mod table; use crate::compression::{mod_p, ByteVec}; use crate::error::usize_to_i32; use crate::io::Data; use crate::meta::attribute::ChannelList; use crate::prelude::*; use std::cmp::min; use std::mem::size_of; use table::{EXP_TABLE, LOG_TABLE}; use lebe::io::{ReadPrimitive, WriteEndian}; const BLOCK_SAMPLE_COUNT: usize = 4; // As B44 compression is only use on f16 channels, we can have a conste for this value. const BLOCK_X_BYTE_COUNT: usize = BLOCK_SAMPLE_COUNT * size_of::(); #[inline] fn convert_from_linear(s: &mut [u16; 16]) { for v in s { *v = EXP_TABLE[*v as usize]; } } #[inline] fn convert_to_linear(s: &mut [u16; 16]) { for v in s { *v = LOG_TABLE[*v as usize]; } } #[inline] fn shift_and_round(x: i32, shift: i32) -> i32 { let x = x << 1; let a = (1 << shift) - 1; let shift = shift + 1; let b = (x >> shift) & 1; (x + a + b) >> shift } /// Pack a block of 4 by 4 16-bit pixels (32 bytes, the array `s`) into either 14 or 3 bytes. fn pack(s: [u16; 16], b: &mut [u8], optimize_flat_fields: bool, exact_max: bool) -> usize { let mut t = [0u16; 16]; for i in 0..16 { if (s[i] & 0x7c00) == 0x7c00 { t[i] = 0x8000; } else if (s[i] & 0x8000) != 0 { t[i] = !s[i]; } else { t[i] = s[i] | 0x8000; } } let t_max = t.iter().max().unwrap(); // Compute a set of running differences, r[0] ... r[14]: // Find a shift value such that after rounding off the // rightmost bits and shifting all differences are between // -32 and +31. Then bias the differences so that they // end up between 0 and 63. let mut shift = -1; let mut d = [0i32; 16]; let mut r = [0i32; 15]; let mut r_min: i32; let mut r_max: i32; const BIAS: i32 = 0x20; loop { shift += 1; // Compute absolute differences, d[0] ... d[15], // between t_max and t[0] ... t[15]. // // Shift and round the absolute differences. d.iter_mut() .zip(&t) .for_each(|(d_v, t_v)| *d_v = shift_and_round((t_max - t_v).into(), shift)); // Convert d[0] .. d[15] into running differences r[0] = d[0] - d[4] + BIAS; r[1] = d[4] - d[8] + BIAS; r[2] = d[8] - d[12] + BIAS; r[3] = d[0] - d[1] + BIAS; r[4] = d[4] - d[5] + BIAS; r[5] = d[8] - d[9] + BIAS; r[6] = d[12] - d[13] + BIAS; r[7] = d[1] - d[2] + BIAS; r[8] = d[5] - d[6] + BIAS; r[9] = d[9] - d[10] + BIAS; r[10] = d[13] - d[14] + BIAS; r[11] = d[2] - d[3] + BIAS; r[12] = d[6] - d[7] + BIAS; r[13] = d[10] - d[11] + BIAS; r[14] = d[14] - d[15] + BIAS; r_min = r[0]; r_max = r[0]; r.iter().copied().for_each(|v| { if r_min > v { r_min = v; } if r_max < v { r_max = v; } }); if !(r_min < 0 || r_max > 0x3f) { break; } } if r_min == BIAS && r_max == BIAS && optimize_flat_fields { // Special case - all pixels have the same value. // We encode this in 3 instead of 14 bytes by // storing the value 0xfc in the third output byte, // which cannot occur in the 14-byte encoding. b[0] = (t[0] >> 8) as u8; b[1] = t[0] as u8; b[2] = 0xfc; return 3; } if exact_max { // Adjust t[0] so that the pixel whose value is equal // to t_max gets represented as accurately as possible. t[0] = t_max - (d[0] << shift) as u16; } // Pack t[0], shift and r[0] ... r[14] into 14 bytes: b[0] = (t[0] >> 8) as u8; b[1] = t[0] as u8; b[2] = ((shift << 2) | (r[0] >> 4)) as u8; b[3] = ((r[0] << 4) | (r[1] >> 2)) as u8; b[4] = ((r[1] << 6) | r[2]) as u8; b[5] = ((r[3] << 2) | (r[4] >> 4)) as u8; b[6] = ((r[4] << 4) | (r[5] >> 2)) as u8; b[7] = ((r[5] << 6) | r[6]) as u8; b[8] = ((r[7] << 2) | (r[8] >> 4)) as u8; b[9] = ((r[8] << 4) | (r[9] >> 2)) as u8; b[10] = ((r[9] << 6) | r[10]) as u8; b[11] = ((r[11] << 2) | (r[12] >> 4)) as u8; b[12] = ((r[12] << 4) | (r[13] >> 2)) as u8; b[13] = ((r[13] << 6) | r[14]) as u8; return 14; } // Tiny macro to simply get block array value as a u32. macro_rules! b32 { ($b:expr, $i:expr) => { $b[$i] as u32 }; } // 0011 1111 const SIX_BITS: u32 = 0x3f; // Unpack a 14-byte block into 4 by 4 16-bit pixels. fn unpack14(b: &[u8], s: &mut [u16; 16]) { debug_assert_eq!(b.len(), 14); debug_assert_ne!(b[2], 0xfc); s[0] = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16; let shift = b32!(b, 2) >> 2; let bias = 0x20 << shift; s[4] = (s[0] as u32 + ((((b32!(b, 2) << 4) | (b32!(b, 3) >> 4)) & SIX_BITS) << shift) - bias) as u16; s[8] = (s[4] as u32 + ((((b32!(b, 3) << 2) | (b32!(b, 4) >> 6)) & SIX_BITS) << shift) - bias) as u16; s[12] = (s[8] as u32 + ((b32!(b, 4) & SIX_BITS) << shift) - bias) as u16; s[1] = (s[0] as u32 + ((b32!(b, 5) >> 2) << shift) - bias) as u16; s[5] = (s[4] as u32 + ((((b32!(b, 5) << 4) | (b32!(b, 6) >> 4)) & SIX_BITS) << shift) - bias) as u16; s[9] = (s[8] as u32 + ((((b32!(b, 6) << 2) | (b32!(b, 7) >> 6)) & SIX_BITS) << shift) - bias) as u16; s[13] = (s[12] as u32 + ((b32!(b, 7) & SIX_BITS) << shift) - bias) as u16; s[2] = (s[1] as u32 + ((b32!(b, 8) >> 2) << shift) - bias) as u16; s[6] = (s[5] as u32 + ((((b32!(b, 8) << 4) | (b32!(b, 9) >> 4)) & SIX_BITS) << shift) - bias) as u16; s[10] = (s[9] as u32 + ((((b32!(b, 9) << 2) | (b32!(b, 10) >> 6)) & SIX_BITS) << shift) - bias) as u16; s[14] = (s[13] as u32 + ((b32!(b, 10) & SIX_BITS) << shift) - bias) as u16; s[3] = (s[2] as u32 + ((b32!(b, 11) >> 2) << shift) - bias) as u16; s[7] = (s[6] as u32 + ((((b32!(b, 11) << 4) | (b32!(b, 12) >> 4)) & SIX_BITS) << shift) - bias) as u16; s[11] = (s[10] as u32 + ((((b32!(b, 12) << 2) | (b32!(b, 13) >> 6)) & SIX_BITS) << shift) - bias) as u16; s[15] = (s[14] as u32 + ((b32!(b, 13) & SIX_BITS) << shift) - bias) as u16; for i in 0..16 { if (s[i] & 0x8000) != 0 { s[i] &= 0x7fff; } else { s[i] = !s[i]; } } } // Unpack a 3-byte block `b` into 4 by 4 identical 16-bit pixels in `s` array. fn unpack3(b: &[u8], s: &mut [u16; 16]) { // this assertion panics for fuzzed images. // assuming this debug assertion is an overly strict check to catch potential compression errors. // disabling because it panics when fuzzed. // when commenting out, it simply works (maybe it should return an error instead?). // debug_assert_eq!(b[2], 0xfc); // Get the 16-bit value from the block. let mut value = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16; if (value & 0x8000) != 0 { value &= 0x7fff; } else { value = !value; } s.fill(value); // All pixels have save value. } #[derive(Debug)] struct ChannelData { tmp_start_index: usize, tmp_end_index: usize, resolution: Vec2, y_sampling: usize, sample_type: SampleType, quantize_linearly: bool, samples_per_pixel: usize, } // TODO: Unsafe seems to be required to efficiently copy whole slice of u16 ot u8. For now, we use // a less efficient, yet safe, implementation. #[inline] fn memcpy_u16_to_u8(src: &[u16], mut dst: &mut [u8]) { use lebe::prelude::*; dst.write_as_native_endian(src).expect("byte copy error"); } #[inline] fn memcpy_u8_to_u16(mut src: &[u8], dst: &mut [u16]) { use lebe::prelude::*; src.read_from_native_endian_into(dst).expect("byte copy error"); } #[inline] fn cpy_u8(src: &[u16], src_i: usize, dst: &mut [u8], dst_i: usize, n: usize) { memcpy_u16_to_u8(&src[src_i..src_i + n], &mut dst[dst_i..dst_i + 2 * n]); } pub fn decompress( channels: &ChannelList, compressed: ByteVec, rectangle: IntegerBounds, expected_byte_size: usize, _pedantic: bool, ) -> Result { debug_assert_eq!( expected_byte_size, rectangle.size.area() * channels.bytes_per_pixel, "expected byte size does not match header" // TODO compute instead of passing argument? ); debug_assert!(!channels.list.is_empty(), "no channels found"); if compressed.is_empty() { return Ok(Vec::new()); } // Extract channel information needed for decompression. let mut channel_data: Vec = Vec::with_capacity(channels.list.len()); let mut tmp_read_index = 0; for channel in channels.list.iter() { let channel = ChannelData { tmp_start_index: tmp_read_index, tmp_end_index: tmp_read_index, resolution: channel.subsampled_resolution(rectangle.size), y_sampling: channel.sampling.y(), sample_type: channel.sample_type, quantize_linearly: channel.quantize_linearly, samples_per_pixel: channel.sampling.area(), }; tmp_read_index += channel.resolution.area() * channel.samples_per_pixel * channel.sample_type.bytes_per_sample(); channel_data.push(channel); } // Temporary buffer is used to decompress B44 datas the way they are stored in the compressed // buffer (channel by channel). We interleave the final result later. let mut tmp = Vec::with_capacity(expected_byte_size); // Index in the compressed buffer. let mut in_i = 0usize; let mut remaining = compressed.len(); for channel in &channel_data { debug_assert_eq!(remaining, compressed.len()-in_i); // Compute information for current channel. let sample_count = channel.resolution.area() * channel.samples_per_pixel; let byte_count = sample_count * channel.sample_type.bytes_per_sample(); // Sample types that does not support B44 compression (u32 and f32) are raw copied. // In this branch, "compressed" array is actually raw, uncompressed data. if channel.sample_type != SampleType::F16 { debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4); if remaining < byte_count { return Err(Error::invalid("not enough data")); } tmp.extend_from_slice(&compressed[in_i..(in_i + byte_count)]); in_i += byte_count; remaining -= byte_count; continue; } // HALF channel // The rest of the code assume we are manipulating u16 (2 bytes) values. debug_assert_eq!(channel.sample_type, SampleType::F16); debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::()); // Increase buffer to get new uncompressed datas. tmp.resize(tmp.len() + byte_count, 0); let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; let y_sample_count = channel.resolution.y() * channel.samples_per_pixel; let bytes_per_sample = size_of::(); let x_byte_count = x_sample_count * bytes_per_sample; let cd_start = channel.tmp_start_index; for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) { // Compute index in output (decompressed) buffer. We have 4 rows, because we will // uncompress 4 by 4 data blocks. let mut row0 = cd_start + y * x_byte_count; let mut row1 = row0 + x_byte_count; let mut row2 = row1 + x_byte_count; let mut row3 = row2 + x_byte_count; // Move in pixel x line, 4 by 4. for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) { // Extract the 4 by 4 block of 16-bit floats from the compressed buffer. let mut s = [0u16; 16]; if remaining < 3 { return Err(Error::invalid("not enough data")); } // If shift exponent is 63, call unpack14 (ignoring unused bits) if compressed[in_i + 2] >= (13 << 2) { if remaining < 3 { return Err(Error::invalid("not enough data")); } unpack3(&compressed[in_i..(in_i + 3)], &mut s); in_i += 3; remaining -= 3; } else { if remaining < 14 { return Err(Error::invalid("not enough data")); } unpack14(&compressed[in_i..(in_i + 14)], &mut s); in_i += 14; remaining -= 14; } if channel.quantize_linearly { convert_to_linear(&mut s); } // Get resting samples from the line to copy in temp buffer (without going outside channel). let x_resting_sample_count = match x + 3 < x_sample_count { true => BLOCK_SAMPLE_COUNT, false => x_sample_count - x, }; debug_assert!(x_resting_sample_count > 0); debug_assert!(x_resting_sample_count <= BLOCK_SAMPLE_COUNT); // Copy rows (without going outside channel). if y + 3 < y_sample_count { cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count); cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count); cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count); cpy_u8(&s, 12, &mut tmp, row3, x_resting_sample_count); } else { debug_assert!(y < y_sample_count); cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count); if y + 1 < y_sample_count { cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count); } if y + 2 < y_sample_count { cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count); } } // Update row's array index to 4 next pixels. row0 += BLOCK_X_BYTE_COUNT; row1 += BLOCK_X_BYTE_COUNT; row2 += BLOCK_X_BYTE_COUNT; row3 += BLOCK_X_BYTE_COUNT; } } } debug_assert_eq!(tmp.len(), expected_byte_size); // Interleave uncompressed channel data. let mut out = Vec::with_capacity(expected_byte_size); for y in rectangle.position.y()..rectangle.end().y() { for channel in &mut channel_data { if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; } // Find data location in temporary buffer. let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample(); let next_tmp_end_index = channel.tmp_end_index + bytes_per_line; let channel_bytes = &tmp[channel.tmp_end_index..next_tmp_end_index]; channel.tmp_end_index = next_tmp_end_index; // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 // We can support uncompressed data in the machine's native format // if all image channels are of type HALF, and if the Xdr and the // native representations of a half have the same size. if channel.sample_type == SampleType::F16 { // TODO simplify this and make it memcpy on little endian systems // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L943 for mut f16_bytes in channel_bytes.chunks(std::mem::size_of::()) { let native_endian_f16_bits = u16::read_from_little_endian(&mut f16_bytes).expect("memory read failed"); out.write_as_native_endian(&native_endian_f16_bits).expect("memory write failed"); } } else { u8::write_slice(&mut out, channel_bytes) .expect("write to in-memory failed"); } } } for index in 1..channel_data.len() { debug_assert_eq!( channel_data[index - 1].tmp_end_index, channel_data[index].tmp_start_index ); } debug_assert_eq!(out.len(), expected_byte_size); // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 Ok(super::convert_little_endian_to_current(out, channels, rectangle)) } pub fn compress( channels: &ChannelList, uncompressed: ByteVec, rectangle: IntegerBounds, optimize_flat_fields: bool, ) -> Result { if uncompressed.is_empty() { return Ok(Vec::new()); } // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle); let uncompressed = uncompressed.as_slice(); // TODO no alloc let mut channel_data = Vec::new(); let mut tmp_end_index = 0; for channel in &channels.list { let number_samples = channel.subsampled_resolution(rectangle.size); let sample_count = channel.subsampled_resolution(rectangle.size).area(); let byte_count = sample_count * channel.sample_type.bytes_per_sample(); let channel = ChannelData { tmp_start_index: tmp_end_index, tmp_end_index, y_sampling: channel.sampling.y(), resolution: number_samples, sample_type: channel.sample_type, quantize_linearly: channel.quantize_linearly, samples_per_pixel: channel.sampling.area(), }; tmp_end_index += byte_count; channel_data.push(channel); } let mut tmp = vec![0_u8; uncompressed.len()]; debug_assert_eq!(tmp_end_index, tmp.len()); let mut remaining_uncompressed_bytes = uncompressed; for y in rectangle.position.y()..rectangle.end().y() { for channel in &mut channel_data { if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; } let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample(); let next_tmp_end_index = channel.tmp_end_index + bytes_per_line; let target = &mut tmp[channel.tmp_end_index..next_tmp_end_index]; channel.tmp_end_index = next_tmp_end_index; // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 // We can support uncompressed data in the machine's native format // if all image channels are of type HALF, and if the Xdr and the // native representations of a half have the same size. if channel.sample_type == SampleType::F16 { // TODO simplify this and make it memcpy on little endian systems // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L640 for mut out_f16_bytes in target.chunks_mut(2) { let native_endian_f16_bits = u16::read_from_native_endian(&mut remaining_uncompressed_bytes).expect("memory read failed"); out_f16_bytes.write_as_little_endian(&native_endian_f16_bits).expect("memory write failed"); } } else { u8::read_slice(&mut remaining_uncompressed_bytes, target) .expect("in-memory read failed"); } } } // Generate a whole buffer that we will crop to proper size once compression is done. let mut b44_compressed = vec![0; std::cmp::max(2048, uncompressed.len())]; let mut b44_end = 0; // Buffer byte index for storing next compressed values. for channel in &channel_data { // U32 and F32 channels are raw copied. if channel.sample_type != SampleType::F16 { debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4); // Raw byte copy. let slice = &tmp[channel.tmp_start_index..channel.tmp_end_index]; slice.iter().copied().for_each(|b| { b44_compressed[b44_end] = b; b44_end += 1; }); continue; } // HALF channel debug_assert_eq!(channel.sample_type, SampleType::F16); debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::()); let x_sample_count = channel.resolution.x() * channel.samples_per_pixel; let y_sample_count = channel.resolution.y() * channel.samples_per_pixel; let x_byte_count = x_sample_count * size_of::(); let cd_start = channel.tmp_start_index; for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) { // // Copy the next 4x4 pixel block into array s. // If the width, cd.nx, or the height, cd.ny, of // the pixel data in _tmpBuffer is not divisible // by 4, then pad the data by repeating the // rightmost column and the bottom row. // // Compute row index in temp buffer. let mut row0 = cd_start + y * x_byte_count; let mut row1 = row0 + x_byte_count; let mut row2 = row1 + x_byte_count; let mut row3 = row2 + x_byte_count; if y + 3 >= y_sample_count { if y + 1 >= y_sample_count { row1 = row0; } if y + 2 >= y_sample_count { row2 = row1; } row3 = row2; } for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) { let mut s = [0u16; 16]; if x + 3 >= x_sample_count { let n = x_sample_count - x; for i in 0..BLOCK_SAMPLE_COUNT { let j = min(i, n - 1) * 2; // TODO: Make [u8; 2] to u16 fast. s[i + 0] = u16::from_ne_bytes([tmp[row0 + j], tmp[row0 + j + 1]]); s[i + 4] = u16::from_ne_bytes([tmp[row1 + j], tmp[row1 + j + 1]]); s[i + 8] = u16::from_ne_bytes([tmp[row2 + j], tmp[row2 + j + 1]]); s[i + 12] = u16::from_ne_bytes([tmp[row3 + j], tmp[row3 + j + 1]]); } } else { memcpy_u8_to_u16(&tmp[row0..(row0 + BLOCK_X_BYTE_COUNT)], &mut s[0..4]); memcpy_u8_to_u16(&tmp[row1..(row1 + BLOCK_X_BYTE_COUNT)], &mut s[4..8]); memcpy_u8_to_u16(&tmp[row2..(row2 + BLOCK_X_BYTE_COUNT)], &mut s[8..12]); memcpy_u8_to_u16(&tmp[row3..(row3 + BLOCK_X_BYTE_COUNT)], &mut s[12..16]); } // Move to next block. row0 += BLOCK_X_BYTE_COUNT; row1 += BLOCK_X_BYTE_COUNT; row2 += BLOCK_X_BYTE_COUNT; row3 += BLOCK_X_BYTE_COUNT; // Compress the contents of array `s` and append the results to the output buffer. if channel.quantize_linearly { convert_from_linear(&mut s); } b44_end += pack( s, &mut b44_compressed[b44_end..(b44_end + 14)], optimize_flat_fields, !channel.quantize_linearly, ); } } } b44_compressed.resize(b44_end, 0); Ok(b44_compressed) } #[cfg(test)] mod test { use crate::compression::b44; use crate::compression::b44::{convert_from_linear, convert_to_linear}; use crate::compression::ByteVec; use crate::image::validate_results::ValidateResult; use crate::meta::attribute::ChannelList; use crate::prelude::f16; use crate::prelude::*; #[test] fn test_convert_from_to_linear() { // Create two identical arrays with random floats. let mut s1 = [0u16; 16]; for i in 0..16 { s1[i] = f16::from_f32(rand::random::()).to_bits(); } let s2 = s1.clone(); // Apply two reversible conversion. convert_from_linear(&mut s1); convert_to_linear(&mut s1); // And check. for (u1, u2) in s1.iter().zip(&s2) { let f1 = f16::from_bits(*u1).to_f64(); let f2 = f16::from_bits(*u2).to_f64(); assert!((f1 - f2).abs() < 0.01); } } fn test_roundtrip_noise_with( channels: ChannelList, rectangle: IntegerBounds, ) -> (ByteVec, ByteVec, ByteVec) { let byte_count = channels .list .iter() .map(|c| { c.subsampled_resolution(rectangle.size).area() * c.sample_type.bytes_per_sample() }) .sum(); assert!(byte_count > 0); let pixel_bytes: ByteVec = (0..byte_count).map(|_| rand::random()).collect(); assert_eq!(pixel_bytes.len(), byte_count); let compressed = b44::compress(&channels, pixel_bytes.clone(), rectangle, true).unwrap(); let decompressed = b44::decompress(&channels, compressed.clone(), rectangle, pixel_bytes.len(), true).unwrap(); assert_eq!(decompressed.len(), pixel_bytes.len()); (pixel_bytes, compressed, decompressed) } #[test] fn roundtrip_noise_f16() { let channel = ChannelDescription { sample_type: SampleType::F16, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }; // Two similar channels. let channels = ChannelList::new(smallvec![channel.clone(), channel]); let rectangle = IntegerBounds { position: Vec2(-30, 100), size: Vec2(322, 731), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); // On my tests, B44 give a size of 44.08% the original data (this assert implies enough // pixels to be relevant). assert_eq!(pixel_bytes.len(), 941528); assert_eq!(compressed.len(), 415044); assert_eq!(decompressed.len(), 941528); } #[test] fn roundtrip_noise_f16_tiny() { let channel = ChannelDescription { sample_type: SampleType::F16, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }; // Two similar channels. let channels = ChannelList::new(smallvec![channel.clone(), channel]); let rectangle = IntegerBounds { position: Vec2(0, 0), size: Vec2(3, 2), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); // B44 being 4 by 4 block, compression is less efficient for tiny images. assert_eq!(pixel_bytes.len(), 24); assert_eq!(compressed.len(), 28); assert_eq!(decompressed.len(), 24); } #[test] fn roundtrip_noise_f32() { let channel = ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }; // Two similar channels. let channels = ChannelList::new(smallvec![channel.clone(), channel]); let rectangle = IntegerBounds { position: Vec2(-30, 100), size: Vec2(322, 731), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); assert_eq!(pixel_bytes.len(), 1883056); assert_eq!(compressed.len(), 1883056); assert_eq!(decompressed.len(), 1883056); assert_eq!(pixel_bytes, decompressed); } #[test] fn roundtrip_noise_f32_tiny() { let channel = ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }; // Two similar channels. let channels = ChannelList::new(smallvec![channel.clone(), channel]); let rectangle = IntegerBounds { position: Vec2(0, 0), size: Vec2(3, 2), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); assert_eq!(pixel_bytes.len(), 48); assert_eq!(compressed.len(), 48); assert_eq!(decompressed.len(), 48); assert_eq!(pixel_bytes, decompressed); } #[test] fn roundtrip_noise_u32() { let channel = ChannelDescription { sample_type: SampleType::U32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }; // Two similar channels. let channels = ChannelList::new(smallvec![channel.clone(), channel]); let rectangle = IntegerBounds { position: Vec2(-30, 100), size: Vec2(322, 731), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); assert_eq!(pixel_bytes.len(), 1883056); assert_eq!(compressed.len(), 1883056); assert_eq!(decompressed.len(), 1883056); assert_eq!(pixel_bytes, decompressed); } #[test] fn roundtrip_noise_u32_tiny() { let channel = ChannelDescription { sample_type: SampleType::U32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }; // Two similar channels. let channels = ChannelList::new(smallvec![channel.clone(), channel]); let rectangle = IntegerBounds { position: Vec2(0, 0), size: Vec2(3, 2), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); assert_eq!(pixel_bytes.len(), 48); assert_eq!(compressed.len(), 48); assert_eq!(decompressed.len(), 48); assert_eq!(pixel_bytes, decompressed); } #[test] fn roundtrip_noise_mix_f32_f16_u32() { let channels = ChannelList::new(smallvec![ ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }, ChannelDescription { sample_type: SampleType::F16, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }, ChannelDescription { sample_type: SampleType::U32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), } ]); let rectangle = IntegerBounds { position: Vec2(-30, 100), size: Vec2(322, 731), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); assert_eq!(pixel_bytes.len(), 2353820); assert_eq!(compressed.len(), 2090578); assert_eq!(decompressed.len(), 2353820); } #[test] fn roundtrip_noise_mix_f32_f16_u32_tiny() { let channels = ChannelList::new(smallvec![ ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }, ChannelDescription { sample_type: SampleType::F16, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), }, ChannelDescription { sample_type: SampleType::U32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1, 1), } ]); let rectangle = IntegerBounds { position: Vec2(0, 0), size: Vec2(3, 2), }; let (pixel_bytes, compressed, decompressed) = test_roundtrip_noise_with(channels, rectangle); assert_eq!(pixel_bytes.len(), 60); assert_eq!(compressed.len(), 62); assert_eq!(decompressed.len(), 60); } #[test] fn border_on_multiview() { // This test is hard to reproduce, so we use the direct image. let path = "tests/images/valid/openexr/MultiView/Adjuster.exr"; let read_image = read() .no_deep_data() .all_resolution_levels() .all_channels() .all_layers() .all_attributes() .non_parallel(); let image = read_image.clone().from_file(path).unwrap(); let mut tmp_bytes = Vec::new(); image .write() .non_parallel() .to_buffered(std::io::Cursor::new(&mut tmp_bytes)) .unwrap(); let image2 = read_image .from_buffered(std::io::Cursor::new(tmp_bytes)) .unwrap(); image.assert_equals_result(&image2); } }