//! Lossy compression for F32 data, but lossless compression for U32 and F16 data. // see https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPxr24Compressor.cpp // This compressor is based on source code that was contributed to // OpenEXR by Pixar Animation Studios. The compression method was // developed by Loren Carpenter. // The compressor preprocesses the pixel data to reduce entropy, and then calls zlib. // Compression of HALF and UINT channels is lossless, but compressing // FLOAT channels is lossy: 32-bit floating-point numbers are converted // to 24 bits by rounding the significand to 15 bits. // // When the compressor is invoked, the caller has already arranged // the pixel data so that the values for each channel appear in a // contiguous block of memory. The compressor converts the pixel // values to unsigned integers: For UINT, this is a no-op. HALF // values are simply re-interpreted as 16-bit integers. FLOAT // values are converted to 24 bits, and the resulting bit patterns // are interpreted as integers. The compressor then replaces each // value with the difference between the value and its left neighbor. // This turns flat fields in the image into zeroes, and ramps into // strings of similar values. Next, each difference is split into // 2, 3 or 4 bytes, and the bytes are transposed so that all the // most significant bytes end up in a contiguous block, followed // by the second most significant bytes, and so on. The resulting // string of bytes is compressed with zlib. use super::*; use crate::error::Result; use lebe::io::ReadPrimitive; // scanline decompression routine, see https://github.com/openexr/openexr/blob/master/OpenEXR/IlmImf/ImfScanLineInputFile.cpp // 1. Uncompress the data, if necessary (If the line is uncompressed, it's in XDR format, regardless of the compressor's output format.) // 3. Convert one scan line's worth of pixel data back from the machine-independent representation // 4. Fill the frame buffer with pixel data, respective to sampling and whatnot #[cfg_attr(target_endian = "big", allow(unused, unreachable_code))] pub fn compress(channels: &ChannelList, remaining_bytes: ByteVec, area: IntegerBounds) -> Result { #[cfg(target_endian = "big")] { return Err(Error::unsupported( "PXR24 compression method not supported yet on big endian processor architecture" )) } if remaining_bytes.is_empty() { return Ok(Vec::new()); } // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 let remaining_bytes = super::convert_current_to_little_endian(remaining_bytes, channels, area); let mut remaining_bytes = remaining_bytes.as_slice(); // TODO less allocation let bytes_per_pixel: usize = channels.list.iter() .map(|channel| match channel.sample_type { SampleType::F16 => 2, SampleType::F32 => 3, SampleType::U32 => 4, }) .sum(); let mut raw = vec![0_u8; bytes_per_pixel * area.size.area()]; { let mut write = raw.as_mut_slice(); // TODO this loop should be an iterator in the `IntegerBounds` class, as it is used in all compressio methods for y in area.position.1..area.end().1 { for channel in &channels.list { if mod_p(y, usize_to_i32(channel.sampling.1)) != 0 { continue; } // this apparently can't be a closure in Rust 1.43 due to borrowing ambiguity let sample_count_x = channel.subsampled_resolution(area.size).0; macro_rules! split_off_write_slice { () => {{ let (slice, rest) = write.split_at_mut(sample_count_x); write = rest; slice }}; } let mut previous_pixel: u32 = 0; match channel.sample_type { SampleType::F16 => { let out_byte_tuples = split_off_write_slice!().iter_mut() .zip(split_off_write_slice!()); for (out_byte_0, out_byte_1) in out_byte_tuples { let pixel = u16::read_from_native_endian(&mut remaining_bytes).unwrap() as u32; let [byte_1, byte_0] = (pixel.wrapping_sub(previous_pixel) as u16).to_ne_bytes(); *out_byte_0 = byte_0; *out_byte_1 = byte_1; previous_pixel = pixel; } }, SampleType::U32 => { let out_byte_quadruplets = split_off_write_slice!().iter_mut() .zip(split_off_write_slice!()) .zip(split_off_write_slice!()) .zip(split_off_write_slice!()); for (((out_byte_0, out_byte_1), out_byte_2), out_byte_3) in out_byte_quadruplets { let pixel = u32::read_from_native_endian(&mut remaining_bytes).unwrap(); let [byte_3, byte_2, byte_1, byte_0] = pixel.wrapping_sub(previous_pixel).to_ne_bytes(); *out_byte_0 = byte_0; *out_byte_1 = byte_1; *out_byte_2 = byte_2; *out_byte_3 = byte_3; previous_pixel = pixel; } }, SampleType::F32 => { let out_byte_triplets = split_off_write_slice!().iter_mut() .zip(split_off_write_slice!()) .zip(split_off_write_slice!()); for ((out_byte_0, out_byte_1), out_byte_2) in out_byte_triplets { let pixel = f32_to_f24(f32::read_from_native_endian(&mut remaining_bytes).unwrap()); let [byte_2, byte_1, byte_0, _] = pixel.wrapping_sub(previous_pixel).to_ne_bytes(); previous_pixel = pixel; *out_byte_0 = byte_0; *out_byte_1 = byte_1; *out_byte_2 = byte_2; } }, } } } debug_assert_eq!(write.len(), 0, "bytes left after compression"); } Ok(miniz_oxide::deflate::compress_to_vec_zlib(raw.as_slice(), 4)) } #[cfg_attr(target_endian = "big", allow(unused, unreachable_code))] pub fn decompress(channels: &ChannelList, bytes: ByteVec, area: IntegerBounds, expected_byte_size: usize, pedantic: bool) -> Result { #[cfg(target_endian = "big")] { return Err(Error::unsupported( "PXR24 decompression method not supported yet on big endian processor architecture" )) } let options = zune_inflate::DeflateOptions::default().set_limit(expected_byte_size).set_size_hint(expected_byte_size); let mut decoder = zune_inflate::DeflateDecoder::new_with_options(&bytes, options); let raw = decoder.decode_zlib() .map_err(|_| Error::invalid("zlib-compressed data malformed"))?; // TODO share code with zip? let mut read = raw.as_slice(); let mut out = Vec::with_capacity(expected_byte_size.min(2048*4)); for y in area.position.1 .. area.end().1 { for channel in &channels.list { if mod_p(y, usize_to_i32(channel.sampling.1)) != 0 { continue; } let sample_count_x = channel.subsampled_resolution(area.size).0; let mut read_sample_line = ||{ if sample_count_x > read.len() { return Err(Error::invalid("not enough data")) } let (samples, rest) = read.split_at(sample_count_x); read = rest; Ok(samples) }; let mut pixel_accumulation: u32 = 0; match channel.sample_type { SampleType::F16 => { let sample_byte_pairs = read_sample_line()?.iter() .zip(read_sample_line()?); for (&in_byte_0, &in_byte_1) in sample_byte_pairs { let difference = u16::from_ne_bytes([in_byte_1, in_byte_0]) as u32; pixel_accumulation = pixel_accumulation.overflowing_add(difference).0; out.extend_from_slice(&(pixel_accumulation as u16).to_ne_bytes()); } }, SampleType::U32 => { let sample_byte_quads = read_sample_line()?.iter() .zip(read_sample_line()?) .zip(read_sample_line()?) .zip(read_sample_line()?); for (((&in_byte_0, &in_byte_1), &in_byte_2), &in_byte_3) in sample_byte_quads { let difference = u32::from_ne_bytes([in_byte_3, in_byte_2, in_byte_1, in_byte_0]); pixel_accumulation = pixel_accumulation.overflowing_add(difference).0; out.extend_from_slice(&pixel_accumulation.to_ne_bytes()); } }, SampleType::F32 => { let sample_byte_triplets = read_sample_line()?.iter() .zip(read_sample_line()?).zip(read_sample_line()?); for ((&in_byte_0, &in_byte_1), &in_byte_2) in sample_byte_triplets { let difference = u32::from_ne_bytes([0, in_byte_2, in_byte_1, in_byte_0]); pixel_accumulation = pixel_accumulation.overflowing_add(difference).0; out.extend_from_slice(&pixel_accumulation.to_ne_bytes()); } } } } } if pedantic && !read.is_empty() { return Err(Error::invalid("too much data")); } Ok(super::convert_little_endian_to_current(out, channels, area)) } /// Conversion from 32-bit to 24-bit floating-point numbers. /// Reverse conversion is just a simple 8-bit left shift. pub fn f32_to_f24(float: f32) -> u32 { let bits = float.to_bits(); let sign = bits & 0x80000000; let exponent = bits & 0x7f800000; let mantissa = bits & 0x007fffff; let result = if exponent == 0x7f800000 { if mantissa != 0 { // F is a NAN; we preserve the sign bit and // the 15 leftmost bits of the significand, // with one exception: If the 15 leftmost // bits are all zero, the NAN would turn // into an infinity, so we have to set at // least one bit in the significand. let mantissa = mantissa >> 8; (exponent >> 8) | mantissa | if mantissa == 0 { 1 } else { 0 } } else { // F is an infinity. exponent >> 8 } } else { // F is finite, round the significand to 15 bits. let result = ((exponent | mantissa) + (mantissa & 0x00000080)) >> 8; if result >= 0x7f8000 { // F was close to FLT_MAX, and the significand was // rounded up, resulting in an exponent overflow. // Avoid the overflow by truncating the significand // instead of rounding it. (exponent | mantissa) >> 8 } else { result } }; return (sign >> 8) | result; }