//! Composable structures to handle writing an image. use std::fmt::Debug; use std::io::Seek; use std::iter::Peekable; use std::ops::Not; use rayon_core::{ThreadPool, ThreadPoolBuildError}; use smallvec::alloc::collections::BTreeMap; use crate::block::UncompressedBlock; use crate::block::chunk::{Chunk}; use crate::compression::Compression; use crate::error::{Error, Result, UnitResult, usize_to_u64}; use crate::io::{Data, Tracking, Write}; use crate::meta::{Headers, MetaData, OffsetTables}; use crate::meta::attribute::LineOrder; /// Write an exr file by writing one chunk after another in a closure. /// In the closure, you are provided a chunk writer, which should be used to write all the chunks. /// Assumes the your write destination is buffered. pub fn write_chunks_with( buffered_write: W, headers: Headers, pedantic: bool, write_chunks: impl FnOnce(MetaData, &mut ChunkWriter) -> UnitResult ) -> UnitResult { // this closure approach ensures that after writing all chunks, the file is always completed and checked and flushed let (meta, mut writer) = ChunkWriter::new_for_buffered(buffered_write, headers, pedantic)?; write_chunks(meta, &mut writer)?; writer.complete_meta_data() } /// Can consume compressed pixel chunks, writing them a file. /// Use `sequential_blocks_compressor` or `parallel_blocks_compressor` to compress your data, /// or use `compress_all_blocks_sequential` or `compress_all_blocks_parallel`. /// Use `on_progress` to obtain a new writer /// that triggers a callback for each block. // #[must_use] #[derive(Debug)] #[must_use] pub struct ChunkWriter { header_count: usize, byte_writer: Tracking, chunk_indices_byte_location: std::ops::Range, chunk_indices_increasing_y: OffsetTables, chunk_count: usize, // TODO compose? } /// A new writer that triggers a callback /// for each block written to the inner writer. #[derive(Debug)] #[must_use] pub struct OnProgressChunkWriter<'w, W, F> { chunk_writer: &'w mut W, written_chunks: usize, on_progress: F, } /// Write chunks to a byte destination. /// Then write each chunk with `writer.write_chunk(chunk)`. pub trait ChunksWriter: Sized { /// The total number of chunks that the complete file will contain. fn total_chunks_count(&self) -> usize; /// Any more calls will result in an error and have no effect. /// If writing results in an error, the file and the writer /// may remain in an invalid state and should not be used further. /// Errors when the chunk at this index was already written. fn write_chunk(&mut self, index_in_header_increasing_y: usize, chunk: Chunk) -> UnitResult; /// Obtain a new writer that calls the specified closure for each block that is written to this writer. fn on_progress(&mut self, on_progress: F) -> OnProgressChunkWriter<'_, Self, F> where F: FnMut(f64) { OnProgressChunkWriter { chunk_writer: self, written_chunks: 0, on_progress } } /// Obtain a new writer that can compress blocks to chunks, which are then passed to this writer. fn sequential_blocks_compressor<'w>(&'w mut self, meta: &'w MetaData) -> SequentialBlocksCompressor<'w, Self> { SequentialBlocksCompressor::new(meta, self) } /// Obtain a new writer that can compress blocks to chunks on multiple threads, which are then passed to this writer. /// Returns none if the sequential compressor should be used instead (thread pool creation failure or too large performance overhead). fn parallel_blocks_compressor<'w>(&'w mut self, meta: &'w MetaData) -> Option> { ParallelBlocksCompressor::new(meta, self) } /// Compresses all blocks to the file. /// The index of the block must be in increasing line order within the header. /// Obtain iterator with `MetaData::collect_ordered_blocks(...)` or similar methods. fn compress_all_blocks_sequential(mut self, meta: &MetaData, blocks: impl Iterator) -> UnitResult { let mut writer = self.sequential_blocks_compressor(meta); // TODO check block order if line order is not unspecified! for (index_in_header_increasing_y, block) in blocks { writer.compress_block(index_in_header_increasing_y, block)?; } // TODO debug_assert_eq!(self.is_complete()); Ok(()) } /// Compresses all blocks to the file. /// The index of the block must be in increasing line order within the header. /// Obtain iterator with `MetaData::collect_ordered_blocks(...)` or similar methods. /// Will fallback to sequential processing where threads are not available, or where it would not speed up the process. fn compress_all_blocks_parallel(mut self, meta: &MetaData, blocks: impl Iterator) -> UnitResult { let mut parallel_writer = match self.parallel_blocks_compressor(meta) { None => return self.compress_all_blocks_sequential(meta, blocks), Some(writer) => writer, }; // TODO check block order if line order is not unspecified! for (index_in_header_increasing_y, block) in blocks { parallel_writer.add_block_to_compression_queue(index_in_header_increasing_y, block)?; } // TODO debug_assert_eq!(self.is_complete()); Ok(()) } } impl ChunksWriter for ChunkWriter where W: Write + Seek { /// The total number of chunks that the complete file will contain. fn total_chunks_count(&self) -> usize { self.chunk_count } /// Any more calls will result in an error and have no effect. /// If writing results in an error, the file and the writer /// may remain in an invalid state and should not be used further. /// Errors when the chunk at this index was already written. fn write_chunk(&mut self, index_in_header_increasing_y: usize, chunk: Chunk) -> UnitResult { let header_chunk_indices = &mut self.chunk_indices_increasing_y[chunk.layer_index]; if index_in_header_increasing_y >= header_chunk_indices.len() { return Err(Error::invalid("too large chunk index")); } let chunk_index_slot = &mut header_chunk_indices[index_in_header_increasing_y]; if *chunk_index_slot != 0 { return Err(Error::invalid(format!("chunk at index {} is already written", index_in_header_increasing_y))); } *chunk_index_slot = usize_to_u64(self.byte_writer.byte_position()); chunk.write(&mut self.byte_writer, self.header_count)?; Ok(()) } } impl ChunkWriter where W: Write + Seek { // -- the following functions are private, because they must be called in a strict order -- /// Writes the meta data and zeroed offset tables as a placeholder. fn new_for_buffered(buffered_byte_writer: W, headers: Headers, pedantic: bool) -> Result<(MetaData, Self)> { let mut write = Tracking::new(buffered_byte_writer); let requirements = MetaData::write_validating_to_buffered(&mut write, headers.as_slice(), pedantic)?; // TODO: use increasing line order where possible, but this requires us to know whether we want to be parallel right now /*// if non-parallel compression, we always use increasing order anyways if !parallel || !has_compression { for header in &mut headers { if header.line_order == LineOrder::Unspecified { header.line_order = LineOrder::Increasing; } } }*/ let offset_table_size: usize = headers.iter().map(|header| header.chunk_count).sum(); let offset_table_start_byte = write.byte_position(); let offset_table_end_byte = write.byte_position() + offset_table_size * u64::BYTE_SIZE; // skip offset tables, filling with 0, will be updated after the last chunk has been written write.seek_write_to(offset_table_end_byte)?; let header_count = headers.len(); let chunk_indices_increasing_y = headers.iter() .map(|header| vec![0_u64; header.chunk_count]).collect(); let meta_data = MetaData { requirements, headers }; Ok((meta_data, ChunkWriter { header_count, byte_writer: write, chunk_count: offset_table_size, chunk_indices_byte_location: offset_table_start_byte .. offset_table_end_byte, chunk_indices_increasing_y, })) } /// Seek back to the meta data, write offset tables, and flush the byte writer. /// Leaves the writer seeked to the middle of the file. fn complete_meta_data(mut self) -> UnitResult { if self.chunk_indices_increasing_y.iter().flatten().any(|&index| index == 0) { return Err(Error::invalid("some chunks are not written yet")) } // write all offset tables debug_assert_ne!(self.byte_writer.byte_position(), self.chunk_indices_byte_location.end, "offset table has already been updated"); self.byte_writer.seek_write_to(self.chunk_indices_byte_location.start)?; for table in self.chunk_indices_increasing_y { u64::write_slice(&mut self.byte_writer, table.as_slice())?; } self.byte_writer.flush()?; // make sure we catch all (possibly delayed) io errors before returning Ok(()) } } impl<'w, W, F> ChunksWriter for OnProgressChunkWriter<'w, W, F> where W: 'w + ChunksWriter, F: FnMut(f64) { fn total_chunks_count(&self) -> usize { self.chunk_writer.total_chunks_count() } fn write_chunk(&mut self, index_in_header_increasing_y: usize, chunk: Chunk) -> UnitResult { let total_chunks = self.total_chunks_count(); let on_progress = &mut self.on_progress; // guarantee on_progress being called with 0 once if self.written_chunks == 0 { on_progress(0.0); } self.chunk_writer.write_chunk(index_in_header_increasing_y, chunk)?; self.written_chunks += 1; on_progress({ // guarantee finishing with progress 1.0 for last block at least once, float division might slightly differ from 1.0 if self.written_chunks == total_chunks { 1.0 } else { self.written_chunks as f64 / total_chunks as f64 } }); Ok(()) } } /// Write blocks that appear in any order and reorder them before writing. #[derive(Debug)] #[must_use] pub struct SortedBlocksWriter<'w, W> { chunk_writer: &'w mut W, pending_chunks: BTreeMap, unwritten_chunk_indices: Peekable>, requires_sorting: bool, // using this instead of Option, because of borrowing } impl<'w, W> SortedBlocksWriter<'w, W> where W: ChunksWriter { /// New sorting writer. Returns `None` if sorting is not required. pub fn new(meta_data: &MetaData, chunk_writer: &'w mut W) -> SortedBlocksWriter<'w, W> { let requires_sorting = meta_data.headers.iter() .any(|header| header.line_order != LineOrder::Unspecified); let total_chunk_count = chunk_writer.total_chunks_count(); SortedBlocksWriter { pending_chunks: BTreeMap::new(), unwritten_chunk_indices: (0 .. total_chunk_count).peekable(), requires_sorting, chunk_writer } } /// Write the chunk or stash it. In the closure, write all chunks that can be written now. pub fn write_or_stash_chunk(&mut self, chunk_index_in_file: usize, chunk_y_index: usize, chunk: Chunk) -> UnitResult { if self.requires_sorting.not() { return self.chunk_writer.write_chunk(chunk_y_index, chunk); } // write this chunk now if possible if self.unwritten_chunk_indices.peek() == Some(&chunk_index_in_file){ self.chunk_writer.write_chunk(chunk_y_index, chunk)?; self.unwritten_chunk_indices.next().expect("peeked chunk index is missing"); // write all pending blocks that are immediate successors of this block while let Some((next_chunk_y_index, next_chunk)) = self .unwritten_chunk_indices.peek().cloned() .and_then(|id| self.pending_chunks.remove(&id)) { self.chunk_writer.write_chunk(next_chunk_y_index, next_chunk)?; self.unwritten_chunk_indices.next().expect("peeked chunk index is missing"); } } else { // the argument block is not to be written now, // and all the pending blocks are not next up either, // so just stash this block self.pending_chunks.insert(chunk_index_in_file, (chunk_y_index, chunk)); } Ok(()) } /// Where the chunks will be written to. pub fn inner_chunks_writer(&self) -> &W { &self.chunk_writer } } /// Compress blocks to a chunk writer in this thread. #[derive(Debug)] #[must_use] pub struct SequentialBlocksCompressor<'w, W> { meta: &'w MetaData, chunks_writer: &'w mut W, } impl<'w, W> SequentialBlocksCompressor<'w, W> where W: 'w + ChunksWriter { /// New blocks writer. pub fn new(meta: &'w MetaData, chunks_writer: &'w mut W) -> Self { Self { meta, chunks_writer, } } /// This is where the compressed blocks are written to. pub fn inner_chunks_writer(&'w self) -> &'w W { self.chunks_writer } /// Compress a single block immediately. The index of the block must be in increasing line order. pub fn compress_block(&mut self, index_in_header_increasing_y: usize, block: UncompressedBlock) -> UnitResult { self.chunks_writer.write_chunk( index_in_header_increasing_y, block.compress_to_chunk(&self.meta.headers)? ) } } /// Compress blocks to a chunk writer with multiple threads. #[derive(Debug)] #[must_use] pub struct ParallelBlocksCompressor<'w, W> { meta: &'w MetaData, sorted_writer: SortedBlocksWriter<'w, W>, sender: flume::Sender>, receiver: flume::Receiver>, pool: rayon_core::ThreadPool, currently_compressing_count: usize, written_chunk_count: usize, // used to check for last chunk max_threads: usize, next_incoming_chunk_index: usize, // used to remember original chunk order } impl<'w, W> ParallelBlocksCompressor<'w, W> where W: 'w + ChunksWriter { /// New blocks writer. Returns none if sequential compression should be used. /// Use `new_with_thread_pool` to customize the threadpool. pub fn new(meta: &'w MetaData, chunks_writer: &'w mut W) -> Option { Self::new_with_thread_pool(meta, chunks_writer, ||{ rayon_core::ThreadPoolBuilder::new() .thread_name(|index| format!("OpenEXR Block Compressor Thread #{}", index)) .build() }) } /// New blocks writer. Returns none if sequential compression should be used. pub fn new_with_thread_pool( meta: &'w MetaData, chunks_writer: &'w mut W, try_create_thread_pool: CreatePool) -> Option where CreatePool: FnOnce() -> std::result::Result { if meta.headers.iter().all(|head|head.compression == Compression::Uncompressed) { return None; } // in case thread pool creation fails (for example on WASM currently), // we revert to sequential compression let pool = match try_create_thread_pool() { Ok(pool) => pool, // TODO print warning? Err(_) => return None, }; let max_threads = pool.current_num_threads().max(1).min(chunks_writer.total_chunks_count()) + 2; // ca one block for each thread at all times let (send, recv) = flume::unbounded(); // TODO bounded channel simplifies logic? Some(Self { sorted_writer: SortedBlocksWriter::new(meta, chunks_writer), next_incoming_chunk_index: 0, currently_compressing_count: 0, written_chunk_count: 0, sender: send, receiver: recv, max_threads, pool, meta, }) } /// This is where the compressed blocks are written to. pub fn inner_chunks_writer(&'w self) -> &'w W { self.sorted_writer.inner_chunks_writer() } // private, as may underflow counter in release mode fn write_next_queued_chunk(&mut self) -> UnitResult { debug_assert!(self.currently_compressing_count > 0, "cannot wait for chunks as there are none left"); let some_compressed_chunk = self.receiver.recv() .expect("cannot receive compressed block"); self.currently_compressing_count -= 1; let (chunk_file_index, chunk_y_index, chunk) = some_compressed_chunk?; self.sorted_writer.write_or_stash_chunk(chunk_file_index, chunk_y_index, chunk)?; self.written_chunk_count += 1; Ok(()) } /// Wait until all currently compressing chunks in the compressor have been written. pub fn write_all_queued_chunks(&mut self) -> UnitResult { while self.currently_compressing_count > 0 { self.write_next_queued_chunk()?; } debug_assert_eq!(self.currently_compressing_count, 0, "counter does not match block count"); Ok(()) } /// Add a single block to the compressor queue. The index of the block must be in increasing line order. /// When calling this function for the last block, this method waits until all the blocks have been written. /// This only works when you write as many blocks as the image expects, otherwise you can use `wait_for_all_remaining_chunks`. /// Waits for a block from the queue to be written, if the queue already has enough items. pub fn add_block_to_compression_queue(&mut self, index_in_header_increasing_y: usize, block: UncompressedBlock) -> UnitResult { // if pipe is full, block to wait for a slot to free up if self.currently_compressing_count >= self.max_threads { self.write_next_queued_chunk()?; } // add the argument chunk to the compression queueue let index_in_file = self.next_incoming_chunk_index; let sender = self.sender.clone(); let meta = self.meta.clone(); self.pool.spawn(move ||{ let compressed_or_err = block.compress_to_chunk(&meta.headers); // by now, decompressing could have failed in another thread. // the error is then already handled, so we simply // don't send the decompressed block and do nothing let _ = sender.send(compressed_or_err.map(move |compressed| (index_in_file, index_in_header_increasing_y, compressed))); }); self.currently_compressing_count += 1; self.next_incoming_chunk_index += 1; // if this is the last chunk, wait for all chunks to complete before returning if self.written_chunk_count + self.currently_compressing_count == self.inner_chunks_writer().total_chunks_count() { self.write_all_queued_chunks()?; debug_assert_eq!( self.written_chunk_count, self.inner_chunks_writer().total_chunks_count(), "written chunk count mismatch" ); } Ok(()) } }