - assert_eq!(expected, { - let mut tmp = _1_big; - tmp *= _2_3; - tmp - }); - - // big/3 * 3 = big/1 - // make big = max/2, but make it indivisible by 3 - let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); - assert_eq!(None, big.clone().checked_mul(&_3.clone())); - let big_3 = Ratio::new(big.clone(), _3.clone()); - let expected = Ratio::new(big, T::one()); - assert_eq!(expected, big_3.clone() * _3.clone()); - assert_eq!(expected, { - let mut tmp = big_3; - tmp *= _3; - tmp - }); - } - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - test_mul_typed_overflow::(); - } - - #[test] - fn test_div() { - fn test(a: Rational64, b: Rational64, c: Rational64) { - assert_eq!(a / b, c); - assert_eq!( - { - let mut x = a; - x /= b; - x - }, - c - ); - assert_eq!(to_big(a) / to_big(b), to_big(c)); - assert_eq!(a.checked_div(&b), Some(c)); - assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); - } - fn test_assign(a: Rational64, b: i64, c: Rational64) { - assert_eq!(a / b, c); - assert_eq!( - { - let mut x = a; - x /= b; - x - }, - c - ); - } - - test(_1, _1_2, _2); - test(_3_2, _1_2, _1 + _2); - test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); - test_assign(_1, 2, _1_2); - } - - #[test] - fn test_div_overflow() { - fn test_div_typed_overflow() - where - T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, - { - let two = T::one() + T::one(); - let _3 = T::one() + T::one() + T::one(); - - // 1/big / 3/2 = 1/(max/4*3), where big is max/2 - // big ~ max/2, and big is divisible by 2 - let big = T::max_value() / two.clone() / two.clone() * two.clone(); - assert_eq!(None, big.clone().checked_mul(&_3.clone())); - let _1_big: Ratio = Ratio::new(T::one(), big.clone()); - let _3_two: Ratio = Ratio::new(_3.clone(), two.clone()); - let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); - assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); - assert_eq!( - Some(expected.clone()), - _1_big.clone().checked_div(&_3_two.clone()) - ); - assert_eq!(expected, { - let mut tmp = _1_big; - tmp /= _3_two; - tmp - }); - - // 3/big / 3 = 1/big where big is max/2 - // big ~ max/2, and big is not divisible by 3 - let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); - assert_eq!(None, big.clone().checked_mul(&_3.clone())); - let _3_big = Ratio::new(_3.clone(), big.clone()); - let expected = Ratio::new(T::one(), big); - assert_eq!(expected, _3_big.clone() / _3.clone()); - assert_eq!(expected, { - let mut tmp = _3_big; - tmp /= _3; - tmp - }); - } - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - test_div_typed_overflow::(); - } - - #[test] - fn test_rem() { - fn test(a: Rational64, b: Rational64, c: Rational64) { - assert_eq!(a % b, c); - assert_eq!( - { - let mut x = a; - x %= b; - x - }, - c - ); - assert_eq!(to_big(a) % to_big(b), to_big(c)) - } - fn test_assign(a: Rational64, b: i64, c: Rational64) { - assert_eq!(a % b, c); - assert_eq!( - { - let mut x = a; - x %= b; - x - }, - c - ); - } - - test(_3_2, _1, _1_2); - test(_3_2, _1_2, _0); - test(_5_2, _3_2, _1); - test(_2, _NEG1_2, _0); - test(_1_2, _2, _1_2); - test_assign(_3_2, 1, _1_2); - } - - #[test] - fn test_rem_overflow() { - // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 - // for each integer type. Previously, this calculation would overflow. - fn test_rem_typed_overflow() - where - T: Integer + Bounded + Clone + Debug + NumAssign, - { - let two = T::one() + T::one(); - // value near to maximum, but divisible by two - let max_div2 = T::max_value() / two.clone() * two.clone(); - let _1_max: Ratio = Ratio::new(T::one(), max_div2); - let _1_two: Ratio = Ratio::new(T::one(), two); - assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); - { - let mut tmp: Ratio = _1_two; - tmp %= _1_max; - assert!(T::is_zero(&tmp.numer)); - } - } - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - test_rem_typed_overflow::(); - } - - #[test] - fn test_neg() { - fn test(a: Rational64, b: Rational64) { - assert_eq!(-a, b); - assert_eq!(-to_big(a), to_big(b)) - } - - test(_0, _0); - test(_1_2, _NEG1_2); - test(-_1, _1); - } - #[test] - #[allow(clippy::eq_op)] - fn test_zero() { - assert_eq!(_0 + _0, _0); - assert_eq!(_0 * _0, _0); - assert_eq!(_0 * _1, _0); - assert_eq!(_0 / _NEG1_2, _0); - assert_eq!(_0 - _0, _0); - } - #[test] - #[should_panic] - fn test_div_0() { - let _a = _1 / _0; - } - - #[test] - fn test_checked_failures() { - let big = Ratio::new(128u8, 1); - let small = Ratio::new(1, 128u8); - assert_eq!(big.checked_add(&big), None); - assert_eq!(small.checked_sub(&big), None); - assert_eq!(big.checked_mul(&big), None); - assert_eq!(small.checked_div(&big), None); - assert_eq!(_1.checked_div(&_0), None); - } - - #[test] - fn test_checked_zeros() { - assert_eq!(_0.checked_add(&_0), Some(_0)); - assert_eq!(_0.checked_sub(&_0), Some(_0)); - assert_eq!(_0.checked_mul(&_0), Some(_0)); - assert_eq!(_0.checked_div(&_0), None); - } - - #[test] - fn test_checked_min() { - assert_eq!(_MIN.checked_add(&_MIN), None); - assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); - assert_eq!(_MIN.checked_mul(&_MIN), None); - assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); - assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); - assert_eq!(_0.checked_sub(&_MIN), None); - assert_eq!(_0.checked_mul(&_MIN), Some(_0)); - assert_eq!(_0.checked_div(&_MIN), Some(_0)); - assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); - assert_eq!(_1.checked_sub(&_MIN), None); - assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); - assert_eq!(_1.checked_div(&_MIN), None); - assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); - assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); - assert_eq!(_MIN.checked_mul(&_0), Some(_0)); - assert_eq!(_MIN.checked_div(&_0), None); - assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); - assert_eq!(_MIN.checked_sub(&_1), None); - assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); - assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); - } - - #[test] - fn test_checked_max() { - assert_eq!(_MAX.checked_add(&_MAX), None); - assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); - assert_eq!(_MAX.checked_mul(&_MAX), None); - assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); - assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); - assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); - assert_eq!(_0.checked_mul(&_MAX), Some(_0)); - assert_eq!(_0.checked_div(&_MAX), Some(_0)); - assert_eq!(_1.checked_add(&_MAX), None); - assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); - assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); - assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); - assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); - assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); - assert_eq!(_MAX.checked_mul(&_0), Some(_0)); - assert_eq!(_MAX.checked_div(&_0), None); - assert_eq!(_MAX.checked_add(&_1), None); - assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); - assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); - assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); - } - - #[test] - fn test_checked_min_max() { - assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); - assert_eq!(_MIN.checked_sub(&_MAX), None); - assert_eq!(_MIN.checked_mul(&_MAX), None); - assert_eq!( - _MIN.checked_div(&_MAX), - Some(Ratio::new(_MIN.numer, _MAX.numer)) - ); - assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); - assert_eq!(_MAX.checked_sub(&_MIN), None); - assert_eq!(_MAX.checked_mul(&_MIN), None); - assert_eq!(_MAX.checked_div(&_MIN), None); - } - } - - #[test] - fn test_round() { - assert_eq!(_1_3.ceil(), _1); - assert_eq!(_1_3.floor(), _0); - assert_eq!(_1_3.round(), _0); - assert_eq!(_1_3.trunc(), _0); - - assert_eq!(_NEG1_3.ceil(), _0); - assert_eq!(_NEG1_3.floor(), -_1); - assert_eq!(_NEG1_3.round(), _0); - assert_eq!(_NEG1_3.trunc(), _0); - - assert_eq!(_2_3.ceil(), _1); - assert_eq!(_2_3.floor(), _0); - assert_eq!(_2_3.round(), _1); - assert_eq!(_2_3.trunc(), _0); - - assert_eq!(_NEG2_3.ceil(), _0); - assert_eq!(_NEG2_3.floor(), -_1); - assert_eq!(_NEG2_3.round(), -_1); - assert_eq!(_NEG2_3.trunc(), _0); - - assert_eq!(_1_2.ceil(), _1); - assert_eq!(_1_2.floor(), _0); - assert_eq!(_1_2.round(), _1); - assert_eq!(_1_2.trunc(), _0); - - assert_eq!(_NEG1_2.ceil(), _0); - assert_eq!(_NEG1_2.floor(), -_1); - assert_eq!(_NEG1_2.round(), -_1); - assert_eq!(_NEG1_2.trunc(), _0); - - assert_eq!(_1.ceil(), _1); - assert_eq!(_1.floor(), _1); - assert_eq!(_1.round(), _1); - assert_eq!(_1.trunc(), _1); - - // Overflow checks - - let _neg1 = Ratio::from_integer(-1); - let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); - let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); - let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); - let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); - let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); - let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); - let _large_rat7 = Ratio::new(1, i32::MIN + 1); - let _large_rat8 = Ratio::new(1, i32::MAX); - - assert_eq!(_large_rat1.round(), One::one()); - assert_eq!(_large_rat2.round(), One::one()); - assert_eq!(_large_rat3.round(), One::one()); - assert_eq!(_large_rat4.round(), One::one()); - assert_eq!(_large_rat5.round(), _neg1); - assert_eq!(_large_rat6.round(), _neg1); - assert_eq!(_large_rat7.round(), Zero::zero()); - assert_eq!(_large_rat8.round(), Zero::zero()); - } - - #[test] - fn test_fract() { - assert_eq!(_1.fract(), _0); - assert_eq!(_NEG1_2.fract(), _NEG1_2); - assert_eq!(_1_2.fract(), _1_2); - assert_eq!(_3_2.fract(), _1_2); - } - - #[test] - fn test_recip() { - assert_eq!(_1 * _1.recip(), _1); - assert_eq!(_2 * _2.recip(), _1); - assert_eq!(_1_2 * _1_2.recip(), _1); - assert_eq!(_3_2 * _3_2.recip(), _1); - assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); - - assert_eq!(_3_2.recip(), _2_3); - assert_eq!(_NEG1_2.recip(), _NEG2); - assert_eq!(_NEG1_2.recip().denom(), &1); - } - - #[test] - #[should_panic(expected = "division by zero")] - fn test_recip_fail() { - let _a = Ratio::new(0, 1).recip(); - } - - #[test] - fn test_pow() { - fn test(r: Rational64, e: i32, expected: Rational64) { - assert_eq!(r.pow(e), expected); - assert_eq!(Pow::pow(r, e), expected); - assert_eq!(Pow::pow(r, &e), expected); - assert_eq!(Pow::pow(&r, e), expected); - assert_eq!(Pow::pow(&r, &e), expected); - #[cfg(feature = "num-bigint")] - test_big(r, e, expected); - } - - #[cfg(feature = "num-bigint")] - fn test_big(r: Rational64, e: i32, expected: Rational64) { - let r = BigRational::new_raw(r.numer.into(), r.denom.into()); - let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into()); - assert_eq!((&r).pow(e), expected); - assert_eq!(Pow::pow(r.clone(), e), expected); - assert_eq!(Pow::pow(r.clone(), &e), expected); - assert_eq!(Pow::pow(&r, e), expected); - assert_eq!(Pow::pow(&r, &e), expected); - } - - test(_1_2, 2, Ratio::new(1, 4)); - test(_1_2, -2, Ratio::new(4, 1)); - test(_1, 1, _1); - test(_1, i32::MAX, _1); - test(_1, i32::MIN, _1); - test(_NEG1_2, 2, _1_2.pow(2i32)); - test(_NEG1_2, 3, -_1_2.pow(3i32)); - test(_3_2, 0, _1); - test(_3_2, -1, _3_2.recip()); - test(_3_2, 3, Ratio::new(27, 8)); - } - - #[test] - #[cfg(feature = "std")] - fn test_to_from_str() { - use std::string::{String, ToString}; - fn test(r: Rational64, s: String) { - assert_eq!(FromStr::from_str(&s), Ok(r)); - assert_eq!(r.to_string(), s); - } - test(_1, "1".to_string()); - test(_0, "0".to_string()); - test(_1_2, "1/2".to_string()); - test(_3_2, "3/2".to_string()); - test(_2, "2".to_string()); - test(_NEG1_2, "-1/2".to_string()); - } - #[test] - fn test_from_str_fail() { - fn test(s: &str) { - let rational: Result = FromStr::from_str(s); - assert!(rational.is_err()); - } - - let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; - for &s in xs.iter() { - test(s); - } - } - - #[cfg(feature = "num-bigint")] - #[test] - fn test_from_float() { - use num_traits::float::FloatCore; - fn test(given: T, (numer, denom): (&str, &str)) { - let ratio: BigRational = Ratio::from_float(given).unwrap(); - assert_eq!( - ratio, - Ratio::new( - FromStr::from_str(numer).unwrap(), - FromStr::from_str(denom).unwrap() - ) - ); - } - - // f32 - test(core::f32::consts::PI, ("13176795", "4194304")); - test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); - test( - -(2f32.powf(100.)), - ("-1267650600228229401496703205376", "1"), - ); - test( - 1.0 / 2f32.powf(100.), - ("1", "1267650600228229401496703205376"), - ); - test(684729.48391f32, ("1369459", "2")); - test(-8573.5918555f32, ("-4389679", "512")); - - // f64 - test( - core::f64::consts::PI, - ("884279719003555", "281474976710656"), - ); - test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); - test( - -(2f64.powf(100.)), - ("-1267650600228229401496703205376", "1"), - ); - test(684729.48391f64, ("367611342500051", "536870912")); - test(-8573.5918555f64, ("-4713381968463931", "549755813888")); - test( - 1.0 / 2f64.powf(100.), - ("1", "1267650600228229401496703205376"), - ); - } - - #[cfg(feature = "num-bigint")] - #[test] - fn test_from_float_fail() { - use core::{f32, f64}; - - assert_eq!(Ratio::from_float(f32::NAN), None); - assert_eq!(Ratio::from_float(f32::INFINITY), None); - assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); - assert_eq!(Ratio::from_float(f64::NAN), None); - assert_eq!(Ratio::from_float(f64::INFINITY), None); - assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); - } - - #[test] - fn test_signed() { - assert_eq!(_NEG1_2.abs(), _1_2); - assert_eq!(_3_2.abs_sub(&_1_2), _1); - assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); - assert_eq!(_1_2.signum(), One::one()); - assert_eq!(_NEG1_2.signum(), ->::one()); - assert_eq!(_0.signum(), Zero::zero()); - assert!(_NEG1_2.is_negative()); - assert!(_1_NEG2.is_negative()); - assert!(!_NEG1_2.is_positive()); - assert!(!_1_NEG2.is_positive()); - assert!(_1_2.is_positive()); - assert!(_NEG1_NEG2.is_positive()); - assert!(!_1_2.is_negative()); - assert!(!_NEG1_NEG2.is_negative()); - assert!(!_0.is_positive()); - assert!(!_0.is_negative()); - } - - #[test] - #[cfg(feature = "std")] - fn test_hash() { - assert!(crate::hash(&_0) != crate::hash(&_1)); - assert!(crate::hash(&_0) != crate::hash(&_3_2)); - - // a == b -> hash(a) == hash(b) - let a = Rational64::new_raw(4, 2); - let b = Rational64::new_raw(6, 3); - assert_eq!(a, b); - assert_eq!(crate::hash(&a), crate::hash(&b)); - - let a = Rational64::new_raw(123456789, 1000); - let b = Rational64::new_raw(123456789 * 5, 5000); - assert_eq!(a, b); - assert_eq!(crate::hash(&a), crate::hash(&b)); - } - - #[test] - fn test_into_pair() { - assert_eq!((0, 1), _0.into()); - assert_eq!((-2, 1), _NEG2.into()); - assert_eq!((1, -2), _1_NEG2.into()); - } - - #[test] - fn test_from_pair() { - assert_eq!(_0, Ratio::from((0, 1))); - assert_eq!(_1, Ratio::from((1, 1))); - assert_eq!(_NEG2, Ratio::from((-2, 1))); - assert_eq!(_1_NEG2, Ratio::from((1, -2))); - } - - #[test] - fn ratio_iter_sum() { - // generic function to assure the iter method can be called - // for any Iterator with Item = Ratio or Ratio<&impl Integer> - fn iter_sums(slice: &[Ratio]) -> [Ratio; 3] { - let mut manual_sum = Ratio::new(T::zero(), T::one()); - for ratio in slice { - manual_sum = manual_sum + ratio; - } - [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] - } - // collect into array so test works on no_std - let mut nums = [Ratio::new(0, 1); 1000]; - for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { - nums[i] = r; - } - let sums = iter_sums(&nums[..]); - assert_eq!(sums[0], sums[1]); - assert_eq!(sums[0], sums[2]); - } - - #[test] - fn ratio_iter_product() { - // generic function to assure the iter method can be called - // for any Iterator with Item = Ratio or Ratio<&impl Integer> - fn iter_products(slice: &[Ratio]) -> [Ratio; 3] { - let mut manual_prod = Ratio::new(T::one(), T::one()); - for ratio in slice { - manual_prod = manual_prod * ratio; - } - [ - manual_prod, - slice.iter().product(), - slice.iter().cloned().product(), - ] - } - - // collect into array so test works on no_std - let mut nums = [Ratio::new(0, 1); 1000]; - for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { - nums[i] = r; - } - let products = iter_products(&nums[..]); - assert_eq!(products[0], products[1]); - assert_eq!(products[0], products[2]); - } - - #[test] - fn test_num_zero() { - let zero = Rational64::zero(); - assert!(zero.is_zero()); - - let mut r = Rational64::new(123, 456); - assert!(!r.is_zero()); - assert_eq!(r + zero, r); - - r.set_zero(); - assert!(r.is_zero()); - } - - #[test] - fn test_num_one() { - let one = Rational64::one(); - assert!(one.is_one()); - - let mut r = Rational64::new(123, 456); - assert!(!r.is_one()); - assert_eq!(r * one, r); - - r.set_one(); - assert!(r.is_one()); - } - - #[test] - fn test_const() { - const N: Ratio = Ratio::new_raw(123, 456); - const N_NUMER: &i32 = N.numer(); - const N_DENOM: &i32 = N.denom(); - - assert_eq!(N_NUMER, &123); - assert_eq!(N_DENOM, &456); - - let r = N.reduced(); - assert_eq!(r.numer(), &(123 / 3)); - assert_eq!(r.denom(), &(456 / 3)); - } - - #[test] - fn test_ratio_to_i64() { - assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap()); - assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap()); - assert_eq!(None, Rational64::new(-31, 8).to_u64()); - } - - #[test] - #[cfg(feature = "num-bigint")] - fn test_ratio_to_i128() { - assert_eq!( - 1i128 << 70, - Ratio::::new(1i128 << 77, 1i128 << 7) - .to_i128() - .unwrap() - ); - } - - #[test] - #[cfg(feature = "num-bigint")] - fn test_big_ratio_to_f64() { - assert_eq!( - BigRational::new( - "1234567890987654321234567890987654321234567890" - .parse() - .unwrap(), - "3".parse().unwrap() - ) - .to_f64(), - Some(411522630329218100000000000000000000000000000f64) - ); - assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324)); - assert_eq!( - // subnormal - BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(), - Some(2.0f64.powi(-50).powi(21)) - ); - assert_eq!( - // definite underflow - BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(), - Some(0.0) - ); - assert_eq!( - BigRational::from(BigInt::one() << 1050).to_f64(), - Some(core::f64::INFINITY) - ); - assert_eq!( - BigRational::from((-BigInt::one()) << 1050).to_f64(), - Some(core::f64::NEG_INFINITY) - ); - assert_eq!( - BigRational::new( - "1234567890987654321234567890".parse().unwrap(), - "987654321234567890987654321".parse().unwrap() - ) - .to_f64(), - Some(1.2499999893125f64) - ); - assert_eq!( - BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(), - Some(core::f64::INFINITY) - ); - assert_eq!( - BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(), - Some(core::f64::NEG_INFINITY) - ); - assert_eq!( - BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(), - None - ); - } - - #[test] - fn test_ratio_to_f64() { - assert_eq!(Ratio::::new(1, 2).to_f64(), Some(0.5f64)); - assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64)); - assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64)); - assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64)); - assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64)); - assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64)); - assert_eq!( - Rational64::new((1 << 52) + 1, 1 << 52).to_f64(), - Some(1.0000000000000002f64), - ); - assert_eq!( - Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(), - Some(1.0000000000000002f64), - ); - assert_eq!( - Ratio::::new_raw(1, 0).to_f64(), - Some(core::f64::INFINITY) - ); - assert_eq!( - Ratio::::new_raw(-1, 0).to_f64(), - Some(core::f64::NEG_INFINITY) - ); - assert_eq!(Ratio::::new_raw(0, 0).to_f64(), None); - } - - #[test] - fn test_ldexp() { - use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY}; - assert_eq!(ldexp(1.0, 0), 1.0); - assert_eq!(ldexp(1.0, 1), 2.0); - assert_eq!(ldexp(0.0, 1), 0.0); - assert_eq!(ldexp(-0.0, 1), -0.0); - - // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or - // underflow. - assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5)); - assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1)); - assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3)); - - // Case where initial value is subnormal - assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4)); - assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200)); - - // Near underflow (2^exp is too small to represent, but not x*2^exp) - assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1)); - - // Near overflow - assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP)); - - // Overflow and underflow cases - assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0); - assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0); - assert_eq!(ldexp(1.0, MAX_EXP), INFINITY); - assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY); - - // Special values - assert_eq!(ldexp(INFINITY, 1), INFINITY); - assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY); - assert!(ldexp(NAN, 1).is_nan()); - } -} diff --git a/vendor/num-rational/src/pow.rs b/vendor/num-rational/src/pow.rs deleted file mode 100644 index 3325332..0000000 --- a/vendor/num-rational/src/pow.rs +++ /dev/null @@ -1,173 +0,0 @@ -use crate::Ratio; - -use core::cmp; -use num_integer::Integer; -use num_traits::{One, Pow}; - -macro_rules! pow_unsigned_impl { - (@ $exp:ty) => { - type Output = Ratio; - #[inline] - fn pow(self, expon: $exp) -> Ratio { - Ratio::new_raw(self.numer.pow(expon), self.denom.pow(expon)) - } - }; - ($exp:ty) => { - impl> Pow<$exp> for Ratio { - pow_unsigned_impl!(@ $exp); - } - impl<'a, T: Clone + Integer> Pow<$exp> for &'a Ratio - where - &'a T: Pow<$exp, Output = T>, - { - pow_unsigned_impl!(@ $exp); - } - impl<'b, T: Clone + Integer + Pow<$exp, Output = T>> Pow<&'b $exp> for Ratio { - type Output = Ratio; - #[inline] - fn pow(self, expon: &'b $exp) -> Ratio { - Pow::pow(self, *expon) - } - } - impl<'a, 'b, T: Clone + Integer> Pow<&'b $exp> for &'a Ratio - where - &'a T: Pow<$exp, Output = T>, - { - type Output = Ratio; - #[inline] - fn pow(self, expon: &'b $exp) -> Ratio { - Pow::pow(self, *expon) - } - } - }; -} -pow_unsigned_impl!(u8); -pow_unsigned_impl!(u16); -pow_unsigned_impl!(u32); -pow_unsigned_impl!(u64); -pow_unsigned_impl!(u128); -pow_unsigned_impl!(usize); - -macro_rules! pow_signed_impl { - (@ &'b BigInt, BigUint) => { - type Output = Ratio; - #[inline] - fn pow(self, expon: &'b BigInt) -> Ratio { - match expon.sign() { - Sign::NoSign => One::one(), - Sign::Minus => { - Pow::pow(self, expon.magnitude()).into_recip() - } - Sign::Plus => Pow::pow(self, expon.magnitude()), - } - } - }; - (@ $exp:ty, $unsigned:ty) => { - type Output = Ratio; - #[inline] - fn pow(self, expon: $exp) -> Ratio { - match expon.cmp(&0) { - cmp::Ordering::Equal => One::one(), - cmp::Ordering::Less => { - let expon = expon.wrapping_abs() as $unsigned; - Pow::pow(self, expon).into_recip() - } - cmp::Ordering::Greater => Pow::pow(self, expon as $unsigned), - } - } - }; - ($exp:ty, $unsigned:ty) => { - impl> Pow<$exp> for Ratio { - pow_signed_impl!(@ $exp, $unsigned); - } - impl<'a, T: Clone + Integer> Pow<$exp> for &'a Ratio - where - &'a T: Pow<$unsigned, Output = T>, - { - pow_signed_impl!(@ $exp, $unsigned); - } - impl<'b, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<&'b $exp> for Ratio { - type Output = Ratio; - #[inline] - fn pow(self, expon: &'b $exp) -> Ratio { - Pow::pow(self, *expon) - } - } - impl<'a, 'b, T: Clone + Integer> Pow<&'b $exp> for &'a Ratio - where - &'a T: Pow<$unsigned, Output = T>, - { - type Output = Ratio; - #[inline] - fn pow(self, expon: &'b $exp) -> Ratio { - Pow::pow(self, *expon) - } - } - }; -} -pow_signed_impl!(i8, u8); -pow_signed_impl!(i16, u16); -pow_signed_impl!(i32, u32); -pow_signed_impl!(i64, u64); -pow_signed_impl!(i128, u128); -pow_signed_impl!(isize, usize); - -#[cfg(feature = "num-bigint")] -mod bigint { - use super::*; - use num_bigint::{BigInt, BigUint, Sign}; - - impl Pow<&'b BigUint, Output = T>> Pow for Ratio { - type Output = Ratio; - #[inline] - fn pow(self, expon: BigUint) -> Ratio { - Pow::pow(self, &expon) - } - } - impl<'a, T: Clone + Integer> Pow for &'a Ratio - where - &'a T: for<'b> Pow<&'b BigUint, Output = T>, - { - type Output = Ratio; - #[inline] - fn pow(self, expon: BigUint) -> Ratio { - Pow::pow(self, &expon) - } - } - impl<'b, T: Clone + Integer + Pow<&'b BigUint, Output = T>> Pow<&'b BigUint> for Ratio { - pow_unsigned_impl!(@ &'b BigUint); - } - impl<'a, 'b, T: Clone + Integer> Pow<&'b BigUint> for &'a Ratio - where - &'a T: Pow<&'b BigUint, Output = T>, - { - pow_unsigned_impl!(@ &'b BigUint); - } - - impl Pow<&'b BigUint, Output = T>> Pow for Ratio { - type Output = Ratio; - #[inline] - fn pow(self, expon: BigInt) -> Ratio { - Pow::pow(self, &expon) - } - } - impl<'a, T: Clone + Integer> Pow for &'a Ratio - where - &'a T: for<'b> Pow<&'b BigUint, Output = T>, - { - type Output = Ratio; - #[inline] - fn pow(self, expon: BigInt) -> Ratio { - Pow::pow(self, &expon) - } - } - impl<'b, T: Clone + Integer + Pow<&'b BigUint, Output = T>> Pow<&'b BigInt> for Ratio { - pow_signed_impl!(@ &'b BigInt, BigUint); - } - impl<'a, 'b, T: Clone + Integer> Pow<&'b BigInt> for &'a Ratio - where - &'a T: Pow<&'b BigUint, Output = T>, - { - pow_signed_impl!(@ &'b BigInt, BigUint); - } -} -- cgit v1.2.3