//! The PIZ compression method is a wavelet compression, //! based on the PIZ image format, customized for OpenEXR. // inspired by https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPizCompressor.cpp mod huffman; mod wavelet; use crate::prelude::*; use crate::io::Data; use crate::meta::attribute::*; use crate::compression::{ByteVec, Bytes, mod_p}; use crate::error::{usize_to_i32, usize_to_u16}; use std::convert::TryFrom; const U16_RANGE: usize = (1_i32 << 16_i32) as usize; const BITMAP_SIZE: usize = (U16_RANGE as i32 >> 3_i32) as usize; #[derive(Debug)] struct ChannelData { tmp_start_index: usize, tmp_end_index: usize, resolution: Vec2, y_sampling: usize, samples_per_pixel: usize, } pub fn decompress( channels: &ChannelList, compressed: ByteVec, rectangle: IntegerBounds, expected_byte_size: usize, // TODO remove expected byte size as it can be computed with `rectangle.size.area() * channels.bytes_per_pixel` pedantic: bool ) -> Result { let expected_u16_count = expected_byte_size / 2; debug_assert_eq!(expected_byte_size, rectangle.size.area() * channels.bytes_per_pixel); debug_assert!(!channels.list.is_empty()); if compressed.is_empty() { return Ok(Vec::new()); } debug_assert_ne!(expected_u16_count, 0); let mut bitmap = vec![0_u8; BITMAP_SIZE]; // FIXME use bit_vec! let mut remaining_input = compressed.as_slice(); let min_non_zero = u16::read(&mut remaining_input)? as usize; let max_non_zero = u16::read(&mut remaining_input)? as usize; if max_non_zero >= BITMAP_SIZE || min_non_zero >= BITMAP_SIZE { return Err(Error::invalid("compression data")); } if min_non_zero <= max_non_zero { u8::read_slice(&mut remaining_input, &mut bitmap[min_non_zero ..= max_non_zero])?; } let (lookup_table, max_value) = reverse_lookup_table_from_bitmap(&bitmap); { let length = i32::read(&mut remaining_input)?; if pedantic && length as i64 != remaining_input.len() as i64 { // TODO length might be smaller than remaining?? return Err(Error::invalid("compression data")); } } let mut tmp_u16_buffer = huffman::decompress(remaining_input, expected_u16_count)?; let mut channel_data: SmallVec<[ChannelData; 6]> = { let mut tmp_read_index = 0; let channel_data = channels.list.iter().map(|channel| { let channel_data = ChannelData { tmp_start_index: tmp_read_index, tmp_end_index: tmp_read_index, y_sampling: channel.sampling.y(), resolution: channel.subsampled_resolution(rectangle.size), samples_per_pixel: channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample() }; tmp_read_index += channel_data.resolution.area() * channel_data.samples_per_pixel; channel_data }).collect(); debug_assert_eq!(tmp_read_index, expected_u16_count); channel_data }; for channel in &channel_data { let u16_count = channel.resolution.area() * channel.samples_per_pixel; let u16s = &mut tmp_u16_buffer[channel.tmp_start_index .. channel.tmp_start_index + u16_count]; for offset in 0..channel.samples_per_pixel { // if channel is 32 bit, compress interleaved as two 16 bit values wavelet::decode( &mut u16s[offset..], channel.resolution, Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel), max_value )?; } } // Expand the pixel data to their original range apply_lookup_table(&mut tmp_u16_buffer, &lookup_table); // let out_buffer_size = (max_scan_line_size * scan_line_count) + 65536 + 8192; // TODO not use expected byte size? let mut out = Vec::with_capacity(expected_byte_size); for y in rectangle.position.y() .. rectangle.end().y() { for channel in &mut channel_data { if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; } let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel; let next_tmp_end_index = channel.tmp_end_index + u16s_per_line; let values = &tmp_u16_buffer[channel.tmp_end_index .. next_tmp_end_index]; channel.tmp_end_index = next_tmp_end_index; // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 // We can support uncompressed data in the machine's native format // if all image channels are of type HALF, and if the Xdr and the // native representations of a half have the same size. u16::write_slice(&mut out, values).expect("write to in-memory failed"); } } for (previous, current) in channel_data.iter().zip(channel_data.iter().skip(1)) { debug_assert_eq!(previous.tmp_end_index, current.tmp_start_index); } debug_assert_eq!(channel_data.last().unwrap().tmp_end_index, tmp_u16_buffer.len()); debug_assert_eq!(out.len(), expected_byte_size); // TODO optimize for when all channels are f16! // we should be able to omit endianness conversions in that case // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 Ok(super::convert_little_endian_to_current(out, channels, rectangle)) } pub fn compress( channels: &ChannelList, uncompressed: ByteVec, rectangle: IntegerBounds ) -> Result { if uncompressed.is_empty() { return Ok(Vec::new()); } // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle); let uncompressed = uncompressed.as_slice();// TODO no alloc let mut tmp = vec![0_u16; uncompressed.len() / 2 ]; let mut channel_data: SmallVec<[ChannelData; 6]> = { let mut tmp_end_index = 0; let vec = channels.list.iter().map(|channel| { let number_samples = channel.subsampled_resolution(rectangle.size); let byte_size = channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample(); let byte_count = byte_size * number_samples.area(); let channel = ChannelData { tmp_end_index, tmp_start_index: tmp_end_index, y_sampling: channel.sampling.y(), resolution: number_samples, samples_per_pixel: byte_size, }; tmp_end_index += byte_count; channel }).collect(); debug_assert_eq!(tmp_end_index, tmp.len()); vec }; let mut remaining_uncompressed_bytes = uncompressed; for y in rectangle.position.y() .. rectangle.end().y() { for channel in &mut channel_data { if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; } let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel; let next_tmp_end_index = channel.tmp_end_index + u16s_per_line; let target = &mut tmp[channel.tmp_end_index .. next_tmp_end_index]; channel.tmp_end_index = next_tmp_end_index; // TODO do not convert endianness for f16-only images // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 // We can support uncompressed data in the machine's native format // if all image channels are of type HALF, and if the Xdr and the // native representations of a half have the same size. u16::read_slice(&mut remaining_uncompressed_bytes, target).expect("in-memory read failed"); } } let (min_non_zero, max_non_zero, bitmap) = bitmap_from_data(&tmp); let (max_value, table) = forward_lookup_table_from_bitmap(&bitmap); apply_lookup_table(&mut tmp, &table); let mut piz_compressed = Vec::with_capacity(uncompressed.len() / 2); u16::try_from(min_non_zero)?.write(&mut piz_compressed)?; u16::try_from(max_non_zero)?.write(&mut piz_compressed)?; if min_non_zero <= max_non_zero { piz_compressed.extend_from_slice(&bitmap[min_non_zero ..= max_non_zero]); } for channel in channel_data { for offset in 0 .. channel.samples_per_pixel { wavelet::encode( &mut tmp[channel.tmp_start_index + offset .. channel.tmp_end_index], channel.resolution, Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel), max_value )?; } } let huffman_compressed: Vec = huffman::compress(&tmp)?; u8::write_i32_sized_slice(&mut piz_compressed, &huffman_compressed).expect("in-memory write failed"); Ok(piz_compressed) } pub fn bitmap_from_data(data: &[u16]) -> (usize, usize, Vec) { let mut bitmap = vec![0_u8; BITMAP_SIZE]; for value in data { bitmap[*value as usize >> 3] |= 1 << (*value as u8 & 7); } bitmap[0] = bitmap[0] & !1; // zero is not explicitly stored in the bitmap; we assume that the data always contain zeroes let min_index = bitmap.iter().position(|&value| value != 0); let max_index = min_index.map(|min| // only if min was found min + bitmap[min..].iter().rposition(|&value| value != 0).expect("[min] not found") ); (min_index.unwrap_or(0), max_index.unwrap_or(0), bitmap) } pub fn forward_lookup_table_from_bitmap(bitmap: &[u8]) -> (u16, Vec) { debug_assert_eq!(bitmap.len(), BITMAP_SIZE); let mut table = vec![0_u16; U16_RANGE]; let mut count = 0_usize; for (index, entry) in table.iter_mut().enumerate() { if index == 0 || bitmap[index >> 3] as usize & (1 << (index & 7)) != 0 { *entry = usize_to_u16(count).unwrap(); count += 1; } } (usize_to_u16(count - 1).unwrap(), table) } fn reverse_lookup_table_from_bitmap(bitmap: Bytes<'_>) -> (Vec, u16) { let mut table = Vec::with_capacity(U16_RANGE); for index in 0 .. U16_RANGE { // cannot use iter because filter removes capacity sizehint if index == 0 || ((bitmap[index >> 3] as usize & (1 << (index & 7))) != 0) { table.push(usize_to_u16(index).unwrap()); } } debug_assert!(!table.is_empty()); let max_value = usize_to_u16(table.len() - 1).unwrap(); // fill remaining up to u16 range assert!(table.len() <= U16_RANGE); table.resize(U16_RANGE, 0); (table, max_value) } fn apply_lookup_table(data: &mut [u16], table: &[u16]) { for data in data { *data = table[*data as usize]; } } #[cfg(test)] mod test { use crate::prelude::*; use crate::compression::ByteVec; use crate::compression::piz; use crate::meta::attribute::*; fn test_roundtrip_noise_with(channels: ChannelList, rectangle: IntegerBounds){ let pixel_bytes: ByteVec = (0 .. 37).map(|_| rand::random()).collect::>().into_iter() .cycle().take(channels.bytes_per_pixel * rectangle.size.area()) .collect(); let compressed = piz::compress(&channels, pixel_bytes.clone(), rectangle).unwrap(); let decompressed = piz::decompress(&channels, compressed, rectangle, pixel_bytes.len(), true).unwrap(); assert_eq!(pixel_bytes, decompressed); } #[test] fn roundtrip_any_sample_type(){ for &sample_type in &[SampleType::F16, SampleType::F32, SampleType::U32] { let channel = ChannelDescription { sample_type, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }; let channels = ChannelList::new(smallvec![ channel.clone(), channel ]); let rectangle = IntegerBounds { position: Vec2(-30, 100), size: Vec2(1080, 720), }; test_roundtrip_noise_with(channels, rectangle); } } #[test] fn roundtrip_two_channels(){ let channel = ChannelDescription { sample_type: SampleType::F16, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }; let channel2 = ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }; let channels = ChannelList::new(smallvec![ channel, channel2 ]); let rectangle = IntegerBounds { position: Vec2(-3, 1), size: Vec2(223, 3132), }; test_roundtrip_noise_with(channels, rectangle); } #[test] fn roundtrip_seven_channels(){ let channels = ChannelList::new(smallvec![ ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ChannelDescription { sample_type: SampleType::F16, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ChannelDescription { sample_type: SampleType::F32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ChannelDescription { sample_type: SampleType::U32, name: Default::default(), quantize_linearly: false, sampling: Vec2(1,1) }, ]); let rectangle = IntegerBounds { position: Vec2(-3, 1), size: Vec2(1323, 132), }; test_roundtrip_noise_with(channels, rectangle); } }