#![allow(dead_code, unused_imports)] use crate::leading_zeros::leading_zeros_u16; use core::mem; macro_rules! convert_fn { (fn $name:ident($($var:ident : $vartype:ty),+) -> $restype:ty { if feature("f16c") { $f16c:expr } else { $fallback:expr }}) => { #[inline] pub(crate) fn $name($($var: $vartype),+) -> $restype { // Use CPU feature detection if using std #[cfg(all( feature = "use-intrinsics", feature = "std", any(target_arch = "x86", target_arch = "x86_64"), not(target_feature = "f16c") ))] { if is_x86_feature_detected!("f16c") { $f16c } else { $fallback } } // Use intrinsics directly when a compile target or using no_std #[cfg(all( feature = "use-intrinsics", any(target_arch = "x86", target_arch = "x86_64"), target_feature = "f16c" ))] { $f16c } // Fallback to software #[cfg(any( not(feature = "use-intrinsics"), not(any(target_arch = "x86", target_arch = "x86_64")), all(not(feature = "std"), not(target_feature = "f16c")) ))] { $fallback } } }; } convert_fn! { fn f32_to_f16(f: f32) -> u16 { if feature("f16c") { unsafe { x86::f32_to_f16_x86_f16c(f) } } else { f32_to_f16_fallback(f) } } } convert_fn! { fn f64_to_f16(f: f64) -> u16 { if feature("f16c") { unsafe { x86::f32_to_f16_x86_f16c(f as f32) } } else { f64_to_f16_fallback(f) } } } convert_fn! { fn f16_to_f32(i: u16) -> f32 { if feature("f16c") { unsafe { x86::f16_to_f32_x86_f16c(i) } } else { f16_to_f32_fallback(i) } } } convert_fn! { fn f16_to_f64(i: u16) -> f64 { if feature("f16c") { unsafe { x86::f16_to_f32_x86_f16c(i) as f64 } } else { f16_to_f64_fallback(i) } } } convert_fn! { fn f32x4_to_f16x4(f: &[f32; 4]) -> [u16; 4] { if feature("f16c") { unsafe { x86::f32x4_to_f16x4_x86_f16c(f) } } else { f32x4_to_f16x4_fallback(f) } } } convert_fn! { fn f16x4_to_f32x4(i: &[u16; 4]) -> [f32; 4] { if feature("f16c") { unsafe { x86::f16x4_to_f32x4_x86_f16c(i) } } else { f16x4_to_f32x4_fallback(i) } } } convert_fn! { fn f64x4_to_f16x4(f: &[f64; 4]) -> [u16; 4] { if feature("f16c") { unsafe { x86::f64x4_to_f16x4_x86_f16c(f) } } else { f64x4_to_f16x4_fallback(f) } } } convert_fn! { fn f16x4_to_f64x4(i: &[u16; 4]) -> [f64; 4] { if feature("f16c") { unsafe { x86::f16x4_to_f64x4_x86_f16c(i) } } else { f16x4_to_f64x4_fallback(i) } } } convert_fn! { fn f32x8_to_f16x8(f: &[f32; 8]) -> [u16; 8] { if feature("f16c") { unsafe { x86::f32x8_to_f16x8_x86_f16c(f) } } else { f32x8_to_f16x8_fallback(f) } } } convert_fn! { fn f16x8_to_f32x8(i: &[u16; 8]) -> [f32; 8] { if feature("f16c") { unsafe { x86::f16x8_to_f32x8_x86_f16c(i) } } else { f16x8_to_f32x8_fallback(i) } } } convert_fn! { fn f64x8_to_f16x8(f: &[f64; 8]) -> [u16; 8] { if feature("f16c") { unsafe { x86::f64x8_to_f16x8_x86_f16c(f) } } else { f64x8_to_f16x8_fallback(f) } } } convert_fn! { fn f16x8_to_f64x8(i: &[u16; 8]) -> [f64; 8] { if feature("f16c") { unsafe { x86::f16x8_to_f64x8_x86_f16c(i) } } else { f16x8_to_f64x8_fallback(i) } } } convert_fn! { fn f32_to_f16_slice(src: &[f32], dst: &mut [u16]) -> () { if feature("f16c") { convert_chunked_slice_8(src, dst, x86::f32x8_to_f16x8_x86_f16c, x86::f32x4_to_f16x4_x86_f16c) } else { slice_fallback(src, dst, f32_to_f16_fallback) } } } convert_fn! { fn f16_to_f32_slice(src: &[u16], dst: &mut [f32]) -> () { if feature("f16c") { convert_chunked_slice_8(src, dst, x86::f16x8_to_f32x8_x86_f16c, x86::f16x4_to_f32x4_x86_f16c) } else { slice_fallback(src, dst, f16_to_f32_fallback) } } } convert_fn! { fn f64_to_f16_slice(src: &[f64], dst: &mut [u16]) -> () { if feature("f16c") { convert_chunked_slice_8(src, dst, x86::f64x8_to_f16x8_x86_f16c, x86::f64x4_to_f16x4_x86_f16c) } else { slice_fallback(src, dst, f64_to_f16_fallback) } } } convert_fn! { fn f16_to_f64_slice(src: &[u16], dst: &mut [f64]) -> () { if feature("f16c") { convert_chunked_slice_8(src, dst, x86::f16x8_to_f64x8_x86_f16c, x86::f16x4_to_f64x4_x86_f16c) } else { slice_fallback(src, dst, f16_to_f64_fallback) } } } /// Chunks sliced into x8 or x4 arrays #[inline] fn convert_chunked_slice_8( src: &[S], dst: &mut [D], fn8: unsafe fn(&[S; 8]) -> [D; 8], fn4: unsafe fn(&[S; 4]) -> [D; 4], ) { assert_eq!(src.len(), dst.len()); // TODO: Can be further optimized with array_chunks when it becomes stabilized let src_chunks = src.chunks_exact(8); let mut dst_chunks = dst.chunks_exact_mut(8); let src_remainder = src_chunks.remainder(); for (s, d) in src_chunks.zip(&mut dst_chunks) { let chunk: &[S; 8] = s.try_into().unwrap(); d.copy_from_slice(unsafe { &fn8(chunk) }); } // Process remainder if src_remainder.len() > 4 { let mut buf: [S; 8] = Default::default(); buf[..src_remainder.len()].copy_from_slice(src_remainder); let vec = unsafe { fn8(&buf) }; let dst_remainder = dst_chunks.into_remainder(); dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]); } else if !src_remainder.is_empty() { let mut buf: [S; 4] = Default::default(); buf[..src_remainder.len()].copy_from_slice(src_remainder); let vec = unsafe { fn4(&buf) }; let dst_remainder = dst_chunks.into_remainder(); dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]); } } /// Chunks sliced into x4 arrays #[inline] fn convert_chunked_slice_4( src: &[S], dst: &mut [D], f: unsafe fn(&[S; 4]) -> [D; 4], ) { assert_eq!(src.len(), dst.len()); // TODO: Can be further optimized with array_chunks when it becomes stabilized let src_chunks = src.chunks_exact(4); let mut dst_chunks = dst.chunks_exact_mut(4); let src_remainder = src_chunks.remainder(); for (s, d) in src_chunks.zip(&mut dst_chunks) { let chunk: &[S; 4] = s.try_into().unwrap(); d.copy_from_slice(unsafe { &f(chunk) }); } // Process remainder if !src_remainder.is_empty() { let mut buf: [S; 4] = Default::default(); buf[..src_remainder.len()].copy_from_slice(src_remainder); let vec = unsafe { f(&buf) }; let dst_remainder = dst_chunks.into_remainder(); dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]); } } /////////////// Fallbacks //////////////// // In the below functions, round to nearest, with ties to even. // Let us call the most significant bit that will be shifted out the round_bit. // // Round up if either // a) Removed part > tie. // (mantissa & round_bit) != 0 && (mantissa & (round_bit - 1)) != 0 // b) Removed part == tie, and retained part is odd. // (mantissa & round_bit) != 0 && (mantissa & (2 * round_bit)) != 0 // (If removed part == tie and retained part is even, do not round up.) // These two conditions can be combined into one: // (mantissa & round_bit) != 0 && (mantissa & ((round_bit - 1) | (2 * round_bit))) != 0 // which can be simplified into // (mantissa & round_bit) != 0 && (mantissa & (3 * round_bit - 1)) != 0 #[inline] pub(crate) const fn f32_to_f16_fallback(value: f32) -> u16 { // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized // Convert to raw bytes let x: u32 = unsafe { mem::transmute(value) }; // Extract IEEE754 components let sign = x & 0x8000_0000u32; let exp = x & 0x7F80_0000u32; let man = x & 0x007F_FFFFu32; // Check for all exponent bits being set, which is Infinity or NaN if exp == 0x7F80_0000u32 { // Set mantissa MSB for NaN (and also keep shifted mantissa bits) let nan_bit = if man == 0 { 0 } else { 0x0200u32 }; return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 13)) as u16; } // The number is normalized, start assembling half precision version let half_sign = sign >> 16; // Unbias the exponent, then bias for half precision let unbiased_exp = ((exp >> 23) as i32) - 127; let half_exp = unbiased_exp + 15; // Check for exponent overflow, return +infinity if half_exp >= 0x1F { return (half_sign | 0x7C00u32) as u16; } // Check for underflow if half_exp <= 0 { // Check mantissa for what we can do if 14 - half_exp > 24 { // No rounding possibility, so this is a full underflow, return signed zero return half_sign as u16; } // Don't forget about hidden leading mantissa bit when assembling mantissa let man = man | 0x0080_0000u32; let mut half_man = man >> (14 - half_exp); // Check for rounding (see comment above functions) let round_bit = 1 << (13 - half_exp); if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { half_man += 1; } // No exponent for subnormals return (half_sign | half_man) as u16; } // Rebias the exponent let half_exp = (half_exp as u32) << 10; let half_man = man >> 13; // Check for rounding (see comment above functions) let round_bit = 0x0000_1000u32; if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { // Round it ((half_sign | half_exp | half_man) + 1) as u16 } else { (half_sign | half_exp | half_man) as u16 } } #[inline] pub(crate) const fn f64_to_f16_fallback(value: f64) -> u16 { // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always // be lost on half-precision. // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized let val: u64 = unsafe { mem::transmute(value) }; let x = (val >> 32) as u32; // Extract IEEE754 components let sign = x & 0x8000_0000u32; let exp = x & 0x7FF0_0000u32; let man = x & 0x000F_FFFFu32; // Check for all exponent bits being set, which is Infinity or NaN if exp == 0x7FF0_0000u32 { // Set mantissa MSB for NaN (and also keep shifted mantissa bits). // We also have to check the last 32 bits. let nan_bit = if man == 0 && (val as u32 == 0) { 0 } else { 0x0200u32 }; return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 10)) as u16; } // The number is normalized, start assembling half precision version let half_sign = sign >> 16; // Unbias the exponent, then bias for half precision let unbiased_exp = ((exp >> 20) as i64) - 1023; let half_exp = unbiased_exp + 15; // Check for exponent overflow, return +infinity if half_exp >= 0x1F { return (half_sign | 0x7C00u32) as u16; } // Check for underflow if half_exp <= 0 { // Check mantissa for what we can do if 10 - half_exp > 21 { // No rounding possibility, so this is a full underflow, return signed zero return half_sign as u16; } // Don't forget about hidden leading mantissa bit when assembling mantissa let man = man | 0x0010_0000u32; let mut half_man = man >> (11 - half_exp); // Check for rounding (see comment above functions) let round_bit = 1 << (10 - half_exp); if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { half_man += 1; } // No exponent for subnormals return (half_sign | half_man) as u16; } // Rebias the exponent let half_exp = (half_exp as u32) << 10; let half_man = man >> 10; // Check for rounding (see comment above functions) let round_bit = 0x0000_0200u32; if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { // Round it ((half_sign | half_exp | half_man) + 1) as u16 } else { (half_sign | half_exp | half_man) as u16 } } #[inline] pub(crate) const fn f16_to_f32_fallback(i: u16) -> f32 { // Check for signed zero // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized if i & 0x7FFFu16 == 0 { return unsafe { mem::transmute((i as u32) << 16) }; } let half_sign = (i & 0x8000u16) as u32; let half_exp = (i & 0x7C00u16) as u32; let half_man = (i & 0x03FFu16) as u32; // Check for an infinity or NaN when all exponent bits set if half_exp == 0x7C00u32 { // Check for signed infinity if mantissa is zero if half_man == 0 { return unsafe { mem::transmute((half_sign << 16) | 0x7F80_0000u32) }; } else { // NaN, keep current mantissa but also set most significiant mantissa bit return unsafe { mem::transmute((half_sign << 16) | 0x7FC0_0000u32 | (half_man << 13)) }; } } // Calculate single-precision components with adjusted exponent let sign = half_sign << 16; // Unbias exponent let unbiased_exp = ((half_exp as i32) >> 10) - 15; // Check for subnormals, which will be normalized by adjusting exponent if half_exp == 0 { // Calculate how much to adjust the exponent by let e = leading_zeros_u16(half_man as u16) - 6; // Rebias and adjust exponent let exp = (127 - 15 - e) << 23; let man = (half_man << (14 + e)) & 0x7F_FF_FFu32; return unsafe { mem::transmute(sign | exp | man) }; } // Rebias exponent for a normalized normal let exp = ((unbiased_exp + 127) as u32) << 23; let man = (half_man & 0x03FFu32) << 13; unsafe { mem::transmute(sign | exp | man) } } #[inline] pub(crate) const fn f16_to_f64_fallback(i: u16) -> f64 { // Check for signed zero // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized if i & 0x7FFFu16 == 0 { return unsafe { mem::transmute((i as u64) << 48) }; } let half_sign = (i & 0x8000u16) as u64; let half_exp = (i & 0x7C00u16) as u64; let half_man = (i & 0x03FFu16) as u64; // Check for an infinity or NaN when all exponent bits set if half_exp == 0x7C00u64 { // Check for signed infinity if mantissa is zero if half_man == 0 { return unsafe { mem::transmute((half_sign << 48) | 0x7FF0_0000_0000_0000u64) }; } else { // NaN, keep current mantissa but also set most significiant mantissa bit return unsafe { mem::transmute((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 42)) }; } } // Calculate double-precision components with adjusted exponent let sign = half_sign << 48; // Unbias exponent let unbiased_exp = ((half_exp as i64) >> 10) - 15; // Check for subnormals, which will be normalized by adjusting exponent if half_exp == 0 { // Calculate how much to adjust the exponent by let e = leading_zeros_u16(half_man as u16) - 6; // Rebias and adjust exponent let exp = ((1023 - 15 - e) as u64) << 52; let man = (half_man << (43 + e)) & 0xF_FFFF_FFFF_FFFFu64; return unsafe { mem::transmute(sign | exp | man) }; } // Rebias exponent for a normalized normal let exp = ((unbiased_exp + 1023) as u64) << 52; let man = (half_man & 0x03FFu64) << 42; unsafe { mem::transmute(sign | exp | man) } } #[inline] fn f16x4_to_f32x4_fallback(v: &[u16; 4]) -> [f32; 4] { [ f16_to_f32_fallback(v[0]), f16_to_f32_fallback(v[1]), f16_to_f32_fallback(v[2]), f16_to_f32_fallback(v[3]), ] } #[inline] fn f32x4_to_f16x4_fallback(v: &[f32; 4]) -> [u16; 4] { [ f32_to_f16_fallback(v[0]), f32_to_f16_fallback(v[1]), f32_to_f16_fallback(v[2]), f32_to_f16_fallback(v[3]), ] } #[inline] fn f16x4_to_f64x4_fallback(v: &[u16; 4]) -> [f64; 4] { [ f16_to_f64_fallback(v[0]), f16_to_f64_fallback(v[1]), f16_to_f64_fallback(v[2]), f16_to_f64_fallback(v[3]), ] } #[inline] fn f64x4_to_f16x4_fallback(v: &[f64; 4]) -> [u16; 4] { [ f64_to_f16_fallback(v[0]), f64_to_f16_fallback(v[1]), f64_to_f16_fallback(v[2]), f64_to_f16_fallback(v[3]), ] } #[inline] fn f16x8_to_f32x8_fallback(v: &[u16; 8]) -> [f32; 8] { [ f16_to_f32_fallback(v[0]), f16_to_f32_fallback(v[1]), f16_to_f32_fallback(v[2]), f16_to_f32_fallback(v[3]), f16_to_f32_fallback(v[4]), f16_to_f32_fallback(v[5]), f16_to_f32_fallback(v[6]), f16_to_f32_fallback(v[7]), ] } #[inline] fn f32x8_to_f16x8_fallback(v: &[f32; 8]) -> [u16; 8] { [ f32_to_f16_fallback(v[0]), f32_to_f16_fallback(v[1]), f32_to_f16_fallback(v[2]), f32_to_f16_fallback(v[3]), f32_to_f16_fallback(v[4]), f32_to_f16_fallback(v[5]), f32_to_f16_fallback(v[6]), f32_to_f16_fallback(v[7]), ] } #[inline] fn f16x8_to_f64x8_fallback(v: &[u16; 8]) -> [f64; 8] { [ f16_to_f64_fallback(v[0]), f16_to_f64_fallback(v[1]), f16_to_f64_fallback(v[2]), f16_to_f64_fallback(v[3]), f16_to_f64_fallback(v[4]), f16_to_f64_fallback(v[5]), f16_to_f64_fallback(v[6]), f16_to_f64_fallback(v[7]), ] } #[inline] fn f64x8_to_f16x8_fallback(v: &[f64; 8]) -> [u16; 8] { [ f64_to_f16_fallback(v[0]), f64_to_f16_fallback(v[1]), f64_to_f16_fallback(v[2]), f64_to_f16_fallback(v[3]), f64_to_f16_fallback(v[4]), f64_to_f16_fallback(v[5]), f64_to_f16_fallback(v[6]), f64_to_f16_fallback(v[7]), ] } #[inline] fn slice_fallback(src: &[S], dst: &mut [D], f: fn(S) -> D) { assert_eq!(src.len(), dst.len()); for (s, d) in src.iter().copied().zip(dst.iter_mut()) { *d = f(s); } } /////////////// x86/x86_64 f16c //////////////// #[cfg(all( feature = "use-intrinsics", any(target_arch = "x86", target_arch = "x86_64") ))] mod x86 { use core::{mem::MaybeUninit, ptr}; #[cfg(target_arch = "x86")] use core::arch::x86::{ __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, _MM_FROUND_TO_NEAREST_INT, }; #[cfg(target_arch = "x86_64")] use core::arch::x86_64::{ __m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, _mm_cvtps_ph, _MM_FROUND_TO_NEAREST_INT, }; use super::convert_chunked_slice_8; #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 { let mut vec = MaybeUninit::<__m128i>::zeroed(); vec.as_mut_ptr().cast::().write(i); let retval = _mm_cvtph_ps(vec.assume_init()); *(&retval as *const __m128).cast() } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 { let mut vec = MaybeUninit::<__m128>::zeroed(); vec.as_mut_ptr().cast::().write(f); let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); *(&retval as *const __m128i).cast() } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16; 4]) -> [f32; 4] { let mut vec = MaybeUninit::<__m128i>::zeroed(); ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); let retval = _mm_cvtph_ps(vec.assume_init()); *(&retval as *const __m128).cast() } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32; 4]) -> [u16; 4] { let mut vec = MaybeUninit::<__m128>::uninit(); ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); *(&retval as *const __m128i).cast() } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16; 4]) -> [f64; 4] { let array = f16x4_to_f32x4_x86_f16c(v); // Let compiler vectorize this regular cast for now. // TODO: investigate auto-detecting sse2/avx convert features [ array[0] as f64, array[1] as f64, array[2] as f64, array[3] as f64, ] } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64; 4]) -> [u16; 4] { // Let compiler vectorize this regular cast for now. // TODO: investigate auto-detecting sse2/avx convert features let v = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32]; f32x4_to_f16x4_x86_f16c(&v) } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f16x8_to_f32x8_x86_f16c(v: &[u16; 8]) -> [f32; 8] { let mut vec = MaybeUninit::<__m128i>::zeroed(); ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 8); let retval = _mm256_cvtph_ps(vec.assume_init()); *(&retval as *const __m256).cast() } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f32x8_to_f16x8_x86_f16c(v: &[f32; 8]) -> [u16; 8] { let mut vec = MaybeUninit::<__m256>::uninit(); ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 8); let retval = _mm256_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); *(&retval as *const __m128i).cast() } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f16x8_to_f64x8_x86_f16c(v: &[u16; 8]) -> [f64; 8] { let array = f16x8_to_f32x8_x86_f16c(v); // Let compiler vectorize this regular cast for now. // TODO: investigate auto-detecting sse2/avx convert features [ array[0] as f64, array[1] as f64, array[2] as f64, array[3] as f64, array[4] as f64, array[5] as f64, array[6] as f64, array[7] as f64, ] } #[target_feature(enable = "f16c")] #[inline] pub(super) unsafe fn f64x8_to_f16x8_x86_f16c(v: &[f64; 8]) -> [u16; 8] { // Let compiler vectorize this regular cast for now. // TODO: investigate auto-detecting sse2/avx convert features let v = [ v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32, v[4] as f32, v[5] as f32, v[6] as f32, v[7] as f32, ]; f32x8_to_f16x8_x86_f16c(&v) } }