/* Copyright 2016 The encode_unicode Developers * * Licensed under the Apache License, Version 2.0, or the MIT license , at your option. This file may not be * copied, modified, or distributed except according to those terms. */ #![allow(unused_unsafe)]// explicit unsafe{} blocks in unsafe functions are a good thing. use utf8_char::Utf8Char; use utf16_char::Utf16Char; use utf8_iterators::*; use utf16_iterators::*; use decoding_iterators::*; use error::*; extern crate core; use self::core::{char, u32, mem}; use self::core::ops::{Not, Index, RangeFull}; use self::core::borrow::Borrow; #[cfg(feature="ascii")] extern crate ascii; #[cfg(feature="ascii")] use self::ascii::AsciiStr; // TODO better docs and tests /// Methods for working with `u8`s as UTF-8 bytes. pub trait U8UtfExt { /// How many more bytes will you need to complete this codepoint? /// /// # Errors /// /// An error is returned if the byte is not a valid start of an UTF-8 /// codepoint: /// /// * `128..192`: ContinuationByte /// * `248..`: TooLongSequence /// /// Values in 244..248 represent a too high codepoint, but do not cause an /// error. fn extra_utf8_bytes(self) -> Result; /// How many more bytes will you need to complete this codepoint? /// /// This function assumes that the byte is a valid UTF-8 start, and might /// return any value otherwise. (but the function is pure and safe to call /// with any value). fn extra_utf8_bytes_unchecked(self) -> usize; } impl U8UtfExt for u8 { #[inline] fn extra_utf8_bytes(self) -> Result { use error::InvalidUtf8FirstByte::{ContinuationByte,TooLongSeqence}; // the bit twiddling is explained in extra_utf8_bytes_unchecked() if self < 128 { return Ok(0); } match ((self as u32)<<25).not().leading_zeros() { n @ 1...3 => Ok(n as usize), 0 => Err(ContinuationByte), _ => Err(TooLongSeqence), } } #[inline] fn extra_utf8_bytes_unchecked(self) -> usize { // For fun I've optimized this function (for x86 instruction count): // The most straightforward implementation, that lets the compiler do // the optimizing: //match self { // 0b0000_0000...0b0111_1111 => 0, // 0b1100_0010...0b1101_1111 => 1, // 0b1110_0000...0b1110_1111 => 2, // 0b1111_0000...0b1111_0100 => 3, // _ => whatever() //} // Using `unsafe{self::core::hint::unreachable_unchecked()}` for the // "don't care" case is a terrible idea: while having the function // non-deterministically return whatever happens to be in a register // MIGHT be acceptable, it permits the function to not `ret`urn at all, // but let execution fall through to whatever comes after it in the // binary! (in other words completely UB). // Currently unreachable_unchecked() might trap too, // which is certainly not what we want. // I also think `unsafe{mem::unitialized()}` is much more likely to // explicitly produce whatever happens to be in a register than tell // the compiler it can ignore this branch but needs to produce a value. // // From the bit patterns we see that for non-ASCII values the result is // (number of leading set bits) - 1 // The standard library doesn't have a method for counting leading ones, // but it has leading_zeros(), which can be used after inverting. // This function can therefore be reduced to the one-liner //`self.not().leading_zeros().saturating_sub(1) as usize`, which would // be branchless for architectures with instructions for // leading_zeros() and saturating_sub(). // Shortest version as long as ASCII-ness can be predicted: (especially // if the BSR instruction which leading_zeros() uses is microcoded or // doesn't exist) // u8.leading_zeros() would cast to a bigger type internally, so that's // free. compensating by shifting left by 24 before inverting lets the // compiler know that the value passed to leading_zeros() is not zero, // for which BSR's output is undefined and leading_zeros() normally has // special case with a branch. // Shifting one bit too many left acts as a saturating_sub(1). if self<128 {0} else {((self as u32)<<25).not().leading_zeros() as usize} // Branchless but longer version: (9 instructions) // It's tempting to try (self|0x80).not().leading_zeros().wrapping_sub(1), // but that produces high lengths for ASCII values 0b01xx_xxxx. // If we could somehow (branchlessy) clear that bit for ASCII values... // We can by masking with the value shifted right with sign extension! // (any nonzero number of bits in range works) //let extended = self as i8 as i32; //let ascii_cleared = (extended<<25) & (extended>>25); //ascii_cleared.not().leading_zeros() as usize // cmov version: (7 instructions) //(((self as u32)<<24).not().leading_zeros() as usize).saturating_sub(1) } } /// Methods for working with `u16`s as UTF-16 units. pub trait U16UtfExt { /// Will you need an extra unit to complete this codepoint? /// /// Returns `Err` for trailing surrogates, `Ok(true)` for leading surrogates, /// and `Ok(false)` for others. fn utf16_needs_extra_unit(self) -> Result; /// Does this `u16` need another `u16` to complete a codepoint? /// Returns `(self & 0xfc00) == 0xd800` /// /// Is basically an unchecked variant of `utf16_needs_extra_unit()`. fn is_utf16_leading_surrogate(self) -> bool; } impl U16UtfExt for u16 { #[inline] fn utf16_needs_extra_unit(self) -> Result { match self { // https://en.wikipedia.org/wiki/UTF-16#U.2B10000_to_U.2B10FFFF 0x00_00...0xd7_ff | 0xe0_00...0xff_ff => Ok(false), 0xd8_00...0xdb_ff => Ok(true), _ => Err(InvalidUtf16FirstUnit) } } #[inline] fn is_utf16_leading_surrogate(self) -> bool { (self & 0xfc00) == 0xd800// Clear the ten content bytes of a surrogate, // and see if it's a leading surrogate. } } /// Extension trait for `char` that adds methods for converting to and from UTF-8 or UTF-16. pub trait CharExt: Sized { /// Get the UTF-8 representation of this codepoint. /// /// `Utf8Char` is to `[u8;4]` what `char` is to `u32`: /// a restricted type that cannot be mutated internally. fn to_utf8(self) -> Utf8Char; /// Get the UTF-16 representation of this codepoint. /// /// `Utf16Char` is to `[u16;2]` what `char` is to `u32`: /// a restricted type that cannot be mutated internally. fn to_utf16(self) -> Utf16Char; /// Iterate over or [read](https://doc.rust-lang.org/std/io/trait.Read.html) /// the one to four bytes in the UTF-8 representation of this codepoint. /// /// An identical alternative to the unstable `char.encode_utf8()`. /// That method somehow still exist on stable, so I have to use a different name. fn iter_utf8_bytes(self) -> Utf8Iterator; /// Iterate over the one or two units in the UTF-16 representation of this codepoint. /// /// An identical alternative to the unstable `char.encode_utf16()`. /// That method somehow still exist on stable, so I have to use a different name. fn iter_utf16_units(self) -> Utf16Iterator; /// Convert this char to an UTF-8 array, and also return how many bytes of /// the array are used, /// /// The returned array is left-aligned with unused bytes set to zero. fn to_utf8_array(self) -> ([u8; 4], usize); /// Convert this `char` to UTF-16. /// /// The second element is non-zero when a surrogate pair is required. /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// /// assert_eq!('@'.to_utf16_array(), ['@' as u16, 0]); /// assert_eq!('睷'.to_utf16_array(), ['睷' as u16, 0]); /// assert_eq!('\u{abcde}'.to_utf16_array(), [0xda6f, 0xdcde]); /// ``` fn to_utf16_array(self) -> [u16; 2]; /// Convert this `char` to UTF-16. /// The second item is `Some` if a surrogate pair is required. /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// /// assert_eq!('@'.to_utf16_tuple(), ('@' as u16, None)); /// assert_eq!('睷'.to_utf16_tuple(), ('睷' as u16, None)); /// assert_eq!('\u{abcde}'.to_utf16_tuple(), (0xda6f, Some(0xdcde))); /// ``` fn to_utf16_tuple(self) -> (u16, Option); /// Create a `char` from the start of an UTF-8 slice, /// and also return how many bytes were used. /// /// # Errors /// /// Returns an `Err` if the slice is empty, doesn't start with a valid /// UTF-8 sequence or is too short for the sequence. /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// use encode_unicode::error::InvalidUtf8Slice::*; /// use encode_unicode::error::InvalidUtf8::*; /// /// assert_eq!(char::from_utf8_slice_start(&[b'A', b'B', b'C']), Ok(('A',1))); /// assert_eq!(char::from_utf8_slice_start(&[0xdd, 0xbb]), Ok(('\u{77b}',2))); /// /// assert_eq!(char::from_utf8_slice_start(&[]), Err(TooShort(1))); /// assert_eq!(char::from_utf8_slice_start(&[0xf0, 0x99]), Err(TooShort(4))); /// assert_eq!(char::from_utf8_slice_start(&[0xee, b'F', 0x80]), Err(Utf8(NotAContinuationByte(1)))); /// assert_eq!(char::from_utf8_slice_start(&[0xee, 0x99, 0x0f]), Err(Utf8(NotAContinuationByte(2)))); /// ``` fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),InvalidUtf8Slice>; /// Create a `char` from the start of an UTF-16 slice, /// and also return how many units were used. /// /// If you want to continue after an error, continue with the next `u16` unit. fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), InvalidUtf16Slice>; /// Convert an UTF-8 sequence as returned from `.to_utf8_array()` into a `char` /// /// The codepoint must start at the first byte, and leftover bytes are ignored. /// /// # Errors /// /// Returns an `Err` if the array doesn't start with a valid UTF-8 sequence. /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// use encode_unicode::error::InvalidUtf8Array::*; /// use encode_unicode::error::InvalidUtf8::*; /// use encode_unicode::error::InvalidCodepoint::*; /// /// assert_eq!(char::from_utf8_array([b'A', 0, 0, 0]), Ok('A')); /// assert_eq!(char::from_utf8_array([0xf4, 0x8b, 0xbb, 0xbb]), Ok('\u{10befb}')); /// assert_eq!(char::from_utf8_array([b'A', b'B', b'C', b'D']), Ok('A')); /// assert_eq!(char::from_utf8_array([0, 0, 0xcc, 0xbb]), Ok('\0')); /// /// assert_eq!(char::from_utf8_array([0xef, b'F', 0x80, 0x80]), Err(Utf8(NotAContinuationByte(1)))); /// assert_eq!(char::from_utf8_array([0xc1, 0x80, 0, 0]), Err(Utf8(OverLong))); /// assert_eq!(char::from_utf8_array([0xf7, 0xaa, 0x99, 0x88]), Err(Codepoint(TooHigh))); /// ``` fn from_utf8_array(utf8: [u8; 4]) -> Result; /// Convert a UTF-16 pair as returned from `.to_utf16_array()` into a `char`. /// /// The second element is ignored when not required. /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// use encode_unicode::error::InvalidUtf16Array; /// /// assert_eq!(char::from_utf16_array(['x' as u16, 'y' as u16]), Ok('x')); /// assert_eq!(char::from_utf16_array(['睷' as u16, 0]), Ok('睷')); /// assert_eq!(char::from_utf16_array([0xda6f, 0xdcde]), Ok('\u{abcde}')); /// assert_eq!(char::from_utf16_array([0xf111, 0xdbad]), Ok('\u{f111}')); /// assert_eq!(char::from_utf16_array([0xdaaf, 0xdaaf]), Err(InvalidUtf16Array::SecondIsNotTrailingSurrogate)); /// assert_eq!(char::from_utf16_array([0xdcac, 0x9000]), Err(InvalidUtf16Array::FirstIsTrailingSurrogate)); /// ``` fn from_utf16_array(utf16: [u16; 2]) -> Result; /// Convert a UTF-16 pair as returned from `.to_utf16_tuple()` into a `char`. fn from_utf16_tuple(utf16: (u16, Option)) -> Result; /// Convert an UTF-8 sequence into a char. /// /// The length of the slice is taken as length of the sequence; /// it should be 1,2,3 or 4. /// /// # Safety /// /// The slice must contain exactly one, valid, UTF-8 sequence. /// /// Passing a slice that produces an invalid codepoint is always undefined /// behavior; Later checks that the codepoint is valid can be removed /// by the compiler. /// /// # Panics /// /// If the slice is empty unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self; /// Convert a UTF-16 array as returned from `.to_utf16_array()` into a /// `char`. /// /// This function is safe because it avoids creating invalid codepoints, /// but the returned value might not be what one expectedd. /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// /// // starts with a trailing surrogate - converted as if it was a valid /// // surrogate pair anyway. /// assert_eq!(char::from_utf16_array_unchecked([0xdbad, 0xf19e]), '\u{fb59e}'); /// // missing trailing surrogate - ditto /// assert_eq!(char::from_utf16_array_unchecked([0xd802, 0]), '\u{10800}'); /// ``` fn from_utf16_array_unchecked(utf16: [u16;2]) -> Self; /// Convert a UTF-16 tuple as returned from `.to_utf16_tuple()` into a `char`. unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option)) -> Self; /// Produces more detailed errors than `char::from_u32()` /// /// # Errors /// /// This function will return an error if /// /// * the value is greater than 0x10ffff /// * the value is between 0xd800 and 0xdfff (inclusive) /// /// # Examples /// /// ``` /// use encode_unicode::CharExt; /// use encode_unicode::error::InvalidCodepoint; /// /// assert_eq!(char::from_u32_detailed(0x41), Ok('A')); /// assert_eq!(char::from_u32_detailed(0x40_00_00), Err(InvalidCodepoint::TooHigh)); /// assert_eq!(char::from_u32_detailed(0xd951), Err(InvalidCodepoint::Utf16Reserved)); /// assert_eq!(char::from_u32_detailed(0xdddd), Err(InvalidCodepoint::Utf16Reserved)); /// assert_eq!(char::from_u32_detailed(0xdd), Ok('Ý')); /// assert_eq!(char::from_u32_detailed(0x1f331), Ok('🌱')); /// ``` fn from_u32_detailed(c: u32) -> Result; } impl CharExt for char { ///////// //UTF-8// ///////// fn to_utf8(self) -> Utf8Char { self.into() } fn iter_utf8_bytes(self) -> Utf8Iterator { self.to_utf8().into_iter() } fn to_utf8_array(self) -> ([u8; 4], usize) { let len = self.len_utf8(); let mut c = self as u32; if len == 1 {// ASCII, the common case ([c as u8, 0, 0, 0], 1) } else { let mut parts = 0;// convert to 6-bit bytes parts |= c & 0x3f; c>>=6; parts<<=8; parts |= c & 0x3f; c>>=6; parts<<=8; parts |= c & 0x3f; c>>=6; parts<<=8; parts |= c & 0x3f; parts |= 0x80_80_80_80;// set the most significant bit parts >>= 8*(4-len);// right-align bytes // Now, unused bytes are zero, (which matters for Utf8Char.eq()) // and the rest are 0b10xx_xxxx // set header on first byte parts |= (0xff_00u32 >> len) & 0xff;// store length parts &= Not::not(1u32 << 7-len);// clear the next bit after it let bytes: [u8; 4] = unsafe{ mem::transmute(u32::from_le(parts)) }; (bytes, len) } } fn from_utf8_slice_start(src: &[u8]) -> Result<(Self,usize),InvalidUtf8Slice> { use errors::InvalidUtf8::*; use errors::InvalidUtf8Slice::*; let first = match src.first() { Some(first) => *first, None => return Err(TooShort(1)), }; let bytes = match first.extra_utf8_bytes() { Err(e) => return Err(Utf8(FirstByte(e))), Ok(0) => return Ok((first as char, 1)), Ok(extra) if extra >= src.len() => return Err(TooShort(extra+1)), Ok(extra) => &src[..extra+1], }; if let Some(i) = bytes.iter().skip(1).position(|&b| (b >> 6) != 0b10 ) { Err(Utf8(NotAContinuationByte(i+1))) } else if overlong(bytes[0], bytes[1]) { Err(Utf8(OverLong)) } else { match char::from_u32_detailed(merge_nonascii_unchecked_utf8(bytes)) { Ok(c) => Ok((c, bytes.len())), Err(e) => Err(Codepoint(e)), } } } fn from_utf8_array(utf8: [u8; 4]) -> Result { use errors::InvalidUtf8::*; use errors::InvalidUtf8Array::*; let src = match utf8[0].extra_utf8_bytes() { Err(error) => return Err(Utf8(FirstByte(error))), Ok(0) => return Ok(utf8[0] as char), Ok(extra) => &utf8[..extra+1], }; if let Some(i) = src[1..].iter().position(|&b| (b >> 6) != 0b10 ) { Err(Utf8(NotAContinuationByte(i+1))) } else if overlong(utf8[0], utf8[1]) { Err(Utf8(OverLong)) } else { char::from_u32_detailed(merge_nonascii_unchecked_utf8(src)) .map_err(|e| Codepoint(e) ) } } unsafe fn from_utf8_exact_slice_unchecked(src: &[u8]) -> Self { if src.len() == 1 { src[0] as char } else { char::from_u32_unchecked(merge_nonascii_unchecked_utf8(src)) } } ////////// //UTF-16// ////////// fn to_utf16(self) -> Utf16Char { Utf16Char::from(self) } fn iter_utf16_units(self) -> Utf16Iterator { self.to_utf16().into_iter() } fn to_utf16_array(self) -> [u16;2] { let (first, second) = self.to_utf16_tuple(); [first, second.unwrap_or(0)] } fn to_utf16_tuple(self) -> (u16, Option) { if self <= '\u{ffff}' {// single (self as u16, None) } else {// double let c = self as u32 - 0x_01_00_00; let high = 0x_d8_00 + (c >> 10); let low = 0x_dc_00 + (c & 0x_03_ff); (high as u16, Some(low as u16)) } } fn from_utf16_slice_start(src: &[u16]) -> Result<(Self,usize), InvalidUtf16Slice> { use errors::InvalidUtf16Slice::*; unsafe {match (src.get(0), src.get(1)) { (Some(&u @ 0x00_00...0xd7_ff), _) | (Some(&u @ 0xe0_00...0xff_ff), _) => Ok((char::from_u32_unchecked(u as u32), 1)), (Some(&0xdc_00...0xdf_ff), _) => Err(FirstLowSurrogate), (None, _) => Err(EmptySlice), (Some(&f @ 0xd8_00...0xdb_ff), Some(&s @ 0xdc_00...0xdf_ff)) => Ok((char::from_utf16_tuple_unchecked((f, Some(s))), 2)), (Some(&0xd8_00...0xdb_ff), Some(_)) => Err(SecondNotLowSurrogate), (Some(&0xd8_00...0xdb_ff), None) => Err(MissingSecond), (Some(_), _) => unreachable!() }} } fn from_utf16_array(utf16: [u16;2]) -> Result { use errors::InvalidUtf16Array::*; if let Some(c) = char::from_u32(utf16[0] as u32) { Ok(c) // single } else if utf16[0] < 0xdc_00 && utf16[1] & 0xfc_00 == 0xdc_00 { // correct surrogate pair Ok(combine_surrogates(utf16[0], utf16[1])) } else if utf16[0] < 0xdc_00 { Err(SecondIsNotTrailingSurrogate) } else { Err(FirstIsTrailingSurrogate) } } fn from_utf16_tuple(utf16: (u16, Option)) -> Result { use errors::InvalidUtf16Tuple::*; unsafe{ match utf16 { (0x00_00...0xd7_ff, None) | // single (0xe0_00...0xff_ff, None) | // single (0xd8_00...0xdb_ff, Some(0xdc_00...0xdf_ff)) // correct surrogate => Ok(char::from_utf16_tuple_unchecked(utf16)), (0xd8_00...0xdb_ff, Some(_)) => Err(InvalidSecond), (0xd8_00...0xdb_ff, None ) => Err(MissingSecond), (0xdc_00...0xdf_ff, _ ) => Err(FirstIsTrailingSurrogate), ( _ , Some(_)) => Err(SuperfluousSecond), ( _ , None ) => unreachable!() }} } fn from_utf16_array_unchecked(utf16: [u16;2]) -> Self { // treat any array with a surrogate value in [0] as a surrogate because // combine_surrogates() is safe. // `(utf16[0] & 0xf800) == 0xd80` might not be quite as fast as // `utf16[1] != 0`, but avoiding the potential for UB is worth it // since the conversion isn't zero-cost in either case. char::from_u32(utf16[0] as u32) .unwrap_or_else(|| combine_surrogates(utf16[0], utf16[1]) ) } unsafe fn from_utf16_tuple_unchecked(utf16: (u16, Option)) -> Self { match utf16.1 { Some(second) => combine_surrogates(utf16.0, second), None => char::from_u32_unchecked(utf16.0 as u32) } } fn from_u32_detailed(c: u32) -> Result { match char::from_u32(c) { Some(c) => Ok(c), None if c > 0x10_ff_ff => Err(InvalidCodepoint::TooHigh), None => Err(InvalidCodepoint::Utf16Reserved), } } } // Adapted from https://www.cl.cam.ac.uk/~mgk25/ucs/utf8_check.c fn overlong(first: u8, second: u8) -> bool { if first < 0x80 { false } else if (first & 0xe0) == 0xc0 { (first & 0xfe) == 0xc0 } else if (first & 0xf0) == 0xe0 { first == 0xe0 && (second & 0xe0) == 0x80 } else { first == 0xf0 && (second & 0xf0) == 0x80 } } /// Decodes the codepoint represented by a multi-byte UTF-8 sequence. /// /// Does not check that the codepoint is valid, /// and returns `u32` because casting invalid codepoints to `char` is insta UB. fn merge_nonascii_unchecked_utf8(src: &[u8]) -> u32 { let mut c = src[0] as u32 & (0x7f >> src.len()); for b in &src[1..] { c = (c << 6) | (b & 0b0011_1111) as u32; } c } /// Create a `char` from a leading and a trailing surrogate. /// /// This function is safe because it ignores the six most significant bits of /// each arguments and always produces a codepoint in 0x01_00_00..=0x10_ff_ff. fn combine_surrogates(first: u16, second: u16) -> char { unsafe { let high = (first & 0x_03_ff) as u32; let low = (second & 0x_03_ff) as u32; let c = ((high << 10) | low) + 0x_01_00_00; // no, the constant can't be or'd in char::from_u32_unchecked(c) } } /// Adds `.utf8chars()` and `.utf16chars()` iterator constructors to `&str`. pub trait StrExt: AsRef { /// Equivalent to `.chars()` but produces `Utf8Char`s. fn utf8chars(&self) -> Utf8Chars; /// Equivalent to `.chars()` but produces `Utf16Char`s. fn utf16chars(&self) -> Utf16Chars; /// Equivalent to `.char_indices()` but produces `Utf8Char`s. fn utf8char_indices(&self) -> Utf8CharIndices; /// Equivalent to `.char_indices()` but produces `Utf16Char`s. fn utf16char_indices(&self) -> Utf16CharIndices; } impl StrExt for str { fn utf8chars(&self) -> Utf8Chars { Utf8Chars::from(self) } fn utf16chars(&self) -> Utf16Chars { Utf16Chars::from(self) } fn utf8char_indices(&self) -> Utf8CharIndices { Utf8CharIndices::from(self) } fn utf16char_indices(&self) -> Utf16CharIndices { Utf16CharIndices::from(self) } } #[cfg(feature="ascii")] impl StrExt for AsciiStr { fn utf8chars(&self) -> Utf8Chars { Utf8Chars::from(self.as_str()) } fn utf16chars(&self) -> Utf16Chars { Utf16Chars::from(self.as_str()) } fn utf8char_indices(&self) -> Utf8CharIndices { Utf8CharIndices::from(self.as_str()) } fn utf16char_indices(&self) -> Utf16CharIndices { Utf16CharIndices::from(self.as_str()) } } /// Iterator methods that convert between `u8`s and `Utf8Char` or `u16`s and `Utf16Char` /// /// All the iterator adapters also accept iterators that produce references of /// the type they convert from. pub trait IterExt: Iterator+Sized { /// Converts an iterator of `Utf8Char`s or `&Utf8Char`s to an iterator of /// `u8`s. /// /// Has the same effect as `.flat_map()` or `.flatten()`, but the returned /// iterator is ~40% faster. /// /// The iterator also implements `Read` /// (when the `std` feature isn't disabled). /// Reading will never produce an error, and calls to `.read()` and `.next()` /// can be mixed. /// /// The exact number of bytes cannot be known in advance, but `size_hint()` /// gives the possible range. /// (min: all remaining characters are ASCII, max: all require four bytes) /// /// # Examples /// /// From iterator of values: /// /// ``` /// use encode_unicode::{IterExt, StrExt}; /// /// let iterator = "foo".utf8chars(); /// let mut bytes = [0; 4]; /// for (u,dst) in iterator.to_bytes().zip(&mut bytes) {*dst=u;} /// assert_eq!(&bytes, b"foo\0"); /// ``` /// /// From iterator of references: /// #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{IterExt, StrExt, Utf8Char}; /// /// let chars: Vec = "💣 bomb 💣".utf8chars().collect(); /// let bytes: Vec = chars.iter().to_bytes().collect(); /// let flat_map: Vec = chars.iter().flat_map(|u8c| *u8c ).collect(); /// assert_eq!(bytes, flat_map); /// ``` /// /// `Read`ing from it: /// #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{IterExt, StrExt}; /// use std::io::Read; /// /// let s = "Ååh‽"; /// assert_eq!(s.len(), 8); /// let mut buf = [b'E'; 9]; /// let mut reader = s.utf8chars().to_bytes(); /// assert_eq!(reader.read(&mut buf[..]).unwrap(), 8); /// assert_eq!(reader.read(&mut buf[..]).unwrap(), 0); /// assert_eq!(&buf[..8], s.as_bytes()); /// assert_eq!(buf[8], b'E'); /// ``` fn to_bytes(self) -> Utf8CharSplitter where Self::Item: Borrow; /// Converts an iterator of `Utf16Char` (or `&Utf16Char`) to an iterator of /// `u16`s. /// /// Has the same effect as `.flat_map()` or `.flatten()`, but the returned /// iterator is about twice as fast. /// /// The exact number of units cannot be known in advance, but `size_hint()` /// gives the possible range. /// /// # Examples /// /// From iterator of values: /// /// ``` /// use encode_unicode::{IterExt, StrExt}; /// /// let iterator = "foo".utf16chars(); /// let mut units = [0; 4]; /// for (u,dst) in iterator.to_units().zip(&mut units) {*dst=u;} /// /// assert_eq!(units, ['f' as u16, 'o' as u16, 'o' as u16, 0]); /// ``` /// /// From iterator of references: /// #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{IterExt, StrExt, Utf16Char}; /// /// // (💣 takes two units) /// let chars: Vec = "💣 bomb 💣".utf16chars().collect(); /// let units: Vec = chars.iter().to_units().collect(); /// let flat_map: Vec = chars.iter().flat_map(|u16c| *u16c ).collect(); /// /// assert_eq!(units, flat_map); /// ``` fn to_units(self) -> Utf16CharSplitter where Self::Item: Borrow; /// Decodes bytes as UTF-8 and groups them into `Utf8Char`s /// /// When errors (invalid values or sequences) are encountered, /// it continues with the byte right after the start of the error sequence. /// This is neither the most intelligent choiche (sometimes it is guaranteed to /// produce another error), nor the easiest to implement, but I believe it to /// be the most predictable. /// It also means that ASCII characters are never hidden by errors. /// /// # Examples /// /// Replace all errors with u+FFFD REPLACEMENT_CHARACTER: /// ``` /// use encode_unicode::{Utf8Char, IterExt}; /// /// let mut buf = [b'\0'; 255]; /// let len = b"foo\xCFbar".iter() /// .to_utf8chars() /// .flat_map(|r| r.unwrap_or(Utf8Char::from('\u{FFFD}')).into_iter() ) /// .zip(&mut buf[..]) /// .map(|(byte, dst)| *dst = byte ) /// .count(); /// /// assert_eq!(&buf[..len], "foo\u{FFFD}bar".as_bytes()); /// ``` /// /// Collect everything up until the first error into a string: #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::iterator::Utf8CharMerger; /// let mut good = String::new(); /// for r in Utf8CharMerger::from(b"foo\xcc\xbbbar\xcc\xddbaz") { /// if let Ok(uc) = r { /// good.push_str(uc.as_str()); /// } else { /// break; /// } /// } /// assert_eq!(good, "foo̻bar"); /// ``` /// /// Abort decoding on error: #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{IterExt, Utf8Char}; /// use encode_unicode::error::{InvalidUtf8Slice, InvalidUtf8}; /// /// let result = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77".iter() /// .to_utf8chars() /// .collect::>(); /// /// assert_eq!(result, Err(InvalidUtf8Slice::Utf8(InvalidUtf8::NotAContinuationByte(2)))); /// ``` fn to_utf8chars(self) -> Utf8CharMerger where Self::Item: Borrow; /// Decodes bytes as UTF-16 and groups them into `Utf16Char`s /// /// When errors (unmatched leading surrogates or unexpected trailing surrogates) /// are encountered, an error is produced for every unit. /// /// # Examples /// /// Replace errors with '�': #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{IterExt, Utf16Char}; /// /// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..]; /// let string = slice.iter() /// .to_utf16chars() /// .map(|r| r.unwrap_or(Utf16Char::from('\u{fffd}')) ) // REPLACEMENT_CHARACTER /// .collect::(); /// /// assert_eq!(string, "a�🂠"); /// ``` /// /// ``` /// use encode_unicode::{IterExt, Utf16Char}; /// use encode_unicode::error::Utf16PairError::*; /// /// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'Y' as u16, 0xdab1, 0xdab1]; /// let mut iter = slice.iter().to_utf16chars(); /// assert_eq!(iter.size_hint(), (3, Some(7))); /// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate))); /// assert_eq!(iter.next(), Some(Err(UnexpectedTrailingSurrogate))); /// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('\u{3faee}')))); /// assert_eq!(iter.next(), Some(Ok(Utf16Char::from('Y')))); /// assert_eq!(iter.next(), Some(Err(UnmatchedLeadingSurrogate))); /// assert_eq!(iter.next(), Some(Err(Incomplete))); /// assert_eq!(iter.into_remaining_units().next(), None); /// ``` /// /// Search for a codepoint and return the codepoint index of the first match: /// ``` /// use encode_unicode::{IterExt, Utf16Char}; /// /// let position = [0xd875, 0xdd4f, '≈' as u16, '2' as u16].iter() /// .to_utf16chars() /// .position(|r| r == Ok(Utf16Char::from('≈')) ); /// /// assert_eq!(position, Some(1)); /// ``` fn to_utf16chars(self) -> Utf16CharMerger where Self::Item: Borrow; } impl IterExt for I { fn to_bytes(self) -> Utf8CharSplitter where Self::Item: Borrow { iter_bytes(self) } fn to_units(self) -> Utf16CharSplitter where Self::Item: Borrow { iter_units(self) } fn to_utf8chars(self) -> Utf8CharMerger where Self::Item: Borrow { Utf8CharMerger::from(self) } fn to_utf16chars(self) -> Utf16CharMerger where Self::Item: Borrow { Utf16CharMerger::from(self) } } /// Methods for iterating over `u8` and `u16` slices as UTF-8 or UTF-16 characters. /// /// The iterators are slightly faster than the similar methods in [`IterExt`](trait.IterExt.html) /// because they con "push back" items for free after errors and don't need a /// separate buffer that must be checked on every call to `.next()`. pub trait SliceExt: Index { /// Decode `u8` slices as UTF-8 and iterate over the codepoints as `Utf8Char`s, /// /// # Examples /// /// Get the index and error type of the first error: #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{SliceExt, Utf8Char}; /// use encode_unicode::error::InvalidUtf8Slice; /// /// let slice = b"ab\0\xe0\xbc\xa9 \xf3\x80\x77"; /// let result = slice.utf8char_indices() /// .map(|(offset,r,length)| r.map_err(|e| (offset,e,length) ) ) /// .collect::>(); /// /// assert_eq!(result, Err((7, InvalidUtf8Slice::TooShort(4), 1))); /// ``` /// /// ``` /// use encode_unicode::{SliceExt, Utf8Char}; /// use std::error::Error; /// /// let slice = b"\xf0\xbf\xbf\xbfXY\xdd\xbb\xe1\x80\x99quux123"; /// let mut fixed_size = [Utf8Char::default(); 8]; /// for (cp_i, (byte_index, r, _)) in slice.utf8char_indices().enumerate().take(8) { /// match r { /// Ok(u8c) => fixed_size[cp_i] = u8c, /// Err(e) => panic!("Invalid codepoint at index {} ({})", cp_i, e.description()), /// } /// } /// let chars = ['\u{3ffff}', 'X', 'Y', '\u{77b}', '\u{1019}', 'q', 'u', 'u']; /// assert_eq!(fixed_size, chars); /// ``` /// #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{SliceExt, Utf8Char}; /// use encode_unicode::error::InvalidUtf8Slice::*; /// use encode_unicode::error::{InvalidUtf8, InvalidUtf8FirstByte, InvalidCodepoint}; /// /// let bytes = b"\xfa-\xf4\x8f\xee\xa1\x8f-\xed\xa9\x87\xf0\xcc\xbb"; /// let mut errors = Vec::new(); /// let mut lengths = Vec::new(); /// let mut string = String::new(); /// for (offset,result,length) in bytes.utf8char_indices() { /// lengths.push((offset,length)); /// let c = result.unwrap_or_else(|error| { /// errors.push((offset,error)); /// Utf8Char::from('\u{fffd}') // replacement character /// }); /// string.push_str(c.as_str()); /// } /// /// assert_eq!(string, "�-��\u{e84f}-����\u{33b}"); /// assert_eq!(lengths, [(0,1), (1,1), (2,1), (3,1), (4,3), (7,1), /// (8,1), (9,1), (10,1), (11,1), (12,2)]); /// assert_eq!(errors, [ /// ( 0, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::TooLongSeqence))), /// ( 2, Utf8(InvalidUtf8::NotAContinuationByte(2))), /// ( 3, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::ContinuationByte))), /// ( 8, Codepoint(InvalidCodepoint::Utf16Reserved)), /// ( 9, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::ContinuationByte))), /// (10, Utf8(InvalidUtf8::FirstByte(InvalidUtf8FirstByte::ContinuationByte))), /// (11, TooShort(4)), // (but it was not the last element returned!) /// ]); /// ``` fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]>; /// Decode `u16` slices as UTF-16 and iterate over the codepoints as `Utf16Char`s, /// /// The iterator produces `(usize,Result,usize)`, /// and the slice is validated as you go. /// /// The first `usize` contains the offset from the start of the slice and /// the last `usize` contains the length of the codepoint or error. /// The length is either 1 or 2, and always 1 for errors. /// /// # Examples /// #[cfg_attr(feature="std", doc=" ```")] #[cfg_attr(not(feature="std"), doc=" ```no_compile")] /// use encode_unicode::{SliceExt, Utf8Char}; /// /// let slice = &['a' as u16, 0xdf00, 0xd83c, 0xdca0][..]; /// let mut errors = Vec::new(); /// let string = slice.utf16char_indices().map(|(offset,r,_)| match r { /// Ok(u16c) => Utf8Char::from(u16c), /// Err(_) => { /// errors.push(offset); /// Utf8Char::from('\u{fffd}') // REPLACEMENT_CHARACTER /// } /// }).collect::(); /// /// assert_eq!(string, "a�🂠"); /// assert_eq!(errors, [1]); /// ``` /// /// Search for a codepoint and return its unit and codepoint index. /// ``` /// use encode_unicode::{SliceExt, Utf16Char}; /// /// let slice = [0xd875,/*'𝕏'*/ 0xdd4f, '≈' as u16, '2' as u16]; /// let position = slice.utf16char_indices() /// .enumerate() /// .find(|&(_,(_,r,_))| r == Ok(Utf16Char::from('≈')) ) /// .map(|(codepoint, (offset, _, _))| (codepoint, offset) ); /// /// assert_eq!(position, Some((1,2))); /// ``` /// /// Error types: /// ``` /// use encode_unicode::{SliceExt, Utf16Char}; /// use encode_unicode::error::Utf16PairError::*; /// /// let slice = [0xdcba, 0xdeff, 0xd8be, 0xdeee, 'λ' as u16, 0xdab1, 0xdab1]; /// let mut iter = slice.utf16char_indices(); /// assert_eq!(iter.next(), Some((0, Err(UnexpectedTrailingSurrogate), 1))); /// assert_eq!(iter.next(), Some((1, Err(UnexpectedTrailingSurrogate), 1))); /// assert_eq!(iter.next(), Some((2, Ok(Utf16Char::from('\u{3faee}')), 2))); /// assert_eq!(iter.next(), Some((4, Ok(Utf16Char::from('λ')), 1))); /// assert_eq!(iter.next(), Some((5, Err(UnmatchedLeadingSurrogate), 1))); /// assert_eq!(iter.next(), Some((6, Err(Incomplete), 1))); /// assert_eq!(iter.next(), None); /// assert_eq!(iter.as_slice(), []) /// ``` fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]>; } impl> SliceExt for S { fn utf8char_indices(&self) -> Utf8CharDecoder where Self::Output: Borrow<[u8]> { Utf8CharDecoder::from(self[..].borrow()) } fn utf16char_indices(&self) -> Utf16CharDecoder where Self::Output: Borrow<[u16]> { Utf16CharDecoder::from(self[..].borrow()) } }