//! 16-bit Huffman compression and decompression. //! Huffman compression and decompression routines written //! by Christian Rouet for his PIZ image file format. // see https://github.com/AcademySoftwareFoundation/openexr/blob/88246d991e0318c043e6f584f7493da08a31f9f8/OpenEXR/IlmImf/ImfHuf.cpp use crate::math::RoundingMode; use crate::error::{Error, Result, UnitResult, u64_to_usize, u32_to_usize}; use crate::io::Data; use std::{ cmp::Ordering, collections::BinaryHeap, io::{Cursor, Read, Write}, }; use std::convert::TryFrom; use smallvec::SmallVec; pub fn decompress(compressed: &[u8], expected_size: usize) -> Result> { let mut remaining_compressed = compressed; let min_code_index = usize::try_from(u32::read(&mut remaining_compressed)?)?; let max_code_index_32 = u32::read(&mut remaining_compressed)?; let _table_size = usize::try_from(u32::read(&mut remaining_compressed)?)?; // TODO check this and return Err? let bit_count = usize::try_from(u32::read(&mut remaining_compressed)?)?; let _skipped = u32::read(&mut remaining_compressed)?; // what is this let max_code_index = usize::try_from(max_code_index_32).unwrap(); if min_code_index >= ENCODING_TABLE_SIZE || max_code_index >= ENCODING_TABLE_SIZE { return Err(Error::invalid(INVALID_TABLE_SIZE)); } if RoundingMode::Up.divide(bit_count, 8) > remaining_compressed.len() { return Err(Error::invalid(NOT_ENOUGH_DATA)); } let encoding_table = read_encoding_table(&mut remaining_compressed, min_code_index, max_code_index)?; if bit_count > 8 * remaining_compressed.len() { return Err(Error::invalid(INVALID_BIT_COUNT)); } let decoding_table = build_decoding_table(&encoding_table, min_code_index, max_code_index)?; let result = decode_with_tables( &encoding_table, &decoding_table, &remaining_compressed, i32::try_from(bit_count)?, max_code_index_32, expected_size, )?; Ok(result) } pub fn compress(uncompressed: &[u16]) -> Result> { if uncompressed.is_empty() { return Ok(vec![]); } let mut frequencies = count_frequencies(uncompressed); let (min_code_index, max_code_index) = build_encoding_table(&mut frequencies); let mut result = Cursor::new(Vec::with_capacity(uncompressed.len())); u32::write_slice(&mut result, &[0; 5])?; // we come back to these later after we know more about the compressed data let table_start = result.position(); pack_encoding_table( &frequencies, min_code_index, max_code_index, &mut result, )?; let data_start = result.position(); let bit_count = encode_with_frequencies( &frequencies, uncompressed, max_code_index, &mut result )?; // write meta data after this result.set_position(0); let table_length = data_start - table_start; u32::try_from(min_code_index)?.write(&mut result)?; u32::try_from(max_code_index)?.write(&mut result)?; u32::try_from(table_length)?.write(&mut result)?; u32::try_from(bit_count)?.write(&mut result)?; 0_u32.write(&mut result)?; Ok(result.into_inner()) } const ENCODE_BITS: u64 = 16; // literal (value) bit length const DECODE_BITS: u64 = 14; // decoding bit size (>= 8) const ENCODING_TABLE_SIZE: usize = ((1 << ENCODE_BITS) + 1) as usize; const DECODING_TABLE_SIZE: usize = (1 << DECODE_BITS) as usize; const DECODE_MASK: u64 = DECODING_TABLE_SIZE as u64 - 1; const SHORT_ZEROCODE_RUN: u64 = 59; const LONG_ZEROCODE_RUN: u64 = 63; const SHORTEST_LONG_RUN: u64 = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; const LONGEST_LONG_RUN: u64 = 255 + SHORTEST_LONG_RUN; #[derive(Clone, Debug, Eq, PartialEq)] enum Code { Empty, Short(ShortCode), Long(SmallVec<[u32; 2]>), // often 2, sometimes 4, rarely 8 } #[derive(Clone, Debug, Eq, PartialEq)] struct ShortCode { value: u32, len: u8, } impl ShortCode { #[inline] fn len(&self) -> u64 { u64::from(self.len) } } /// Decode (uncompress) n bits based on encoding & decoding tables: fn decode_with_tables( encoding_table: &[u64], decoding_table: &[Code], mut input: &[u8], input_bit_count: i32, run_length_code: u32, expected_output_size: usize, ) -> Result> { let mut output = Vec::with_capacity(expected_output_size); let mut code_bits = 0_u64; let mut code_bit_count = 0_u64; while input.len() > 0 { read_byte(&mut code_bits, &mut code_bit_count, &mut input)?; // Access decoding table while code_bit_count >= DECODE_BITS { let code_index = (code_bits >> (code_bit_count - DECODE_BITS)) & DECODE_MASK; let code = &decoding_table[u64_to_usize(code_index)]; // Get short code if let Code::Short(code) = code { code_bit_count -= code.len(); read_code_into_vec( code.value, run_length_code, &mut code_bits, &mut code_bit_count, &mut input, &mut output, expected_output_size, )?; } else if let Code::Long(ref long_codes) = code { debug_assert_ne!(long_codes.len(), 0); let long_code = long_codes.iter() .filter_map(|&long_code|{ let encoded_long_code = encoding_table[u32_to_usize(long_code)]; let length = length(encoded_long_code); while code_bit_count < length && input.len() > 0 { let err = read_byte(&mut code_bits, &mut code_bit_count, &mut input); if let Err(err) = err { return Some(Err(err)); } } if code_bit_count >= length { let required_code = (code_bits >> (code_bit_count - length)) & ((1 << length) - 1); if self::code(encoded_long_code) == required_code { code_bit_count -= length; return Some(Ok(long_code)); } } None }) .next() .ok_or(Error::invalid(INVALID_CODE))?; read_code_into_vec( long_code?, run_length_code, &mut code_bits, &mut code_bit_count, &mut input, &mut output, expected_output_size, )?; } else { return Err(Error::invalid(INVALID_CODE)); } } } let count = u64::try_from((8 - input_bit_count) & 7)?; code_bits >>= count; code_bit_count -= count; while code_bit_count > 0 { let index = (code_bits << (DECODE_BITS - code_bit_count)) & DECODE_MASK; let code = &decoding_table[u64_to_usize(index)]; if let Code::Short(short_code) = code { if short_code.len() > code_bit_count { return Err(Error::invalid("code")) }; // FIXME why does this happen?? code_bit_count -= short_code.len(); // FIXME may throw "attempted to subtract with overflow" read_code_into_vec( short_code.value, run_length_code, &mut code_bits, &mut code_bit_count, &mut input, &mut output, expected_output_size, )?; } else { return Err(Error::invalid(INVALID_CODE)); } } if output.len() != expected_output_size { return Err(Error::invalid(NOT_ENOUGH_DATA)); } Ok(output) } /// Build a decoding hash table based on the encoding table code: /// - short codes (<= HUF_DECBITS) are resolved with a single table access; /// - long code entry allocations are not optimized, because long codes are /// unfrequent; /// - decoding tables are used by hufDecode(); fn build_decoding_table( encoding_table: &[u64], min_code_index: usize, max_code_index: usize, ) -> Result> { let mut decoding_table = vec![Code::Empty; DECODING_TABLE_SIZE]; // not an array because of code not being copy for (code_index, &encoded_code) in encoding_table[..= max_code_index].iter().enumerate().skip(min_code_index) { let code_index = u32::try_from(code_index).unwrap(); let code = code(encoded_code); let length = length(encoded_code); if code >> length != 0 { return Err(Error::invalid(INVALID_TABLE_ENTRY)); } if length > DECODE_BITS { let long_code = &mut decoding_table[u64_to_usize(code >> (length - DECODE_BITS))]; match long_code { Code::Empty => *long_code = Code::Long(smallvec![code_index]), Code::Long(lits) => lits.push(code_index), _ => { return Err(Error::invalid(INVALID_TABLE_ENTRY)); } } } else if length != 0 { let default_value = Code::Short(ShortCode { value: code_index, len: length as u8, }); let start_index = u64_to_usize(code << (DECODE_BITS - length)); let count = u64_to_usize(1 << (DECODE_BITS - length)); for value in &mut decoding_table[start_index .. start_index + count] { *value = default_value.clone(); } } } Ok(decoding_table) } /// Run-length-decompresses all zero runs from the packed table to the encoding table fn read_encoding_table( packed: &mut impl Read, min_code_index: usize, max_code_index: usize, ) -> Result> { let mut code_bits = 0_u64; let mut code_bit_count = 0_u64; // TODO push() into encoding table instead of index stuff? let mut encoding_table = vec![0_u64; ENCODING_TABLE_SIZE]; let mut code_index = min_code_index; while code_index <= max_code_index { let code_len = read_bits(6, &mut code_bits, &mut code_bit_count, packed)?; encoding_table[code_index] = code_len; if code_len == LONG_ZEROCODE_RUN { let zerun_bits = read_bits(8, &mut code_bits, &mut code_bit_count, packed)?; let zerun = usize::try_from(zerun_bits + SHORTEST_LONG_RUN).unwrap(); if code_index + zerun > max_code_index + 1 { return Err(Error::invalid(TABLE_TOO_LONG)); } for value in &mut encoding_table[code_index..code_index + zerun] { *value = 0; } code_index += zerun; } else if code_len >= SHORT_ZEROCODE_RUN { let duplication_count = usize::try_from(code_len - SHORT_ZEROCODE_RUN + 2).unwrap(); if code_index + duplication_count > max_code_index + 1 { return Err(Error::invalid(TABLE_TOO_LONG)); } for value in &mut encoding_table[code_index .. code_index + duplication_count] { *value = 0; } code_index += duplication_count; } else { code_index += 1; } } build_canonical_table(&mut encoding_table); Ok(encoding_table) } // TODO Use BitStreamReader for all the bit reads?! #[inline] fn read_bits( count: u64, code_bits: &mut u64, code_bit_count: &mut u64, input: &mut impl Read, ) -> Result { while *code_bit_count < count { read_byte(code_bits, code_bit_count, input)?; } *code_bit_count -= count; Ok((*code_bits >> *code_bit_count) & ((1 << count) - 1)) } #[inline] fn read_byte(code_bits: &mut u64, bit_count: &mut u64, input: &mut impl Read) -> UnitResult { *code_bits = (*code_bits << 8) | u8::read(input)? as u64; *bit_count += 8; Ok(()) } #[inline] fn read_code_into_vec( code: u32, run_length_code: u32, code_bits: &mut u64, code_bit_count: &mut u64, read: &mut impl Read, out: &mut Vec, max_len: usize, ) -> UnitResult { if code == run_length_code { // code may be too large for u16 if *code_bit_count < 8 { read_byte(code_bits, code_bit_count, read)?; } *code_bit_count -= 8; let code_repetitions = usize::from((*code_bits >> *code_bit_count) as u8); if out.len() + code_repetitions > max_len { return Err(Error::invalid(TOO_MUCH_DATA)); } else if out.is_empty() { return Err(Error::invalid(NOT_ENOUGH_DATA)); } let repeated_code = *out.last().unwrap(); out.extend(std::iter::repeat(repeated_code).take(code_repetitions)); } else if out.len() < max_len { // implies that code is not larger than u16??? out.push(u16::try_from(code)?); } else { return Err(Error::invalid(TOO_MUCH_DATA)); } Ok(()) } fn count_frequencies(data: &[u16]) -> Vec { let mut frequencies = vec![0_u64; ENCODING_TABLE_SIZE]; for value in data { frequencies[*value as usize] += 1; } frequencies } fn write_bits( count: u64, bits: u64, code_bits: &mut u64, code_bit_count: &mut u64, mut out: impl Write, ) -> UnitResult { *code_bits = (*code_bits << count) | bits; *code_bit_count += count; while *code_bit_count >= 8 { *code_bit_count -= 8; out.write(&[ (*code_bits >> *code_bit_count) as u8 // TODO make sure never or always wraps? ])?; } Ok(()) } fn write_code(scode: u64, code_bits: &mut u64, code_bit_count: &mut u64, mut out: impl Write) -> UnitResult { write_bits(length(scode), code(scode), code_bits, code_bit_count, &mut out) } #[inline(always)] fn send_code( scode: u64, run_count: u64, run_code: u64, code_bits: &mut u64, code_bit_count: &mut u64, mut out: impl Write, ) -> UnitResult { // Output a run of runCount instances of the symbol sCount. // Output the symbols explicitly, or if that is shorter, output // the sCode symbol once followed by a runCode symbol and runCount // expressed as an 8-bit number. if length(scode) + length(run_code) + 8 < length(scode) * run_count { write_code(scode, code_bits, code_bit_count, &mut out)?; write_code(run_code, code_bits, code_bit_count, &mut out)?; write_bits(8, run_count, code_bits, code_bit_count, &mut out)?; } else { for _ in 0 ..= run_count { write_code(scode, code_bits, code_bit_count, &mut out)?; } } Ok(()) } fn encode_with_frequencies( frequencies: &[u64], uncompressed: &[u16], run_length_code: usize, mut out: &mut Cursor>, ) -> Result { let mut code_bits = 0; let mut code_bit_count = 0; let mut run_start_value = uncompressed[0]; let mut run_length = 0; let start_position = out.position(); // Loop on input values for ¤t_value in &uncompressed[1..] { // Count same values or send code if run_start_value == current_value && run_length < 255 { run_length += 1; } else { send_code( frequencies[run_start_value as usize], run_length, frequencies[run_length_code], &mut code_bits, &mut code_bit_count, &mut out, )?; run_length = 0; } run_start_value = current_value; } // Send remaining code send_code( frequencies[run_start_value as usize], run_length, frequencies[run_length_code], &mut code_bits, &mut code_bit_count, &mut out, )?; let data_length = out.position() - start_position; // we shouldn't count the last byte write if code_bit_count != 0 { out.write(&[ (code_bits << (8 - code_bit_count) & 0xff) as u8 ])?; } Ok(data_length * 8 + code_bit_count) } /// /// Pack an encoding table: /// - only code lengths, not actual codes, are stored /// - runs of zeroes are compressed as follows: /// /// unpacked packed /// -------------------------------- /// 1 zero 0 (6 bits) /// 2 zeroes 59 /// 3 zeroes 60 /// 4 zeroes 61 /// 5 zeroes 62 /// n zeroes (6 or more) 63 n-6 (6 + 8 bits) /// fn pack_encoding_table( frequencies: &[u64], min_index: usize, max_index: usize, mut out: &mut Cursor>, ) -> UnitResult { let mut code_bits = 0_u64; let mut code_bit_count = 0_u64; let mut frequency_index = min_index; while frequency_index <= max_index { // TODO slice iteration? let code_length = length(frequencies[frequency_index]); if code_length == 0 { let mut zero_run = 1; while frequency_index < max_index && zero_run < LONGEST_LONG_RUN { if length(frequencies[frequency_index + 1]) > 0 { break; } frequency_index += 1; zero_run += 1; } if zero_run >= 2 { if zero_run >= SHORTEST_LONG_RUN { write_bits(6, LONG_ZEROCODE_RUN, &mut code_bits, &mut code_bit_count, &mut out)?; write_bits(8, zero_run - SHORTEST_LONG_RUN, &mut code_bits, &mut code_bit_count, &mut out)?; } else { write_bits(6, SHORT_ZEROCODE_RUN + zero_run - 2, &mut code_bits, &mut code_bit_count, &mut out)?; } frequency_index += 1; // we must increment or else this may go very wrong continue; } } write_bits(6, code_length, &mut code_bits, &mut code_bit_count, &mut out)?; frequency_index += 1; } if code_bit_count > 0 { out.write(&[ (code_bits << (8 - code_bit_count)) as u8 ])?; } Ok(()) } /// Build a "canonical" Huffman code table: /// - for each (uncompressed) symbol, code contains the length /// of the corresponding code (in the compressed data) /// - canonical codes are computed and stored in code /// - the rules for constructing canonical codes are as follows: /// * shorter codes (if filled with zeroes to the right) /// have a numerically higher value than longer codes /// * for codes with the same length, numerical values /// increase with numerical symbol values /// - because the canonical code table can be constructed from /// symbol lengths alone, the code table can be transmitted /// without sending the actual code values /// - see http://www.compressconsult.com/huffman/ fn build_canonical_table(code_table: &mut [u64]) { debug_assert_eq!(code_table.len(), ENCODING_TABLE_SIZE); let mut count_per_code = [0_u64; 59]; for &code in code_table.iter() { count_per_code[u64_to_usize(code)] += 1; } // For each i from 58 through 1, compute the // numerically lowest code with length i, and // store that code in n[i]. { let mut code = 0_u64; // TODO use foldr? for count in &mut count_per_code.iter_mut().rev() { let next_code = (code + *count) >> 1; *count = code; code = next_code; } } // code[i] contains the length, l, of the // code for symbol i. Assign the next available // code of length l to the symbol and store both // l and the code in code[i]. // TODO iter + filter ? for symbol_length in code_table.iter_mut() { let current_length = *symbol_length; let code_index = u64_to_usize(current_length); if current_length > 0 { *symbol_length = current_length | (count_per_code[code_index] << 6); count_per_code[code_index] += 1; } } } /// Compute Huffman codes (based on frq input) and store them in frq: /// - code structure is : [63:lsb - 6:msb] | [5-0: bit length]; /// - max code length is 58 bits; /// - codes outside the range [im-iM] have a null length (unused values); /// - original frequencies are destroyed; /// - encoding tables are used by hufEncode() and hufBuildDecTable(); /// /// NB: The following code "(*a == *b) && (a > b))" was added to ensure /// elements in the heap with the same value are sorted by index. /// This is to ensure, the STL make_heap()/pop_heap()/push_heap() methods /// produced a resultant sorted heap that is identical across OSes. fn build_encoding_table( frequencies: &mut [u64], // input frequencies, output encoding table ) -> (usize, usize) // return frequency max min range { debug_assert_eq!(frequencies.len(), ENCODING_TABLE_SIZE); /// Frequency with position, used for MinHeap. #[derive(Eq, PartialEq, Copy, Clone)] struct HeapFrequency { position: usize, frequency: u64, } impl Ord for HeapFrequency { fn cmp(&self, other: &Self) -> Ordering { other.frequency.cmp(&self.frequency) .then_with(|| other.position.cmp(&self.position)) } } impl PartialOrd for HeapFrequency { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } // This function assumes that when it is called, array frq // indicates the frequency of all possible symbols in the data // that are to be Huffman-encoded. (frq[i] contains the number // of occurrences of symbol i in the data.) // // The loop below does three things: // // 1) Finds the minimum and maximum indices that point // to non-zero entries in frq: // // frq[im] != 0, and frq[i] == 0 for all i < im // frq[iM] != 0, and frq[i] == 0 for all i > iM // // 2) Fills array fHeap with pointers to all non-zero // entries in frq. // // 3) Initializes array hlink such that hlink[i] == i // for all array entries. // We need to use vec here or we overflow the stack. let mut links = vec![0_usize; ENCODING_TABLE_SIZE]; let mut frequency_heap = vec![0_usize; ENCODING_TABLE_SIZE]; // This is a good solution since we don't have usize::MAX items (no panics or UB), // and since this is short-circuit, it stops at the first in order non zero element. let min_frequency_index = frequencies.iter().position(|f| *f != 0).unwrap_or(0); let mut max_frequency_index = 0; let mut frequency_count = 0; // assert bounds check to optimize away bounds check in loops assert!(links.len() >= ENCODING_TABLE_SIZE); assert!(frequencies.len() >= ENCODING_TABLE_SIZE); for index in min_frequency_index..ENCODING_TABLE_SIZE { links[index] = index; // TODO for x in links.iter().enumerate() if frequencies[index] != 0 { frequency_heap[frequency_count] = index; max_frequency_index = index; frequency_count += 1; } } // Add a pseudo-symbol, with a frequency count of 1, to frq; // adjust the fHeap and hlink array accordingly. Function // hufEncode() uses the pseudo-symbol for run-length encoding. max_frequency_index += 1; frequencies[max_frequency_index] = 1; frequency_heap[frequency_count] = max_frequency_index; frequency_count += 1; // Build an array, scode, such that scode[i] contains the number // of bits assigned to symbol i. Conceptually this is done by // constructing a tree whose leaves are the symbols with non-zero // frequency: // // Make a heap that contains all symbols with a non-zero frequency, // with the least frequent symbol on top. // // Repeat until only one symbol is left on the heap: // // Take the two least frequent symbols off the top of the heap. // Create a new node that has first two nodes as children, and // whose frequency is the sum of the frequencies of the first // two nodes. Put the new node back into the heap. // // The last node left on the heap is the root of the tree. For each // leaf node, the distance between the root and the leaf is the length // of the code for the corresponding symbol. // // The loop below doesn't actually build the tree; instead we compute // the distances of the leaves from the root on the fly. When a new // node is added to the heap, then that node's descendants are linked // into a single linear list that starts at the new node, and the code // lengths of the descendants (that is, their distance from the root // of the tree) are incremented by one. let mut heap = BinaryHeap::with_capacity(frequency_count); for index in frequency_heap.drain(..frequency_count) { heap.push(HeapFrequency { position: index, frequency: frequencies[index] }); } let mut s_code = vec![0_u64; ENCODING_TABLE_SIZE]; while frequency_count > 1 { // Find the indices, mm and m, of the two smallest non-zero frq // values in fHeap, add the smallest frq to the second-smallest // frq, and remove the smallest frq value from fHeap. let (high_position, low_position) = { let smallest_frequency = heap.pop().expect("heap empty bug"); frequency_count -= 1; let mut second_smallest_frequency = heap.peek_mut().expect("heap empty bug"); second_smallest_frequency.frequency += smallest_frequency.frequency; (second_smallest_frequency.position, smallest_frequency.position) }; // The entries in scode are linked into lists with the // entries in hlink serving as "next" pointers and with // the end of a list marked by hlink[j] == j. // // Traverse the lists that start at scode[m] and scode[mm]. // For each element visited, increment the length of the // corresponding code by one bit. (If we visit scode[j] // during the traversal, then the code for symbol j becomes // one bit longer.) // // Merge the lists that start at scode[m] and scode[mm] // into a single list that starts at scode[m]. // Add a bit to all codes in the first list. let mut index = high_position; // TODO fold() loop { s_code[index] += 1; debug_assert!(s_code[index] <= 58); // merge the two lists if links[index] == index { links[index] = low_position; break; } index = links[index]; } // Add a bit to all codes in the second list let mut index = low_position; // TODO fold() loop { s_code[index] += 1; debug_assert!(s_code[index] <= 58); if links[index] == index { break; } index = links[index]; } } // Build a canonical Huffman code table, replacing the code // lengths in scode with (code, code length) pairs. Copy the // code table from scode into frq. build_canonical_table(&mut s_code); frequencies.copy_from_slice(&s_code); (min_frequency_index, max_frequency_index) } #[inline] fn length(code: u64) -> u64 { code & 63 } #[inline] fn code(code: u64) -> u64 { code >> 6 } const INVALID_BIT_COUNT: &'static str = "invalid number of bits"; const INVALID_TABLE_ENTRY: &'static str = "invalid code table entry"; const NOT_ENOUGH_DATA: &'static str = "decoded data are shorter than expected"; const INVALID_TABLE_SIZE: &'static str = "unexpected end of code table data"; const TABLE_TOO_LONG: &'static str = "code table is longer than expected"; const INVALID_CODE: &'static str = "invalid code"; const TOO_MUCH_DATA: &'static str = "decoded data are longer than expected"; #[cfg(test)] mod test { use super::*; use rand::{Rng, SeedableRng}; const UNCOMPRESSED_ARRAY: [u16; 100] = [ 3852, 2432, 33635, 49381, 10100, 15095, 62693, 63738, 62359, 5013, 7715, 59875, 28182, 34449, 19983, 20399, 63407, 29486, 4877, 26738, 44815, 14042, 46091, 48228, 25682, 35412, 7582, 65069, 6632, 54124, 13798, 27503, 52154, 61961, 30474, 46880, 39097, 15754, 52897, 42371, 54053, 14178, 48276, 34591, 42602, 32126, 42062, 31474, 16274, 55991, 2882, 17039, 56389, 20835, 57057, 54081, 3414, 33957, 52584, 10222, 25139, 40002, 44980, 1602, 48021, 19703, 6562, 61777, 41582, 201, 31253, 51790, 15888, 40921, 3627, 12184, 16036, 26349, 3159, 29002, 14535, 50632, 18118, 33583, 18878, 59470, 32835, 9347, 16991, 21303, 26263, 8312, 14017, 41777, 43240, 3500, 60250, 52437, 45715, 61520, ]; const UNCOMPRESSED_ARRAY_SPECIAL: [u16; 100] = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28182, 0, 65534, 0, 65534, 0, 65534, 0, 65534, 0, 0, 0, 0, 0, 0, 0, 0, 54124, 13798, 27503, 52154, 61961, 30474, 46880, 39097, 15754, 52897, 42371, 54053, 14178, 48276, 34591, 42602, 32126, 42062, 31474, 16274, 55991, 2882, 17039, 56389, 20835, 57057, 54081, 3414, 33957, 52584, 10222, 25139, 40002, 44980, 1602, 48021, 19703, 6562, 61777, 41582, 201, 31253, 51790, 15888, 40921, 3627, 12184, 16036, 26349, 3159, 29002, 14535, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534, ]; const COMPRESSED_ARRAY: [u8; 703] = [ 0xc9, 0x0, 0x0, 0x0, 0x2e, 0xfe, 0x0, 0x0, 0x56, 0x2, 0x0, 0x0, 0xa2, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd6, 0x47, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28, 0x1f, 0xff, 0xff, 0xed, 0x87, 0xff, 0xff, 0xf0, 0x91, 0xff, 0xf8, 0x1f, 0xf4, 0xf1, 0xff, 0x78, 0x1f, 0xfd, 0xa1, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa, 0xc7, 0xfe, 0x4, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed, 0x1f, 0xf3, 0xf1, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe8, 0x7, 0xfd, 0xf8, 0x7f, 0xff, 0xff, 0xff, 0xfd, 0x10, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x51, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x1, 0xff, 0x73, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0xa4, 0x7f, 0xf5, 0x7, 0xfc, 0x48, 0x7f, 0xe0, 0x47, 0xff, 0xff, 0xf5, 0x91, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xf1, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x21, 0xff, 0x7f, 0x1f, 0xf8, 0xd1, 0xff, 0xe7, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xbc, 0x1f, 0xf2, 0x91, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1c, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xe7, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x8c, 0x7f, 0xff, 0xff, 0xc, 0x1f, 0xff, 0xff, 0xe5, 0x7, 0xff, 0xff, 0xfa, 0x81, 0xff, 0xff, 0xff, 0x20, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xbc, 0x7f, 0xff, 0xff, 0xff, 0xfc, 0x38, 0x7f, 0xff, 0xff, 0xff, 0xfc, 0xd0, 0x7f, 0xd3, 0xc7, 0xff, 0xff, 0xf7, 0x91, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xc1, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x61, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc7, 0x87, 0xff, 0xff, 0xfd, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x87, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x87, 0xff, 0x58, 0x7f, 0xff, 0xff, 0xff, 0xfd, 0xec, 0x7f, 0xff, 0xff, 0xff, 0xfe, 0xd0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0x6c, 0x7f, 0xcb, 0x47, 0xff, 0xff, 0xf3, 0x61, 0xff, 0xff, 0xff, 0x80, 0x7f, 0xe1, 0xc7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x18, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xcc, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x11, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x41, 0xff, 0xbc, 0x1f, 0xff, 0xff, 0xc4, 0x47, 0xff, 0xff, 0xf2, 0x91, 0xff, 0xe0, 0x1f, 0xff, 0xff, 0xff, 0xff, 0x6d, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x2, 0x1f, 0xf9, 0xe1, 0xff, 0xff, 0xff, 0xff, 0xfc, 0xe1, 0xff, 0xff, 0xfd, 0xb0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5a, 0x1f, 0xfc, 0x81, 0xbf, 0x29, 0x1b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x61, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc8, 0x1b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xb1, 0xbf, 0xff, 0xfd, 0x80, 0x6f, 0xff, 0xff, 0xf, 0x1b, 0xf8, 0xc1, 0xbf, 0xff, 0xfc, 0xb4, 0x6f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xda, 0x46, 0xfc, 0x54, 0x6f, 0xc9, 0x6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x21, 0x1b, 0xff, 0xff, 0xe0, 0x86, 0xff, 0xff, 0xff, 0xff, 0xe2, 0xc6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x91, 0xbf, 0xff, 0xfe, 0x24, 0x6f, 0xff, 0xff, 0x6b, 0x1b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xb1, 0xbf, 0xfa, 0x1b, 0xfb, 0x11, 0xbf, 0xff, 0xfe, 0x8, 0x6f, 0xff, 0xff, 0x42, 0x1b, 0xff, 0xff, 0xff, 0xff, 0xb9, 0x1b, 0xff, 0xff, 0xcf, 0xc6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x31, 0x86, 0x10, 0x9, 0xb4, 0xe4, 0x4c, 0xf7, 0xef, 0x42, 0x87, 0x6a, 0xb5, 0xc2, 0x34, 0x9e, 0x2f, 0x12, 0xae, 0x21, 0x68, 0xf2, 0xa8, 0x74, 0x37, 0xe1, 0x98, 0x14, 0x59, 0x57, 0x2c, 0x24, 0x3b, 0x35, 0x6c, 0x1b, 0x8b, 0xcc, 0xe6, 0x13, 0x38, 0xc, 0x8e, 0xe2, 0xc, 0xfe, 0x49, 0x73, 0xbc, 0x2b, 0x7b, 0x9, 0x27, 0x79, 0x14, 0xc, 0x94, 0x42, 0xf8, 0x7c, 0x1, 0x8d, 0x26, 0xde, 0x87, 0x26, 0x71, 0x50, 0x45, 0xc6, 0x28, 0x40, 0xd5, 0xe, 0x8d, 0x8, 0x1e, 0x4c, 0xa4, 0x79, 0x57, 0xf0, 0xc3, 0x6d, 0x5c, 0x6d, 0xc0, ]; fn fill(rng: &mut impl Rng, size: usize) -> Vec { if rng.gen_bool(0.2) { let value = if rng.gen_bool(0.5) { 0 } else { u16::MAX }; return vec![ value; size ]; } let mut data = vec![0_u16; size]; data.iter_mut().for_each(|v| { *v = rng.gen_range(0_u16 .. u16::MAX); }); data } /// Test using both input and output from a custom ILM OpenEXR test. #[test] fn compression_comparation() { let raw = compress(&UNCOMPRESSED_ARRAY).unwrap(); assert_eq!(raw, COMPRESSED_ARRAY.to_vec()); } #[test] fn round_trip() { let mut random = rand::rngs::StdRng::from_seed(SEED); let raw = fill(&mut random, u16::MAX as usize); let compressed = compress(&raw).unwrap(); let uncompressed = decompress(&compressed, raw.len()).unwrap(); assert_eq!(uncompressed, raw); } #[test] fn repetitions_special() { let raw = UNCOMPRESSED_ARRAY_SPECIAL; let compressed = compress(&raw).unwrap(); let uncompressed = decompress(&compressed, raw.len()).unwrap(); assert_eq!(uncompressed, raw.to_vec()); } #[test] fn round_trip100() { let mut random = rand::rngs::StdRng::from_seed(SEED); for size_multiplier in 1..10 { let raw = fill(&mut random, size_multiplier * 50_000); let compressed = compress(&raw).unwrap(); let uncompressed = decompress(&compressed, raw.len()).unwrap(); assert_eq!(uncompressed, raw); } } #[test] fn test_zeroes(){ let uncompressed: &[u16] = &[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; let compressed = compress(uncompressed).unwrap(); let decompressed = decompress(&compressed, uncompressed.len()).unwrap(); assert_eq!(uncompressed, decompressed.as_slice()); } const SEED: [u8; 32] = [ 12,155,32,34,112,109,98,54, 12,255,32,34,112,109,98,55, 12,155,32,34,12,109,98,54, 12,35,32,34,112,109,48,54, ]; }