//! Contains collections of common attributes. //! Defines some data types that list all standard attributes. use std::collections::HashMap; use crate::meta::attribute::*; // FIXME shouldn't this need some more imports???? use crate::meta::*; use crate::math::Vec2; // TODO rename header to LayerDescription! /// Describes a single layer in a file. /// A file can have any number of layers. /// The meta data contains one header per layer. #[derive(Clone, Debug, PartialEq)] pub struct Header { /// List of channels in this layer. pub channels: ChannelList, /// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`. pub compression: Compression, /// Describes how the pixels of this layer are divided into smaller blocks. /// A single block can be loaded without processing all bytes of a file. /// /// Also describes whether a file contains multiple resolution levels: mip maps or rip maps. /// This allows loading not the full resolution, but the smallest sensible resolution. // // Required if file contains deep data or multiple layers. // Note: This value must agree with the version field's tile bit and deep data bit. // In this crate, this attribute will always have a value, for simplicity. pub blocks: BlockDescription, /// In what order the tiles of this header occur in the file. pub line_order: LineOrder, /// The resolution of this layer. Equivalent to the size of the `DataWindow`. pub layer_size: Vec2, /// Whether this layer contains deep data. pub deep: bool, /// This library supports only deep data version 1. pub deep_data_version: Option, /// Number of chunks, that is, scan line blocks or tiles, that this image has been divided into. /// This number is calculated once at the beginning /// of the read process or when creating a header object. /// /// This value includes all chunks of all resolution levels. /// /// /// __Warning__ /// _This value is relied upon. You should probably use `Header::with_encoding`, /// which automatically updates the chunk count._ pub chunk_count: usize, // Required for deep data (deepscanline and deeptile) layers. // Note: Since the value of "maxSamplesPerPixel" // maybe be unknown at the time of opening the // file, the value “ -1 ” is written to the file to // indicate an unknown value. When the file is // closed, this will be overwritten with the correct value. // If file writing does not complete // correctly due to an error, the value -1 will // remain. In this case, the value must be derived // by decoding each chunk in the layer /// Maximum number of samples in a single pixel in a deep image. pub max_samples_per_pixel: Option, /// Includes mandatory fields like pixel aspect or display window /// which must be the same for all layers. pub shared_attributes: ImageAttributes, /// Does not include the attributes required for reading the file contents. /// Excludes standard fields that must be the same for all headers. pub own_attributes: LayerAttributes, } /// Includes mandatory fields like pixel aspect or display window /// which must be the same for all layers. /// For more attributes, see struct `LayerAttributes`. #[derive(Clone, PartialEq, Debug)] pub struct ImageAttributes { /// The rectangle anywhere in the global infinite 2D space /// that clips all contents of the file. pub display_window: IntegerBounds, /// Aspect ratio of each pixel in this header. pub pixel_aspect: f32, /// The chromaticities attribute of the image. See the `Chromaticities` type. pub chromaticities: Option, /// The time code of the image. pub time_code: Option, /// Contains custom attributes. /// Does not contain the attributes already present in the `ImageAttributes`. /// Contains only attributes that are standardized to be the same for all headers: chromaticities and time codes. pub other: HashMap, } /// Does not include the attributes required for reading the file contents. /// Excludes standard fields that must be the same for all headers. /// For more attributes, see struct `ImageAttributes`. #[derive(Clone, PartialEq)] pub struct LayerAttributes { /// The name of this layer. /// Required if this file contains deep data or multiple layers. // As this is an attribute value, it is not restricted in length, may even be empty pub layer_name: Option, /// The top left corner of the rectangle that positions this layer /// within the global infinite 2D space of the whole file. /// This represents the position of the `DataWindow`. pub layer_position: Vec2, /// Part of the perspective projection. Default should be `(0, 0)`. // TODO same for all layers? pub screen_window_center: Vec2, // TODO same for all layers? /// Part of the perspective projection. Default should be `1`. pub screen_window_width: f32, /// The white luminance of the colors. /// Defines the luminance in candelas per square meter, Nits, of the rgb value `(1, 1, 1)`. // If the chromaticities and the whiteLuminance of an RGB image are // known, then it is possible to convert the image's pixels from RGB // to CIE XYZ tristimulus values (see function RGBtoXYZ() in header // file ImfChromaticities.h). pub white_luminance: Option, /// The adopted neutral of the colors. Specifies the CIE (x,y) frequency coordinates that should /// be considered neutral during color rendering. Pixels in the image /// whose CIE (x,y) frequency coordinates match the adopted neutral value should /// be mapped to neutral values on the given display. pub adopted_neutral: Option>, /// Name of the color transform function that is applied for rendering the image. pub rendering_transform_name: Option, /// Name of the color transform function that computes the look modification of the image. pub look_modification_transform_name: Option, /// The horizontal density, in pixels per inch. /// The image's vertical output density can be computed using `horizontal_density * pixel_aspect_ratio`. pub horizontal_density: Option, /// Name of the owner. pub owner: Option, /// Additional textual information. pub comments: Option, /// The date of image creation, in `YYYY:MM:DD hh:mm:ss` format. // TODO parse! pub capture_date: Option, /// Time offset from UTC. pub utc_offset: Option, /// Geographical image location. pub longitude: Option, /// Geographical image location. pub latitude: Option, /// Geographical image location. pub altitude: Option, /// Camera focus in meters. pub focus: Option, /// Exposure time in seconds. pub exposure: Option, /// Camera aperture measured in f-stops. Equals the focal length /// of the lens divided by the diameter of the iris opening. pub aperture: Option, /// Iso-speed of the camera sensor. pub iso_speed: Option, /// If this is an environment map, specifies how to interpret it. pub environment_map: Option, /// Identifies film manufacturer, film type, film roll and frame position within the roll. pub film_key_code: Option, /// Specifies how texture map images are extrapolated. /// Values can be `black`, `clamp`, `periodic`, or `mirror`. pub wrap_mode_name: Option, /// Frames per second if this is a frame in a sequence. pub frames_per_second: Option, /// Specifies the view names for multi-view, for example stereo, image files. pub multi_view_names: Option>, /// The matrix that transforms 3D points from the world to the camera coordinate space. /// Left-handed coordinate system, y up, z forward. pub world_to_camera: Option, /// The matrix that transforms 3D points from the world to the "Normalized Device Coordinate" space. /// Left-handed coordinate system, y up, z forward. pub world_to_normalized_device: Option, /// Specifies whether the pixels in a deep image are sorted and non-overlapping. pub deep_image_state: Option, /// If the image was cropped, contains the original data window. pub original_data_window: Option, /// An 8-bit rgba image representing the rendered image. pub preview: Option, /// Name of the view, which is typically either `"right"` or `"left"` for a stereoscopic image. pub view_name: Option, /// The name of the software that produced this image. pub software_name: Option, /// The near clip plane of the virtual camera projection. pub near_clip_plane: Option, /// The far clip plane of the virtual camera projection. pub far_clip_plane: Option, /// The field of view angle, along the horizontal axis, in degrees. pub horizontal_field_of_view: Option, /// The field of view angle, along the horizontal axis, in degrees. pub vertical_field_of_view: Option, /// Contains custom attributes. /// Does not contain the attributes already present in the `Header` or `LayerAttributes` struct. /// Does not contain attributes that are standardized to be the same for all layers: no chromaticities and no time codes. pub other: HashMap, } impl LayerAttributes { /// Create default layer attributes with a data position of zero. pub fn named(layer_name: impl Into) -> Self { Self { layer_name: Some(layer_name.into()), .. Self::default() } } /// Set the data position of this layer. pub fn with_position(self, data_position: Vec2) -> Self { Self { layer_position: data_position, ..self } } /// Set all common camera projection attributes at once. pub fn with_camera_frustum( self, world_to_camera: Matrix4x4, world_to_normalized_device: Matrix4x4, field_of_view: impl Into>, depth_clip_range: std::ops::Range, ) -> Self { let fov = field_of_view.into(); Self { world_to_normalized_device: Some(world_to_normalized_device), world_to_camera: Some(world_to_camera), horizontal_field_of_view: Some(fov.x()), vertical_field_of_view: Some(fov.y()), near_clip_plane: Some(depth_clip_range.start), far_clip_plane: Some(depth_clip_range.end), ..self } } } impl ImageAttributes { /// Set the display position and size of this image. pub fn new(display_window: IntegerBounds) -> Self { Self { pixel_aspect: 1.0, chromaticities: None, time_code: None, other: Default::default(), display_window, } } /// Set the display position to zero and use the specified size for this image. pub fn with_size(size: impl Into>) -> Self { Self::new(IntegerBounds::from_dimensions(size)) } } impl Header { /// Create a new Header with the specified name, display window and channels. /// Use `Header::with_encoding` and the similar methods to add further properties to the header. /// /// The other settings are left to their default values: /// - RLE compression /// - display window equal to data window /// - tiles (64 x 64 px) /// - unspecified line order /// - no custom attributes pub fn new(name: Text, data_size: impl Into>, channels: SmallVec<[ChannelDescription; 5]>) -> Self { let data_size: Vec2 = data_size.into(); let compression = Compression::RLE; let blocks = BlockDescription::Tiles(TileDescription { tile_size: Vec2(64, 64), level_mode: LevelMode::Singular, rounding_mode: RoundingMode::Down }); Self { layer_size: data_size, compression, blocks, channels: ChannelList::new(channels), line_order: LineOrder::Unspecified, shared_attributes: ImageAttributes::with_size(data_size), own_attributes: LayerAttributes::named(name), chunk_count: compute_chunk_count(compression, data_size, blocks), deep: false, deep_data_version: None, max_samples_per_pixel: None, } } /// Set the display window, that is, the global clipping rectangle. /// __Must be the same for all headers of a file.__ pub fn with_display_window(mut self, display_window: IntegerBounds) -> Self { self.shared_attributes.display_window = display_window; self } /// Set the offset of this layer. pub fn with_position(mut self, position: Vec2) -> Self { self.own_attributes.layer_position = position; self } /// Set compression, tiling, and line order. Automatically computes chunk count. pub fn with_encoding(self, compression: Compression, blocks: BlockDescription, line_order: LineOrder) -> Self { Self { chunk_count: compute_chunk_count(compression, self.layer_size, blocks), compression, blocks, line_order, .. self } } /// Set **all** attributes of the header that are not shared with all other headers in the image. pub fn with_attributes(self, own_attributes: LayerAttributes) -> Self { Self { own_attributes, .. self } } /// Set **all** attributes of the header that are shared with all other headers in the image. pub fn with_shared_attributes(self, shared_attributes: ImageAttributes) -> Self { Self { shared_attributes, .. self } } /// Iterate over all blocks, in the order specified by the headers line order attribute. /// Unspecified line order is treated as increasing line order. /// Also enumerates the index of each block in the header, as if it were sorted in increasing line order. pub fn enumerate_ordered_blocks(&self) -> impl Iterator + Send { let increasing_y = self.blocks_increasing_y_order().enumerate(); // TODO without box? let ordered: Box> = { if self.line_order == LineOrder::Decreasing { Box::new(increasing_y.rev()) } else { Box::new(increasing_y) } }; ordered } /*/// Iterate over all blocks, in the order specified by the headers line order attribute. /// Also includes an index of the block if it were `LineOrder::Increasing`, starting at zero for this header. pub fn enumerate_ordered_blocks(&self) -> impl Iterator + Send { let increasing_y = self.blocks_increasing_y_order().enumerate(); let ordered: Box> = { if self.line_order == LineOrder::Decreasing { Box::new(increasing_y.rev()) // TODO without box? } else { Box::new(increasing_y) } }; ordered }*/ /// Iterate over all tile indices in this header in `LineOrder::Increasing` order. pub fn blocks_increasing_y_order(&self) -> impl Iterator + ExactSizeIterator + DoubleEndedIterator { fn tiles_of(image_size: Vec2, tile_size: Vec2, level_index: Vec2) -> impl Iterator { fn divide_and_rest(total_size: usize, block_size: usize) -> impl Iterator { let block_count = compute_block_count(total_size, block_size); (0..block_count).map(move |block_index| ( block_index, calculate_block_size(total_size, block_size, block_index).expect("block size calculation bug") )) } divide_and_rest(image_size.height(), tile_size.height()).flat_map(move |(y_index, tile_height)|{ divide_and_rest(image_size.width(), tile_size.width()).map(move |(x_index, tile_width)|{ TileIndices { size: Vec2(tile_width, tile_height), location: TileCoordinates { tile_index: Vec2(x_index, y_index), level_index, }, } }) }) } let vec: Vec = { if let BlockDescription::Tiles(tiles) = self.blocks { match tiles.level_mode { LevelMode::Singular => { tiles_of(self.layer_size, tiles.tile_size, Vec2(0, 0)).collect() }, LevelMode::MipMap => { mip_map_levels(tiles.rounding_mode, self.layer_size) .flat_map(move |(level_index, level_size)|{ tiles_of(level_size, tiles.tile_size, Vec2(level_index, level_index)) }) .collect() }, LevelMode::RipMap => { rip_map_levels(tiles.rounding_mode, self.layer_size) .flat_map(move |(level_index, level_size)| { tiles_of(level_size, tiles.tile_size, level_index) }) .collect() } } } else { let tiles = Vec2(self.layer_size.0, self.compression.scan_lines_per_block()); tiles_of(self.layer_size, tiles, Vec2(0, 0)).collect() } }; vec.into_iter() // TODO without collect } /* TODO /// The block indices of this header, ordered as they would appear in the file. pub fn ordered_block_indices<'s>(&'s self, layer_index: usize) -> impl 's + Iterator { self.enumerate_ordered_blocks().map(|(chunk_index, tile)|{ let data_indices = self.get_absolute_block_pixel_coordinates(tile.location).expect("tile coordinate bug"); BlockIndex { layer: layer_index, level: tile.location.level_index, pixel_position: data_indices.position.to_usize("data indices start").expect("data index bug"), pixel_size: data_indices.size, } }) }*/ // TODO reuse this function everywhere /// The default pixel resolution of a single block (tile or scan line block). /// Not all blocks have this size, because they may be cutoff at the end of the image. pub fn max_block_pixel_size(&self) -> Vec2 { match self.blocks { BlockDescription::ScanLines => Vec2(self.layer_size.0, self.compression.scan_lines_per_block()), BlockDescription::Tiles(tiles) => tiles.tile_size, } } /// Calculate the position of a block in the global infinite 2D space of a file. May be negative. pub fn get_block_data_window_pixel_coordinates(&self, tile: TileCoordinates) -> Result { let data = self.get_absolute_block_pixel_coordinates(tile)?; Ok(data.with_origin(self.own_attributes.layer_position)) } /// Calculate the pixel index rectangle inside this header. Is not negative. Starts at `0`. pub fn get_absolute_block_pixel_coordinates(&self, tile: TileCoordinates) -> Result { if let BlockDescription::Tiles(tiles) = self.blocks { let Vec2(data_width, data_height) = self.layer_size; let data_width = compute_level_size(tiles.rounding_mode, data_width, tile.level_index.x()); let data_height = compute_level_size(tiles.rounding_mode, data_height, tile.level_index.y()); let absolute_tile_coordinates = tile.to_data_indices(tiles.tile_size, Vec2(data_width, data_height))?; if absolute_tile_coordinates.position.x() as i64 >= data_width as i64 || absolute_tile_coordinates.position.y() as i64 >= data_height as i64 { return Err(Error::invalid("data block tile index")) } Ok(absolute_tile_coordinates) } else { // this is a scanline image debug_assert_eq!(tile.tile_index.0, 0, "block index calculation bug"); let (y, height) = calculate_block_position_and_size( self.layer_size.height(), self.compression.scan_lines_per_block(), tile.tile_index.y() )?; Ok(IntegerBounds { position: Vec2(0, usize_to_i32(y)), size: Vec2(self.layer_size.width(), height) }) } // TODO deep data? } /// Return the tile index, converting scan line block coordinates to tile indices. /// Starts at `0` and is not negative. pub fn get_block_data_indices(&self, block: &CompressedBlock) -> Result { Ok(match block { CompressedBlock::Tile(ref tile) => { tile.coordinates }, CompressedBlock::ScanLine(ref block) => { let size = self.compression.scan_lines_per_block() as i32; let diff = block.y_coordinate.checked_sub(self.own_attributes.layer_position.y()).ok_or(Error::invalid("invalid header"))?; let y = diff.checked_div(size).ok_or(Error::invalid("invalid header"))?; if y < 0 { return Err(Error::invalid("scan block y coordinate")); } TileCoordinates { tile_index: Vec2(0, y as usize), level_index: Vec2(0, 0) } }, _ => return Err(Error::unsupported("deep data not supported yet")) }) } /// Computes the absolute tile coordinate data indices, which start at `0`. pub fn get_scan_line_block_tile_coordinates(&self, block_y_coordinate: i32) -> Result { let size = self.compression.scan_lines_per_block() as i32; let diff = block_y_coordinate.checked_sub(self.own_attributes.layer_position.1).ok_or(Error::invalid("invalid header"))?; let y = diff.checked_div(size).ok_or(Error::invalid("invalid header"))?; if y < 0 { return Err(Error::invalid("scan block y coordinate")); } Ok(TileCoordinates { tile_index: Vec2(0, y as usize), level_index: Vec2(0, 0) }) } /// Maximum byte length of an uncompressed or compressed block, used for validation. pub fn max_block_byte_size(&self) -> usize { self.channels.bytes_per_pixel * match self.blocks { BlockDescription::Tiles(tiles) => tiles.tile_size.area(), BlockDescription::ScanLines => self.compression.scan_lines_per_block() * self.layer_size.width() // TODO What about deep data??? } } /// Returns the number of bytes that the pixels of this header will require /// when stored without compression. Respects multi-resolution levels and subsampling. pub fn total_pixel_bytes(&self) -> usize { assert!(!self.deep); let pixel_count_of_levels = |size: Vec2| -> usize { match self.blocks { BlockDescription::ScanLines => size.area(), BlockDescription::Tiles(tile_description) => match tile_description.level_mode { LevelMode::Singular => size.area(), LevelMode::MipMap => mip_map_levels(tile_description.rounding_mode, size) .map(|(_, size)| size.area()).sum(), LevelMode::RipMap => rip_map_levels(tile_description.rounding_mode, size) .map(|(_, size)| size.area()).sum(), } } }; self.channels.list.iter() .map(|channel: &ChannelDescription| pixel_count_of_levels(channel.subsampled_resolution(self.layer_size)) * channel.sample_type.bytes_per_sample() ) .sum() } /// Approximates the maximum number of bytes that the pixels of this header will consume in a file. /// Due to compression, the actual byte size may be smaller. pub fn max_pixel_file_bytes(&self) -> usize { assert!(!self.deep); self.chunk_count * 64 // at most 64 bytes overhead for each chunk (header index, tile description, chunk size, and more) + self.total_pixel_bytes() } /// Validate this instance. pub fn validate(&self, is_multilayer: bool, long_names: &mut bool, strict: bool) -> UnitResult { self.data_window().validate(None)?; self.shared_attributes.display_window.validate(None)?; if strict { if is_multilayer { if self.own_attributes.layer_name.is_none() { return Err(missing_attribute("layer name for multi layer file")); } } if self.blocks == BlockDescription::ScanLines && self.line_order == LineOrder::Unspecified { return Err(Error::invalid("unspecified line order in scan line images")); } if self.layer_size == Vec2(0, 0) { return Err(Error::invalid("empty data window")); } if self.shared_attributes.display_window.size == Vec2(0,0) { return Err(Error::invalid("empty display window")); } if !self.shared_attributes.pixel_aspect.is_normal() || self.shared_attributes.pixel_aspect < 1.0e-6 || self.shared_attributes.pixel_aspect > 1.0e6 { return Err(Error::invalid("pixel aspect ratio")); } if self.own_attributes.screen_window_width < 0.0 { return Err(Error::invalid("screen window width")); } } let allow_subsampling = !self.deep && self.blocks == BlockDescription::ScanLines; self.channels.validate(allow_subsampling, self.data_window(), strict)?; for (name, value) in &self.shared_attributes.other { attribute::validate(name, value, long_names, allow_subsampling, self.data_window(), strict)?; } for (name, value) in &self.own_attributes.other { attribute::validate(name, value, long_names, allow_subsampling, self.data_window(), strict)?; } // this is only to check whether someone tampered with our precious values, to avoid writing an invalid file if self.chunk_count != compute_chunk_count(self.compression, self.layer_size, self.blocks) { return Err(Error::invalid("chunk count attribute")); // TODO this may be an expensive check? } // check if attribute names appear twice if strict { for (name, _) in &self.shared_attributes.other { if self.own_attributes.other.contains_key(name) { return Err(Error::invalid(format!("duplicate attribute name: `{}`", name))); } } for &reserved in header::standard_names::ALL.iter() { let name = Text::from_bytes_unchecked(SmallVec::from_slice(reserved)); if self.own_attributes.other.contains_key(&name) || self.shared_attributes.other.contains_key(&name) { return Err(Error::invalid(format!( "attribute name `{}` is reserved and cannot be custom", Text::from_bytes_unchecked(reserved.into()) ))); } } } if self.deep { if strict { if self.own_attributes.layer_name.is_none() { return Err(missing_attribute("layer name for deep file")); } if self.max_samples_per_pixel.is_none() { return Err(Error::invalid("missing max samples per pixel attribute for deepdata")); } } match self.deep_data_version { Some(1) => {}, Some(_) => return Err(Error::unsupported("deep data version")), None => return Err(missing_attribute("deep data version")), } if !self.compression.supports_deep_data() { return Err(Error::invalid("compression method does not support deep data")); } } Ok(()) } /// Read the headers without validating them. pub fn read_all(read: &mut PeekRead, version: &Requirements, pedantic: bool) -> Result { if !version.is_multilayer() { Ok(smallvec![ Header::read(read, version, pedantic)? ]) } else { let mut headers = SmallVec::new(); while !sequence_end::has_come(read)? { headers.push(Header::read(read, version, pedantic)?); } Ok(headers) } } /// Without validation, write the headers to the byte stream. pub fn write_all(headers: &[Header], write: &mut impl Write, is_multilayer: bool) -> UnitResult { for header in headers { header.write(write)?; } if is_multilayer { sequence_end::write(write)?; } Ok(()) } /// Read the value without validating. pub fn read(read: &mut PeekRead, requirements: &Requirements, pedantic: bool) -> Result { let max_string_len = if requirements.has_long_names { 256 } else { 32 }; // TODO DRY this information // these required attributes will be filled when encountered while parsing let mut tiles = None; let mut block_type = None; let mut version = None; let mut chunk_count = None; let mut max_samples_per_pixel = None; let mut channels = None; let mut compression = None; let mut data_window = None; let mut display_window = None; let mut line_order = None; let mut dwa_compression_level = None; let mut layer_attributes = LayerAttributes::default(); let mut image_attributes = ImageAttributes::new(IntegerBounds::zero()); // read each attribute in this header while !sequence_end::has_come(read)? { let (attribute_name, value) = attribute::read(read, max_string_len)?; // if the attribute value itself is ok, record it match value { Ok(value) => { use crate::meta::header::standard_names as name; use crate::meta::attribute::AttributeValue::*; // if the attribute is a required attribute, set the corresponding variable directly. // otherwise, add the attribute to the vector of custom attributes // the following attributes will only be set if the type matches the commonly used type for that attribute match (attribute_name.as_slice(), value) { (name::BLOCK_TYPE, Text(value)) => block_type = Some(attribute::BlockType::parse(value)?), (name::TILES, TileDescription(value)) => tiles = Some(value), (name::CHANNELS, ChannelList(value)) => channels = Some(value), (name::COMPRESSION, Compression(value)) => compression = Some(value), (name::DATA_WINDOW, IntegerBounds(value)) => data_window = Some(value), (name::DISPLAY_WINDOW, IntegerBounds(value)) => display_window = Some(value), (name::LINE_ORDER, LineOrder(value)) => line_order = Some(value), (name::DEEP_DATA_VERSION, I32(value)) => version = Some(value), (name::MAX_SAMPLES, I32(value)) => max_samples_per_pixel = Some( i32_to_usize(value, "max sample count")? ), (name::CHUNKS, I32(value)) => chunk_count = Some( i32_to_usize(value, "chunk count")? ), (name::NAME, Text(value)) => layer_attributes.layer_name = Some(value), (name::WINDOW_CENTER, FloatVec2(value)) => layer_attributes.screen_window_center = value, (name::WINDOW_WIDTH, F32(value)) => layer_attributes.screen_window_width = value, (name::WHITE_LUMINANCE, F32(value)) => layer_attributes.white_luminance = Some(value), (name::ADOPTED_NEUTRAL, FloatVec2(value)) => layer_attributes.adopted_neutral = Some(value), (name::RENDERING_TRANSFORM, Text(value)) => layer_attributes.rendering_transform_name = Some(value), (name::LOOK_MOD_TRANSFORM, Text(value)) => layer_attributes.look_modification_transform_name = Some(value), (name::X_DENSITY, F32(value)) => layer_attributes.horizontal_density = Some(value), (name::OWNER, Text(value)) => layer_attributes.owner = Some(value), (name::COMMENTS, Text(value)) => layer_attributes.comments = Some(value), (name::CAPTURE_DATE, Text(value)) => layer_attributes.capture_date = Some(value), (name::UTC_OFFSET, F32(value)) => layer_attributes.utc_offset = Some(value), (name::LONGITUDE, F32(value)) => layer_attributes.longitude = Some(value), (name::LATITUDE, F32(value)) => layer_attributes.latitude = Some(value), (name::ALTITUDE, F32(value)) => layer_attributes.altitude = Some(value), (name::FOCUS, F32(value)) => layer_attributes.focus = Some(value), (name::EXPOSURE_TIME, F32(value)) => layer_attributes.exposure = Some(value), (name::APERTURE, F32(value)) => layer_attributes.aperture = Some(value), (name::ISO_SPEED, F32(value)) => layer_attributes.iso_speed = Some(value), (name::ENVIRONMENT_MAP, EnvironmentMap(value)) => layer_attributes.environment_map = Some(value), (name::KEY_CODE, KeyCode(value)) => layer_attributes.film_key_code = Some(value), (name::WRAP_MODES, Text(value)) => layer_attributes.wrap_mode_name = Some(value), (name::FRAMES_PER_SECOND, Rational(value)) => layer_attributes.frames_per_second = Some(value), (name::MULTI_VIEW, TextVector(value)) => layer_attributes.multi_view_names = Some(value), (name::WORLD_TO_CAMERA, Matrix4x4(value)) => layer_attributes.world_to_camera = Some(value), (name::WORLD_TO_NDC, Matrix4x4(value)) => layer_attributes.world_to_normalized_device = Some(value), (name::DEEP_IMAGE_STATE, Rational(value)) => layer_attributes.deep_image_state = Some(value), (name::ORIGINAL_DATA_WINDOW, IntegerBounds(value)) => layer_attributes.original_data_window = Some(value), (name::DWA_COMPRESSION_LEVEL, F32(value)) => dwa_compression_level = Some(value), (name::PREVIEW, Preview(value)) => layer_attributes.preview = Some(value), (name::VIEW, Text(value)) => layer_attributes.view_name = Some(value), (name::NEAR, F32(value)) => layer_attributes.near_clip_plane = Some(value), (name::FAR, F32(value)) => layer_attributes.far_clip_plane = Some(value), (name::FOV_X, F32(value)) => layer_attributes.horizontal_field_of_view = Some(value), (name::FOV_Y, F32(value)) => layer_attributes.vertical_field_of_view = Some(value), (name::SOFTWARE, Text(value)) => layer_attributes.software_name = Some(value), (name::PIXEL_ASPECT, F32(value)) => image_attributes.pixel_aspect = value, (name::TIME_CODE, TimeCode(value)) => image_attributes.time_code = Some(value), (name::CHROMATICITIES, Chromaticities(value)) => image_attributes.chromaticities = Some(value), // insert unknown attributes of these types into image attributes, // as these must be the same for all headers (_, value @ Chromaticities(_)) | (_, value @ TimeCode(_)) => { image_attributes.other.insert(attribute_name, value); }, // insert unknown attributes into layer attributes (_, value) => { layer_attributes.other.insert(attribute_name, value); }, } }, // in case the attribute value itself is not ok, but the rest of the image is // only abort reading the image if desired Err(error) => { if pedantic { return Err(error); } } } } // construct compression with parameters from properties let compression = match (dwa_compression_level, compression) { (Some(level), Some(Compression::DWAA(_))) => Some(Compression::DWAA(Some(level))), (Some(level), Some(Compression::DWAB(_))) => Some(Compression::DWAB(Some(level))), (_, other) => other, // FIXME dwa compression level gets lost if any other compression is used later in the process }; let compression = compression.ok_or(missing_attribute("compression"))?; image_attributes.display_window = display_window.ok_or(missing_attribute("display window"))?; let data_window = data_window.ok_or(missing_attribute("data window"))?; data_window.validate(None)?; // validate now to avoid errors when computing the chunk_count layer_attributes.layer_position = data_window.position; // validate now to avoid errors when computing the chunk_count if let Some(tiles) = tiles { tiles.validate()?; } let blocks = match block_type { None if requirements.is_single_layer_and_tiled => { BlockDescription::Tiles(tiles.ok_or(missing_attribute("tiles"))?) }, Some(BlockType::Tile) | Some(BlockType::DeepTile) => { BlockDescription::Tiles(tiles.ok_or(missing_attribute("tiles"))?) }, _ => BlockDescription::ScanLines, }; let computed_chunk_count = compute_chunk_count(compression, data_window.size, blocks); if chunk_count.is_some() && pedantic && chunk_count != Some(computed_chunk_count) { return Err(Error::invalid("chunk count not matching data size")); } let header = Header { compression, // always compute ourselves, because we cannot trust anyone out there 😱 chunk_count: computed_chunk_count, layer_size: data_window.size, shared_attributes: image_attributes, own_attributes: layer_attributes, channels: channels.ok_or(missing_attribute("channels"))?, line_order: line_order.unwrap_or(LineOrder::Unspecified), blocks, max_samples_per_pixel, deep_data_version: version, deep: block_type == Some(BlockType::DeepScanLine) || block_type == Some(BlockType::DeepTile), }; Ok(header) } /// Without validation, write this instance to the byte stream. pub fn write(&self, write: &mut impl Write) -> UnitResult { macro_rules! write_attributes { ( $($name: ident : $variant: ident = $value: expr),* ) => { $( attribute::write($name, & $variant ($value .clone()), write)?; // TODO without clone )* }; } macro_rules! write_optional_attributes { ( $($name: ident : $variant: ident = $value: expr),* ) => { $( if let Some(value) = $value { attribute::write($name, & $variant (value.clone()), write)?; // TODO without clone }; )* }; } use crate::meta::header::standard_names::*; use AttributeValue::*; let (block_type, tiles) = match self.blocks { BlockDescription::ScanLines => (attribute::BlockType::ScanLine, None), BlockDescription::Tiles(tiles) => (attribute::BlockType::Tile, Some(tiles)) }; fn usize_as_i32(value: usize) -> AttributeValue { I32(i32::try_from(value).expect("u32 exceeds i32 range")) } write_optional_attributes!( TILES: TileDescription = &tiles, DEEP_DATA_VERSION: I32 = &self.deep_data_version, MAX_SAMPLES: usize_as_i32 = &self.max_samples_per_pixel ); write_attributes!( // chunks is not actually required, but always computed in this library anyways CHUNKS: usize_as_i32 = &self.chunk_count, BLOCK_TYPE: BlockType = &block_type, CHANNELS: ChannelList = &self.channels, COMPRESSION: Compression = &self.compression, LINE_ORDER: LineOrder = &self.line_order, DATA_WINDOW: IntegerBounds = &self.data_window(), DISPLAY_WINDOW: IntegerBounds = &self.shared_attributes.display_window, PIXEL_ASPECT: F32 = &self.shared_attributes.pixel_aspect, WINDOW_CENTER: FloatVec2 = &self.own_attributes.screen_window_center, WINDOW_WIDTH: F32 = &self.own_attributes.screen_window_width ); write_optional_attributes!( NAME: Text = &self.own_attributes.layer_name, WHITE_LUMINANCE: F32 = &self.own_attributes.white_luminance, ADOPTED_NEUTRAL: FloatVec2 = &self.own_attributes.adopted_neutral, RENDERING_TRANSFORM: Text = &self.own_attributes.rendering_transform_name, LOOK_MOD_TRANSFORM: Text = &self.own_attributes.look_modification_transform_name, X_DENSITY: F32 = &self.own_attributes.horizontal_density, OWNER: Text = &self.own_attributes.owner, COMMENTS: Text = &self.own_attributes.comments, CAPTURE_DATE: Text = &self.own_attributes.capture_date, UTC_OFFSET: F32 = &self.own_attributes.utc_offset, LONGITUDE: F32 = &self.own_attributes.longitude, LATITUDE: F32 = &self.own_attributes.latitude, ALTITUDE: F32 = &self.own_attributes.altitude, FOCUS: F32 = &self.own_attributes.focus, EXPOSURE_TIME: F32 = &self.own_attributes.exposure, APERTURE: F32 = &self.own_attributes.aperture, ISO_SPEED: F32 = &self.own_attributes.iso_speed, ENVIRONMENT_MAP: EnvironmentMap = &self.own_attributes.environment_map, KEY_CODE: KeyCode = &self.own_attributes.film_key_code, TIME_CODE: TimeCode = &self.shared_attributes.time_code, WRAP_MODES: Text = &self.own_attributes.wrap_mode_name, FRAMES_PER_SECOND: Rational = &self.own_attributes.frames_per_second, MULTI_VIEW: TextVector = &self.own_attributes.multi_view_names, WORLD_TO_CAMERA: Matrix4x4 = &self.own_attributes.world_to_camera, WORLD_TO_NDC: Matrix4x4 = &self.own_attributes.world_to_normalized_device, DEEP_IMAGE_STATE: Rational = &self.own_attributes.deep_image_state, ORIGINAL_DATA_WINDOW: IntegerBounds = &self.own_attributes.original_data_window, CHROMATICITIES: Chromaticities = &self.shared_attributes.chromaticities, PREVIEW: Preview = &self.own_attributes.preview, VIEW: Text = &self.own_attributes.view_name, NEAR: F32 = &self.own_attributes.near_clip_plane, FAR: F32 = &self.own_attributes.far_clip_plane, FOV_X: F32 = &self.own_attributes.horizontal_field_of_view, FOV_Y: F32 = &self.own_attributes.vertical_field_of_view, SOFTWARE: Text = &self.own_attributes.software_name ); // dwa writes compression parameters as attribute. match self.compression { attribute::Compression::DWAA(Some(level)) | attribute::Compression::DWAB(Some(level)) => attribute::write(DWA_COMPRESSION_LEVEL, &F32(level), write)?, _ => {} }; for (name, value) in &self.shared_attributes.other { attribute::write(name.as_slice(), value, write)?; } for (name, value) in &self.own_attributes.other { attribute::write(name.as_slice(), value, write)?; } sequence_end::write(write)?; Ok(()) } /// The rectangle describing the bounding box of this layer /// within the infinite global 2D space of the file. pub fn data_window(&self) -> IntegerBounds { IntegerBounds::new(self.own_attributes.layer_position, self.layer_size) } } /// Collection of required attribute names. pub mod standard_names { macro_rules! define_required_attribute_names { ( $($name: ident : $value: expr),* ) => { /// A list containing all reserved names. pub const ALL: &'static [&'static [u8]] = &[ $( $value ),* ]; $( /// The byte-string name of this required attribute as it appears in an exr file. pub const $name: &'static [u8] = $value; )* }; } define_required_attribute_names! { TILES: b"tiles", NAME: b"name", BLOCK_TYPE: b"type", DEEP_DATA_VERSION: b"version", CHUNKS: b"chunkCount", MAX_SAMPLES: b"maxSamplesPerPixel", CHANNELS: b"channels", COMPRESSION: b"compression", DATA_WINDOW: b"dataWindow", DISPLAY_WINDOW: b"displayWindow", LINE_ORDER: b"lineOrder", PIXEL_ASPECT: b"pixelAspectRatio", WINDOW_CENTER: b"screenWindowCenter", WINDOW_WIDTH: b"screenWindowWidth", WHITE_LUMINANCE: b"whiteLuminance", ADOPTED_NEUTRAL: b"adoptedNeutral", RENDERING_TRANSFORM: b"renderingTransform", LOOK_MOD_TRANSFORM: b"lookModTransform", X_DENSITY: b"xDensity", OWNER: b"owner", COMMENTS: b"comments", CAPTURE_DATE: b"capDate", UTC_OFFSET: b"utcOffset", LONGITUDE: b"longitude", LATITUDE: b"latitude", ALTITUDE: b"altitude", FOCUS: b"focus", EXPOSURE_TIME: b"expTime", APERTURE: b"aperture", ISO_SPEED: b"isoSpeed", ENVIRONMENT_MAP: b"envmap", KEY_CODE: b"keyCode", TIME_CODE: b"timeCode", WRAP_MODES: b"wrapmodes", FRAMES_PER_SECOND: b"framesPerSecond", MULTI_VIEW: b"multiView", WORLD_TO_CAMERA: b"worldToCamera", WORLD_TO_NDC: b"worldToNDC", DEEP_IMAGE_STATE: b"deepImageState", ORIGINAL_DATA_WINDOW: b"originalDataWindow", DWA_COMPRESSION_LEVEL: b"dwaCompressionLevel", PREVIEW: b"preview", VIEW: b"view", CHROMATICITIES: b"chromaticities", NEAR: b"near", FAR: b"far", FOV_X: b"fieldOfViewHorizontal", FOV_Y: b"fieldOfViewVertical", SOFTWARE: b"software" } } impl Default for LayerAttributes { fn default() -> Self { Self { layer_position: Vec2(0, 0), screen_window_center: Vec2(0.0, 0.0), screen_window_width: 1.0, layer_name: None, white_luminance: None, adopted_neutral: None, rendering_transform_name: None, look_modification_transform_name: None, horizontal_density: None, owner: None, comments: None, capture_date: None, utc_offset: None, longitude: None, latitude: None, altitude: None, focus: None, exposure: None, aperture: None, iso_speed: None, environment_map: None, film_key_code: None, wrap_mode_name: None, frames_per_second: None, multi_view_names: None, world_to_camera: None, world_to_normalized_device: None, deep_image_state: None, original_data_window: None, preview: None, view_name: None, software_name: None, near_clip_plane: None, far_clip_plane: None, horizontal_field_of_view: None, vertical_field_of_view: None, other: Default::default() } } } impl std::fmt::Debug for LayerAttributes { fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let default_self = Self::default(); let mut debug = formatter.debug_struct("LayerAttributes (default values omitted)"); // always debug the following field debug.field("name", &self.layer_name); macro_rules! debug_non_default_fields { ( $( $name: ident ),* ) => { $( if self.$name != default_self.$name { debug.field(stringify!($name), &self.$name); } )* }; } // only debug these fields if they are not the default value debug_non_default_fields! { screen_window_center, screen_window_width, white_luminance, adopted_neutral, horizontal_density, rendering_transform_name, look_modification_transform_name, owner, comments, capture_date, utc_offset, longitude, latitude, altitude, focus, exposure, aperture, iso_speed, environment_map, film_key_code, wrap_mode_name, frames_per_second, multi_view_names, world_to_camera, world_to_normalized_device, deep_image_state, original_data_window, preview, view_name, vertical_field_of_view, horizontal_field_of_view, near_clip_plane, far_clip_plane, software_name } for (name, value) in &self.other { debug.field(&format!("\"{}\"", name), value); } // debug.finish_non_exhaustive() TODO debug.finish() } }