//! The enum [`Either`] with variants `Left` and `Right` is a general purpose //! sum type with two cases. //! //! [`Either`]: enum.Either.html //! //! **Crate features:** //! //! * `"use_std"` //! Enabled by default. Disable to make the library `#![no_std]`. //! //! * `"serde"` //! Disabled by default. Enable to `#[derive(Serialize, Deserialize)]` for `Either` //! #![doc(html_root_url = "https://docs.rs/either/1/")] #![no_std] #[cfg(any(test, feature = "use_std"))] extern crate std; #[cfg(feature = "serde")] pub mod serde_untagged; #[cfg(feature = "serde")] pub mod serde_untagged_optional; use core::convert::{AsMut, AsRef}; use core::fmt; use core::future::Future; use core::iter; use core::ops::Deref; use core::ops::DerefMut; use core::pin::Pin; #[cfg(any(test, feature = "use_std"))] use std::error::Error; #[cfg(any(test, feature = "use_std"))] use std::io::{self, BufRead, Read, Seek, SeekFrom, Write}; pub use crate::Either::{Left, Right}; /// The enum `Either` with variants `Left` and `Right` is a general purpose /// sum type with two cases. /// /// The `Either` type is symmetric and treats its variants the same way, without /// preference. /// (For representing success or error, use the regular `Result` enum instead.) #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))] #[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)] pub enum Either { /// A value of type `L`. Left(L), /// A value of type `R`. Right(R), } /// Evaluate the provided expression for both [`Either::Left`] and [`Either::Right`]. /// /// This macro is useful in cases where both sides of [`Either`] can be interacted with /// in the same way even though the don't share the same type. /// /// Syntax: `either::for_both!(` *expression* `,` *pattern* `=>` *expression* `)` /// /// # Example /// /// ``` /// use either::Either; /// /// fn length(owned_or_borrowed: Either) -> usize { /// either::for_both!(owned_or_borrowed, s => s.len()) /// } /// /// fn main() { /// let borrowed = Either::Right("Hello world!"); /// let owned = Either::Left("Hello world!".to_owned()); /// /// assert_eq!(length(borrowed), 12); /// assert_eq!(length(owned), 12); /// } /// ``` #[macro_export] macro_rules! for_both { ($value:expr, $pattern:pat => $result:expr) => { match $value { $crate::Either::Left($pattern) => $result, $crate::Either::Right($pattern) => $result, } }; } /// Macro for unwrapping the left side of an `Either`, which fails early /// with the opposite side. Can only be used in functions that return /// `Either` because of the early return of `Right` that it provides. /// /// See also `try_right!` for its dual, which applies the same just to the /// right side. /// /// # Example /// /// ``` /// use either::{Either, Left, Right}; /// /// fn twice(wrapper: Either) -> Either { /// let value = either::try_left!(wrapper); /// Left(value * 2) /// } /// /// fn main() { /// assert_eq!(twice(Left(2)), Left(4)); /// assert_eq!(twice(Right("ups")), Right("ups")); /// } /// ``` #[macro_export] macro_rules! try_left { ($expr:expr) => { match $expr { $crate::Left(val) => val, $crate::Right(err) => return $crate::Right(::core::convert::From::from(err)), } }; } /// Dual to `try_left!`, see its documentation for more information. #[macro_export] macro_rules! try_right { ($expr:expr) => { match $expr { $crate::Left(err) => return $crate::Left(::core::convert::From::from(err)), $crate::Right(val) => val, } }; } impl Clone for Either { fn clone(&self) -> Self { match self { Left(inner) => Left(inner.clone()), Right(inner) => Right(inner.clone()), } } fn clone_from(&mut self, source: &Self) { match (self, source) { (Left(dest), Left(source)) => dest.clone_from(source), (Right(dest), Right(source)) => dest.clone_from(source), (dest, source) => *dest = source.clone(), } } } impl Either { /// Return true if the value is the `Left` variant. /// /// ``` /// use either::*; /// /// let values = [Left(1), Right("the right value")]; /// assert_eq!(values[0].is_left(), true); /// assert_eq!(values[1].is_left(), false); /// ``` pub fn is_left(&self) -> bool { match *self { Left(_) => true, Right(_) => false, } } /// Return true if the value is the `Right` variant. /// /// ``` /// use either::*; /// /// let values = [Left(1), Right("the right value")]; /// assert_eq!(values[0].is_right(), false); /// assert_eq!(values[1].is_right(), true); /// ``` pub fn is_right(&self) -> bool { !self.is_left() } /// Convert the left side of `Either` to an `Option`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left("some value"); /// assert_eq!(left.left(), Some("some value")); /// /// let right: Either<(), _> = Right(321); /// assert_eq!(right.left(), None); /// ``` pub fn left(self) -> Option { match self { Left(l) => Some(l), Right(_) => None, } } /// Convert the right side of `Either` to an `Option`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left("some value"); /// assert_eq!(left.right(), None); /// /// let right: Either<(), _> = Right(321); /// assert_eq!(right.right(), Some(321)); /// ``` pub fn right(self) -> Option { match self { Left(_) => None, Right(r) => Some(r), } } /// Convert `&Either` to `Either<&L, &R>`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left("some value"); /// assert_eq!(left.as_ref(), Left(&"some value")); /// /// let right: Either<(), _> = Right("some value"); /// assert_eq!(right.as_ref(), Right(&"some value")); /// ``` pub fn as_ref(&self) -> Either<&L, &R> { match *self { Left(ref inner) => Left(inner), Right(ref inner) => Right(inner), } } /// Convert `&mut Either` to `Either<&mut L, &mut R>`. /// /// ``` /// use either::*; /// /// fn mutate_left(value: &mut Either) { /// if let Some(l) = value.as_mut().left() { /// *l = 999; /// } /// } /// /// let mut left = Left(123); /// let mut right = Right(123); /// mutate_left(&mut left); /// mutate_left(&mut right); /// assert_eq!(left, Left(999)); /// assert_eq!(right, Right(123)); /// ``` pub fn as_mut(&mut self) -> Either<&mut L, &mut R> { match *self { Left(ref mut inner) => Left(inner), Right(ref mut inner) => Right(inner), } } /// Convert `Pin<&Either>` to `Either, Pin<&R>>`, /// pinned projections of the inner variants. pub fn as_pin_ref(self: Pin<&Self>) -> Either, Pin<&R>> { // SAFETY: We can use `new_unchecked` because the `inner` parts are // guaranteed to be pinned, as they come from `self` which is pinned. unsafe { match *Pin::get_ref(self) { Left(ref inner) => Left(Pin::new_unchecked(inner)), Right(ref inner) => Right(Pin::new_unchecked(inner)), } } } /// Convert `Pin<&mut Either>` to `Either, Pin<&mut R>>`, /// pinned projections of the inner variants. pub fn as_pin_mut(self: Pin<&mut Self>) -> Either, Pin<&mut R>> { // SAFETY: `get_unchecked_mut` is fine because we don't move anything. // We can use `new_unchecked` because the `inner` parts are guaranteed // to be pinned, as they come from `self` which is pinned, and we never // offer an unpinned `&mut L` or `&mut R` through `Pin<&mut Self>`. We // also don't have an implementation of `Drop`, nor manual `Unpin`. unsafe { match *Pin::get_unchecked_mut(self) { Left(ref mut inner) => Left(Pin::new_unchecked(inner)), Right(ref mut inner) => Right(Pin::new_unchecked(inner)), } } } /// Convert `Either` to `Either`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left(123); /// assert_eq!(left.flip(), Right(123)); /// /// let right: Either<(), _> = Right("some value"); /// assert_eq!(right.flip(), Left("some value")); /// ``` pub fn flip(self) -> Either { match self { Left(l) => Right(l), Right(r) => Left(r), } } /// Apply the function `f` on the value in the `Left` variant if it is present rewrapping the /// result in `Left`. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.map_left(|x| x * 2), Left(246)); /// /// let right: Either = Right(123); /// assert_eq!(right.map_left(|x| x * 2), Right(123)); /// ``` pub fn map_left(self, f: F) -> Either where F: FnOnce(L) -> M, { match self { Left(l) => Left(f(l)), Right(r) => Right(r), } } /// Apply the function `f` on the value in the `Right` variant if it is present rewrapping the /// result in `Right`. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.map_right(|x| x * 2), Left(123)); /// /// let right: Either = Right(123); /// assert_eq!(right.map_right(|x| x * 2), Right(246)); /// ``` pub fn map_right(self, f: F) -> Either where F: FnOnce(R) -> S, { match self { Left(l) => Left(l), Right(r) => Right(f(r)), } } /// Apply the functions `f` and `g` to the `Left` and `Right` variants /// respectively. This is equivalent to /// [bimap](https://hackage.haskell.org/package/bifunctors-5/docs/Data-Bifunctor.html) /// in functional programming. /// /// ``` /// use either::*; /// /// let f = |s: String| s.len(); /// let g = |u: u8| u.to_string(); /// /// let left: Either = Left("loopy".into()); /// assert_eq!(left.map_either(f, g), Left(5)); /// /// let right: Either = Right(42); /// assert_eq!(right.map_either(f, g), Right("42".into())); /// ``` pub fn map_either(self, f: F, g: G) -> Either where F: FnOnce(L) -> M, G: FnOnce(R) -> S, { match self { Left(l) => Left(f(l)), Right(r) => Right(g(r)), } } /// Similar to [`map_either`], with an added context `ctx` accessible to /// both functions. /// /// ``` /// use either::*; /// /// let mut sum = 0; /// /// // Both closures want to update the same value, so pass it as context. /// let mut f = |sum: &mut usize, s: String| { *sum += s.len(); s.to_uppercase() }; /// let mut g = |sum: &mut usize, u: usize| { *sum += u; u.to_string() }; /// /// let left: Either = Left("loopy".into()); /// assert_eq!(left.map_either_with(&mut sum, &mut f, &mut g), Left("LOOPY".into())); /// /// let right: Either = Right(42); /// assert_eq!(right.map_either_with(&mut sum, &mut f, &mut g), Right("42".into())); /// /// assert_eq!(sum, 47); /// ``` pub fn map_either_with(self, ctx: Ctx, f: F, g: G) -> Either where F: FnOnce(Ctx, L) -> M, G: FnOnce(Ctx, R) -> S, { match self { Left(l) => Left(f(ctx, l)), Right(r) => Right(g(ctx, r)), } } /// Apply one of two functions depending on contents, unifying their result. If the value is /// `Left(L)` then the first function `f` is applied; if it is `Right(R)` then the second /// function `g` is applied. /// /// ``` /// use either::*; /// /// fn square(n: u32) -> i32 { (n * n) as i32 } /// fn negate(n: i32) -> i32 { -n } /// /// let left: Either = Left(4); /// assert_eq!(left.either(square, negate), 16); /// /// let right: Either = Right(-4); /// assert_eq!(right.either(square, negate), 4); /// ``` pub fn either(self, f: F, g: G) -> T where F: FnOnce(L) -> T, G: FnOnce(R) -> T, { match self { Left(l) => f(l), Right(r) => g(r), } } /// Like `either`, but provide some context to whichever of the /// functions ends up being called. /// /// ``` /// // In this example, the context is a mutable reference /// use either::*; /// /// let mut result = Vec::new(); /// /// let values = vec![Left(2), Right(2.7)]; /// /// for value in values { /// value.either_with(&mut result, /// |ctx, integer| ctx.push(integer), /// |ctx, real| ctx.push(f64::round(real) as i32)); /// } /// /// assert_eq!(result, vec![2, 3]); /// ``` pub fn either_with(self, ctx: Ctx, f: F, g: G) -> T where F: FnOnce(Ctx, L) -> T, G: FnOnce(Ctx, R) -> T, { match self { Left(l) => f(ctx, l), Right(r) => g(ctx, r), } } /// Apply the function `f` on the value in the `Left` variant if it is present. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.left_and_then::<_,()>(|x| Right(x * 2)), Right(246)); /// /// let right: Either = Right(123); /// assert_eq!(right.left_and_then(|x| Right::<(), _>(x * 2)), Right(123)); /// ``` pub fn left_and_then(self, f: F) -> Either where F: FnOnce(L) -> Either, { match self { Left(l) => f(l), Right(r) => Right(r), } } /// Apply the function `f` on the value in the `Right` variant if it is present. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.right_and_then(|x| Right(x * 2)), Left(123)); /// /// let right: Either = Right(123); /// assert_eq!(right.right_and_then(|x| Right(x * 2)), Right(246)); /// ``` pub fn right_and_then(self, f: F) -> Either where F: FnOnce(R) -> Either, { match self { Left(l) => Left(l), Right(r) => f(r), } } /// Convert the inner value to an iterator. /// /// ``` /// use either::*; /// /// let left: Either<_, Vec> = Left(vec![1, 2, 3, 4, 5]); /// let mut right: Either, _> = Right(vec![]); /// right.extend(left.into_iter()); /// assert_eq!(right, Right(vec![1, 2, 3, 4, 5])); /// ``` #[allow(clippy::should_implement_trait)] pub fn into_iter(self) -> Either where L: IntoIterator, R: IntoIterator, { match self { Left(l) => Left(l.into_iter()), Right(r) => Right(r.into_iter()), } } /// Return left value or given value /// /// Arguments passed to `left_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`left_or_else`], /// which is lazily evaluated. /// /// [`left_or_else`]: #method.left_or_else /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either<&str, &str> = Left("left"); /// assert_eq!(left.left_or("foo"), "left"); /// /// let right: Either<&str, &str> = Right("right"); /// assert_eq!(right.left_or("left"), "left"); /// ``` pub fn left_or(self, other: L) -> L { match self { Either::Left(l) => l, Either::Right(_) => other, } } /// Return left or a default /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either = Left("left".to_string()); /// assert_eq!(left.left_or_default(), "left"); /// /// let right: Either = Right(42); /// assert_eq!(right.left_or_default(), String::default()); /// ``` pub fn left_or_default(self) -> L where L: Default, { match self { Either::Left(l) => l, Either::Right(_) => L::default(), } } /// Returns left value or computes it from a closure /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either = Left("3".to_string()); /// assert_eq!(left.left_or_else(|_| unreachable!()), "3"); /// /// let right: Either = Right(3); /// assert_eq!(right.left_or_else(|x| x.to_string()), "3"); /// ``` pub fn left_or_else(self, f: F) -> L where F: FnOnce(R) -> L, { match self { Either::Left(l) => l, Either::Right(r) => f(r), } } /// Return right value or given value /// /// Arguments passed to `right_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`right_or_else`], /// which is lazily evaluated. /// /// [`right_or_else`]: #method.right_or_else /// /// # Examples /// /// ``` /// # use either::*; /// let right: Either<&str, &str> = Right("right"); /// assert_eq!(right.right_or("foo"), "right"); /// /// let left: Either<&str, &str> = Left("left"); /// assert_eq!(left.right_or("right"), "right"); /// ``` pub fn right_or(self, other: R) -> R { match self { Either::Left(_) => other, Either::Right(r) => r, } } /// Return right or a default /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either = Left("left".to_string()); /// assert_eq!(left.right_or_default(), u32::default()); /// /// let right: Either = Right(42); /// assert_eq!(right.right_or_default(), 42); /// ``` pub fn right_or_default(self) -> R where R: Default, { match self { Either::Left(_) => R::default(), Either::Right(r) => r, } } /// Returns right value or computes it from a closure /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either = Left("3".to_string()); /// assert_eq!(left.right_or_else(|x| x.parse().unwrap()), 3); /// /// let right: Either = Right(3); /// assert_eq!(right.right_or_else(|_| unreachable!()), 3); /// ``` pub fn right_or_else(self, f: F) -> R where F: FnOnce(L) -> R, { match self { Either::Left(l) => f(l), Either::Right(r) => r, } } /// Returns the left value /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either<_, ()> = Left(3); /// assert_eq!(left.unwrap_left(), 3); /// ``` /// /// # Panics /// /// When `Either` is a `Right` value /// /// ```should_panic /// # use either::*; /// let right: Either<(), _> = Right(3); /// right.unwrap_left(); /// ``` pub fn unwrap_left(self) -> L where R: core::fmt::Debug, { match self { Either::Left(l) => l, Either::Right(r) => { panic!("called `Either::unwrap_left()` on a `Right` value: {:?}", r) } } } /// Returns the right value /// /// # Examples /// /// ``` /// # use either::*; /// let right: Either<(), _> = Right(3); /// assert_eq!(right.unwrap_right(), 3); /// ``` /// /// # Panics /// /// When `Either` is a `Left` value /// /// ```should_panic /// # use either::*; /// let left: Either<_, ()> = Left(3); /// left.unwrap_right(); /// ``` pub fn unwrap_right(self) -> R where L: core::fmt::Debug, { match self { Either::Right(r) => r, Either::Left(l) => panic!("called `Either::unwrap_right()` on a `Left` value: {:?}", l), } } /// Returns the left value /// /// # Examples /// /// ``` /// # use either::*; /// let left: Either<_, ()> = Left(3); /// assert_eq!(left.expect_left("value was Right"), 3); /// ``` /// /// # Panics /// /// When `Either` is a `Right` value /// /// ```should_panic /// # use either::*; /// let right: Either<(), _> = Right(3); /// right.expect_left("value was Right"); /// ``` pub fn expect_left(self, msg: &str) -> L where R: core::fmt::Debug, { match self { Either::Left(l) => l, Either::Right(r) => panic!("{}: {:?}", msg, r), } } /// Returns the right value /// /// # Examples /// /// ``` /// # use either::*; /// let right: Either<(), _> = Right(3); /// assert_eq!(right.expect_right("value was Left"), 3); /// ``` /// /// # Panics /// /// When `Either` is a `Left` value /// /// ```should_panic /// # use either::*; /// let left: Either<_, ()> = Left(3); /// left.expect_right("value was Right"); /// ``` pub fn expect_right(self, msg: &str) -> R where L: core::fmt::Debug, { match self { Either::Right(r) => r, Either::Left(l) => panic!("{}: {:?}", msg, l), } } /// Convert the contained value into `T` /// /// # Examples /// /// ``` /// # use either::*; /// // Both u16 and u32 can be converted to u64. /// let left: Either = Left(3u16); /// assert_eq!(left.either_into::(), 3u64); /// let right: Either = Right(7u32); /// assert_eq!(right.either_into::(), 7u64); /// ``` pub fn either_into(self) -> T where L: Into, R: Into, { match self { Either::Left(l) => l.into(), Either::Right(r) => r.into(), } } } impl Either, Option> { /// Factors out `None` from an `Either` of [`Option`]. /// /// ``` /// use either::*; /// let left: Either<_, Option> = Left(Some(vec![0])); /// assert_eq!(left.factor_none(), Some(Left(vec![0]))); /// /// let right: Either>, _> = Right(Some(String::new())); /// assert_eq!(right.factor_none(), Some(Right(String::new()))); /// ``` // TODO(MSRV): doc(alias) was stabilized in Rust 1.48 // #[doc(alias = "transpose")] pub fn factor_none(self) -> Option> { match self { Left(l) => l.map(Either::Left), Right(r) => r.map(Either::Right), } } } impl Either, Result> { /// Factors out a homogenous type from an `Either` of [`Result`]. /// /// Here, the homogeneous type is the `Err` type of the [`Result`]. /// /// ``` /// use either::*; /// let left: Either<_, Result> = Left(Ok(vec![0])); /// assert_eq!(left.factor_err(), Ok(Left(vec![0]))); /// /// let right: Either, u32>, _> = Right(Ok(String::new())); /// assert_eq!(right.factor_err(), Ok(Right(String::new()))); /// ``` // TODO(MSRV): doc(alias) was stabilized in Rust 1.48 // #[doc(alias = "transpose")] pub fn factor_err(self) -> Result, E> { match self { Left(l) => l.map(Either::Left), Right(r) => r.map(Either::Right), } } } impl Either, Result> { /// Factors out a homogenous type from an `Either` of [`Result`]. /// /// Here, the homogeneous type is the `Ok` type of the [`Result`]. /// /// ``` /// use either::*; /// let left: Either<_, Result> = Left(Err(vec![0])); /// assert_eq!(left.factor_ok(), Err(Left(vec![0]))); /// /// let right: Either>, _> = Right(Err(String::new())); /// assert_eq!(right.factor_ok(), Err(Right(String::new()))); /// ``` // TODO(MSRV): doc(alias) was stabilized in Rust 1.48 // #[doc(alias = "transpose")] pub fn factor_ok(self) -> Result> { match self { Left(l) => l.map_err(Either::Left), Right(r) => r.map_err(Either::Right), } } } impl Either<(T, L), (T, R)> { /// Factor out a homogeneous type from an either of pairs. /// /// Here, the homogeneous type is the first element of the pairs. /// /// ``` /// use either::*; /// let left: Either<_, (u32, String)> = Left((123, vec![0])); /// assert_eq!(left.factor_first().0, 123); /// /// let right: Either<(u32, Vec), _> = Right((123, String::new())); /// assert_eq!(right.factor_first().0, 123); /// ``` pub fn factor_first(self) -> (T, Either) { match self { Left((t, l)) => (t, Left(l)), Right((t, r)) => (t, Right(r)), } } } impl Either<(L, T), (R, T)> { /// Factor out a homogeneous type from an either of pairs. /// /// Here, the homogeneous type is the second element of the pairs. /// /// ``` /// use either::*; /// let left: Either<_, (String, u32)> = Left((vec![0], 123)); /// assert_eq!(left.factor_second().1, 123); /// /// let right: Either<(Vec, u32), _> = Right((String::new(), 123)); /// assert_eq!(right.factor_second().1, 123); /// ``` pub fn factor_second(self) -> (Either, T) { match self { Left((l, t)) => (Left(l), t), Right((r, t)) => (Right(r), t), } } } impl Either { /// Extract the value of an either over two equivalent types. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.into_inner(), 123); /// /// let right: Either = Right(123); /// assert_eq!(right.into_inner(), 123); /// ``` pub fn into_inner(self) -> T { for_both!(self, inner => inner) } /// Map `f` over the contained value and return the result in the /// corresponding variant. /// /// ``` /// use either::*; /// /// let value: Either<_, i32> = Right(42); /// /// let other = value.map(|x| x * 2); /// assert_eq!(other, Right(84)); /// ``` pub fn map(self, f: F) -> Either where F: FnOnce(T) -> M, { match self { Left(l) => Left(f(l)), Right(r) => Right(f(r)), } } } /// Convert from `Result` to `Either` with `Ok => Right` and `Err => Left`. impl From> for Either { fn from(r: Result) -> Self { match r { Err(e) => Left(e), Ok(o) => Right(o), } } } /// Convert from `Either` to `Result` with `Right => Ok` and `Left => Err`. #[allow(clippy::from_over_into)] // From requires RFC 2451, Rust 1.41 impl Into> for Either { fn into(self) -> Result { match self { Left(l) => Err(l), Right(r) => Ok(r), } } } impl Extend for Either where L: Extend, R: Extend, { fn extend(&mut self, iter: T) where T: IntoIterator, { for_both!(*self, ref mut inner => inner.extend(iter)) } } /// `Either` is an iterator if both `L` and `R` are iterators. impl Iterator for Either where L: Iterator, R: Iterator, { type Item = L::Item; fn next(&mut self) -> Option { for_both!(*self, ref mut inner => inner.next()) } fn size_hint(&self) -> (usize, Option) { for_both!(*self, ref inner => inner.size_hint()) } fn fold(self, init: Acc, f: G) -> Acc where G: FnMut(Acc, Self::Item) -> Acc, { for_both!(self, inner => inner.fold(init, f)) } fn for_each(self, f: F) where F: FnMut(Self::Item), { for_both!(self, inner => inner.for_each(f)) } fn count(self) -> usize { for_both!(self, inner => inner.count()) } fn last(self) -> Option { for_both!(self, inner => inner.last()) } fn nth(&mut self, n: usize) -> Option { for_both!(*self, ref mut inner => inner.nth(n)) } fn collect(self) -> B where B: iter::FromIterator, { for_both!(self, inner => inner.collect()) } fn partition(self, f: F) -> (B, B) where B: Default + Extend, F: FnMut(&Self::Item) -> bool, { for_both!(self, inner => inner.partition(f)) } fn all(&mut self, f: F) -> bool where F: FnMut(Self::Item) -> bool, { for_both!(*self, ref mut inner => inner.all(f)) } fn any(&mut self, f: F) -> bool where F: FnMut(Self::Item) -> bool, { for_both!(*self, ref mut inner => inner.any(f)) } fn find

(&mut self, predicate: P) -> Option where P: FnMut(&Self::Item) -> bool, { for_both!(*self, ref mut inner => inner.find(predicate)) } fn find_map(&mut self, f: F) -> Option where F: FnMut(Self::Item) -> Option, { for_both!(*self, ref mut inner => inner.find_map(f)) } fn position

(&mut self, predicate: P) -> Option where P: FnMut(Self::Item) -> bool, { for_both!(*self, ref mut inner => inner.position(predicate)) } } impl DoubleEndedIterator for Either where L: DoubleEndedIterator, R: DoubleEndedIterator, { fn next_back(&mut self) -> Option { for_both!(*self, ref mut inner => inner.next_back()) } // TODO(MSRV): This was stabilized in Rust 1.37 // fn nth_back(&mut self, n: usize) -> Option { // for_both!(*self, ref mut inner => inner.nth_back(n)) // } fn rfold(self, init: Acc, f: G) -> Acc where G: FnMut(Acc, Self::Item) -> Acc, { for_both!(self, inner => inner.rfold(init, f)) } fn rfind

(&mut self, predicate: P) -> Option where P: FnMut(&Self::Item) -> bool, { for_both!(*self, ref mut inner => inner.rfind(predicate)) } } impl ExactSizeIterator for Either where L: ExactSizeIterator, R: ExactSizeIterator, { fn len(&self) -> usize { for_both!(*self, ref inner => inner.len()) } } impl iter::FusedIterator for Either where L: iter::FusedIterator, R: iter::FusedIterator, { } /// `Either` is a future if both `L` and `R` are futures. impl Future for Either where L: Future, R: Future, { type Output = L::Output; fn poll( self: Pin<&mut Self>, cx: &mut core::task::Context<'_>, ) -> core::task::Poll { for_both!(self.as_pin_mut(), inner => inner.poll(cx)) } } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Read` if both `L` and `R` do. /// /// Requires crate feature `"use_std"` impl Read for Either where L: Read, R: Read, { fn read(&mut self, buf: &mut [u8]) -> io::Result { for_both!(*self, ref mut inner => inner.read(buf)) } fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> { for_both!(*self, ref mut inner => inner.read_exact(buf)) } fn read_to_end(&mut self, buf: &mut std::vec::Vec) -> io::Result { for_both!(*self, ref mut inner => inner.read_to_end(buf)) } fn read_to_string(&mut self, buf: &mut std::string::String) -> io::Result { for_both!(*self, ref mut inner => inner.read_to_string(buf)) } } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Seek` if both `L` and `R` do. /// /// Requires crate feature `"use_std"` impl Seek for Either where L: Seek, R: Seek, { fn seek(&mut self, pos: SeekFrom) -> io::Result { for_both!(*self, ref mut inner => inner.seek(pos)) } } #[cfg(any(test, feature = "use_std"))] /// Requires crate feature `"use_std"` impl BufRead for Either where L: BufRead, R: BufRead, { fn fill_buf(&mut self) -> io::Result<&[u8]> { for_both!(*self, ref mut inner => inner.fill_buf()) } fn consume(&mut self, amt: usize) { for_both!(*self, ref mut inner => inner.consume(amt)) } fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec) -> io::Result { for_both!(*self, ref mut inner => inner.read_until(byte, buf)) } fn read_line(&mut self, buf: &mut std::string::String) -> io::Result { for_both!(*self, ref mut inner => inner.read_line(buf)) } } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Write` if both `L` and `R` do. /// /// Requires crate feature `"use_std"` impl Write for Either where L: Write, R: Write, { fn write(&mut self, buf: &[u8]) -> io::Result { for_both!(*self, ref mut inner => inner.write(buf)) } fn write_all(&mut self, buf: &[u8]) -> io::Result<()> { for_both!(*self, ref mut inner => inner.write_all(buf)) } fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> io::Result<()> { for_both!(*self, ref mut inner => inner.write_fmt(fmt)) } fn flush(&mut self) -> io::Result<()> { for_both!(*self, ref mut inner => inner.flush()) } } impl AsRef for Either where L: AsRef, R: AsRef, { fn as_ref(&self) -> &Target { for_both!(*self, ref inner => inner.as_ref()) } } macro_rules! impl_specific_ref_and_mut { ($t:ty, $($attr:meta),* ) => { $(#[$attr])* impl AsRef<$t> for Either where L: AsRef<$t>, R: AsRef<$t> { fn as_ref(&self) -> &$t { for_both!(*self, ref inner => inner.as_ref()) } } $(#[$attr])* impl AsMut<$t> for Either where L: AsMut<$t>, R: AsMut<$t> { fn as_mut(&mut self) -> &mut $t { for_both!(*self, ref mut inner => inner.as_mut()) } } }; } impl_specific_ref_and_mut!(str,); impl_specific_ref_and_mut!( ::std::path::Path, cfg(feature = "use_std"), doc = "Requires crate feature `use_std`." ); impl_specific_ref_and_mut!( ::std::ffi::OsStr, cfg(feature = "use_std"), doc = "Requires crate feature `use_std`." ); impl_specific_ref_and_mut!( ::std::ffi::CStr, cfg(feature = "use_std"), doc = "Requires crate feature `use_std`." ); impl AsRef<[Target]> for Either where L: AsRef<[Target]>, R: AsRef<[Target]>, { fn as_ref(&self) -> &[Target] { for_both!(*self, ref inner => inner.as_ref()) } } impl AsMut for Either where L: AsMut, R: AsMut, { fn as_mut(&mut self) -> &mut Target { for_both!(*self, ref mut inner => inner.as_mut()) } } impl AsMut<[Target]> for Either where L: AsMut<[Target]>, R: AsMut<[Target]>, { fn as_mut(&mut self) -> &mut [Target] { for_both!(*self, ref mut inner => inner.as_mut()) } } impl Deref for Either where L: Deref, R: Deref, { type Target = L::Target; fn deref(&self) -> &Self::Target { for_both!(*self, ref inner => &**inner) } } impl DerefMut for Either where L: DerefMut, R: DerefMut, { fn deref_mut(&mut self) -> &mut Self::Target { for_both!(*self, ref mut inner => &mut *inner) } } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Error` if *both* `L` and `R` implement it. impl Error for Either where L: Error, R: Error, { fn source(&self) -> Option<&(dyn Error + 'static)> { for_both!(*self, ref inner => inner.source()) } #[allow(deprecated)] fn description(&self) -> &str { for_both!(*self, ref inner => inner.description()) } #[allow(deprecated)] fn cause(&self) -> Option<&dyn Error> { for_both!(*self, ref inner => inner.cause()) } } impl fmt::Display for Either where L: fmt::Display, R: fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for_both!(*self, ref inner => inner.fmt(f)) } } #[test] fn basic() { let mut e = Left(2); let r = Right(2); assert_eq!(e, Left(2)); e = r; assert_eq!(e, Right(2)); assert_eq!(e.left(), None); assert_eq!(e.right(), Some(2)); assert_eq!(e.as_ref().right(), Some(&2)); assert_eq!(e.as_mut().right(), Some(&mut 2)); } #[test] fn macros() { use std::string::String; fn a() -> Either { let x: u32 = try_left!(Right(1337u32)); Left(x * 2) } assert_eq!(a(), Right(1337)); fn b() -> Either { Right(try_right!(Left("foo bar"))) } assert_eq!(b(), Left(String::from("foo bar"))); } #[test] fn deref() { use std::string::String; fn is_str(_: &str) {} let value: Either = Left(String::from("test")); is_str(&*value); } #[test] fn iter() { let x = 3; let mut iter = match x { 3 => Left(0..10), _ => Right(17..), }; assert_eq!(iter.next(), Some(0)); assert_eq!(iter.count(), 9); } #[test] fn seek() { use std::io; let use_empty = false; let mut mockdata = [0x00; 256]; for i in 0..256 { mockdata[i] = i as u8; } let mut reader = if use_empty { // Empty didn't impl Seek until Rust 1.51 Left(io::Cursor::new([])) } else { Right(io::Cursor::new(&mockdata[..])) }; let mut buf = [0u8; 16]; assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); assert_eq!(buf, mockdata[..buf.len()]); // the first read should advance the cursor and return the next 16 bytes thus the `ne` assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); assert_ne!(buf, mockdata[..buf.len()]); // if the seek operation fails it should read 16..31 instead of 0..15 reader.seek(io::SeekFrom::Start(0)).unwrap(); assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); assert_eq!(buf, mockdata[..buf.len()]); } #[test] fn read_write() { use std::io; let use_stdio = false; let mockdata = [0xff; 256]; let mut reader = if use_stdio { Left(io::stdin()) } else { Right(&mockdata[..]) }; let mut buf = [0u8; 16]; assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); assert_eq!(&buf, &mockdata[..buf.len()]); let mut mockbuf = [0u8; 256]; let mut writer = if use_stdio { Left(io::stdout()) } else { Right(&mut mockbuf[..]) }; let buf = [1u8; 16]; assert_eq!(writer.write(&buf).unwrap(), buf.len()); } #[test] #[allow(deprecated)] fn error() { let invalid_utf8 = b"\xff"; let res = if let Err(error) = ::std::str::from_utf8(invalid_utf8) { Err(Left(error)) } else if let Err(error) = "x".parse::() { Err(Right(error)) } else { Ok(()) }; assert!(res.is_err()); res.unwrap_err().description(); // make sure this can be called } /// A helper macro to check if AsRef and AsMut are implemented for a given type. macro_rules! check_t { ($t:ty) => {{ fn check_ref>() {} fn propagate_ref, T2: AsRef<$t>>() { check_ref::>() } fn check_mut>() {} fn propagate_mut, T2: AsMut<$t>>() { check_mut::>() } }}; } // This "unused" method is here to ensure that compilation doesn't fail on given types. fn _unsized_ref_propagation() { check_t!(str); fn check_array_ref, Item>() {} fn check_array_mut, Item>() {} fn propagate_array_ref, T2: AsRef<[Item]>, Item>() { check_array_ref::, _>() } fn propagate_array_mut, T2: AsMut<[Item]>, Item>() { check_array_mut::, _>() } } // This "unused" method is here to ensure that compilation doesn't fail on given types. #[cfg(feature = "use_std")] fn _unsized_std_propagation() { check_t!(::std::path::Path); check_t!(::std::ffi::OsStr); check_t!(::std::ffi::CStr); }