use std::iter::Iterator; use std::time::Duration; use num_rational::Ratio; use crate::error::ImageResult; use crate::RgbaImage; /// An implementation dependent iterator, reading the frames as requested pub struct Frames<'a> { iterator: Box> + 'a>, } impl<'a> Frames<'a> { /// Creates a new `Frames` from an implementation specific iterator. pub fn new(iterator: Box> + 'a>) -> Self { Frames { iterator } } /// Steps through the iterator from the current frame until the end and pushes each frame into /// a `Vec`. /// If en error is encountered that error is returned instead. /// /// Note: This is equivalent to `Frames::collect::>>()` pub fn collect_frames(self) -> ImageResult> { self.collect() } } impl<'a> Iterator for Frames<'a> { type Item = ImageResult; fn next(&mut self) -> Option> { self.iterator.next() } } /// A single animation frame #[derive(Clone)] pub struct Frame { /// Delay between the frames in milliseconds delay: Delay, /// x offset left: u32, /// y offset top: u32, buffer: RgbaImage, } /// The delay of a frame relative to the previous one. #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)] pub struct Delay { ratio: Ratio, } impl Frame { /// Constructs a new frame without any delay. pub fn new(buffer: RgbaImage) -> Frame { Frame { delay: Delay::from_ratio(Ratio::from_integer(0)), left: 0, top: 0, buffer, } } /// Constructs a new frame pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame { Frame { delay, left, top, buffer, } } /// Delay of this frame pub fn delay(&self) -> Delay { self.delay } /// Returns the image buffer pub fn buffer(&self) -> &RgbaImage { &self.buffer } /// Returns a mutable image buffer pub fn buffer_mut(&mut self) -> &mut RgbaImage { &mut self.buffer } /// Returns the image buffer pub fn into_buffer(self) -> RgbaImage { self.buffer } /// Returns the x offset pub fn left(&self) -> u32 { self.left } /// Returns the y offset pub fn top(&self) -> u32 { self.top } } impl Delay { /// Create a delay from a ratio of milliseconds. /// /// # Examples /// /// ``` /// use image::Delay; /// let delay_10ms = Delay::from_numer_denom_ms(10, 1); /// ``` pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self { Delay { ratio: Ratio::new_raw(numerator, denominator), } } /// Convert from a duration, clamped between 0 and an implemented defined maximum. /// /// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of /// the result may be relative and very large delays have a coarse resolution. /// /// # Examples /// /// ``` /// use std::time::Duration; /// use image::Delay; /// /// let duration = Duration::from_millis(20); /// let delay = Delay::from_saturating_duration(duration); /// ``` pub fn from_saturating_duration(duration: Duration) -> Self { // A few notes: The largest number we can represent as a ratio is u32::MAX but we can // sometimes represent much smaller numbers. // // We can represent duration as `millis+a/b` (where a < b, b > 0). // We must thus bound b with `bĀ·millis + (b-1) <= u32::MAX` or // > `0 < b <= (u32::MAX + 1)/(millis + 1)` // Corollary: millis <= u32::MAX const MILLIS_BOUND: u128 = u32::max_value() as u128; let millis = duration.as_millis().min(MILLIS_BOUND); let submillis = (duration.as_nanos() % 1_000_000) as u32; let max_b = if millis > 0 { ((MILLIS_BOUND + 1) / (millis + 1)) as u32 } else { MILLIS_BOUND as u32 }; let millis = millis as u32; let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000); Self::from_numer_denom_ms(a + b * millis, b) } /// The numerator and denominator of the delay in milliseconds. /// /// This is guaranteed to be an exact conversion if the `Delay` was previously created with the /// `from_numer_denom_ms` constructor. pub fn numer_denom_ms(self) -> (u32, u32) { (*self.ratio.numer(), *self.ratio.denom()) } pub(crate) fn from_ratio(ratio: Ratio) -> Self { Delay { ratio } } pub(crate) fn into_ratio(self) -> Ratio { self.ratio } /// Given some fraction, compute an approximation with denominator bounded. /// /// Note that `denom_bound` bounds nominator and denominator of all intermediate /// approximations and the end result. fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) { use std::cmp::Ordering::{self, *}; assert!(0 < denom); assert!(0 < denom_bound); assert!(nom < denom); // Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which // is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two // values without fears of overflow. // Compare two fractions whose parts fit into a u32. fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering { (an * bd).cmp(&(bn * ad)) } // Computes the nominator of the absolute difference between two such fractions. fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 { let c0 = an * bd; let c1 = ad * bn; let d0 = c0.max(c1); let d1 = c0.min(c1); d0 - d1 } let exact = (u64::from(nom), u64::from(denom)); // The lower bound fraction, numerator and denominator. let mut lower = (0u64, 1u64); // The upper bound fraction, numerator and denominator. let mut upper = (1u64, 1u64); // The closest approximation for now. let mut guess = (u64::from(nom * 2 > denom), 1u64); // loop invariant: ad, bd <= denom_bound // iterates the Farey sequence. loop { // Break if we are done. if compare_fraction(guess, exact) == Equal { break; } // Break if next Farey number is out-of-range. if u64::from(denom_bound) - lower.1 < upper.1 { break; } // Next Farey approximation n between a and b let next = (lower.0 + upper.0, lower.1 + upper.1); // if F < n then replace the upper bound, else replace lower. if compare_fraction(exact, next) == Less { upper = next; } else { lower = next; } // Now correct the closest guess. // In other words, if |c - f| > |n - f| then replace it with the new guess. // This favors the guess with smaller denominator on equality. // |g - f| = |g_diff_nom|/(gd*fd); let g_diff_nom = abs_diff_nom(guess, exact); // |n - f| = |n_diff_nom|/(nd*fd); let n_diff_nom = abs_diff_nom(next, exact); // The difference |n - f| is smaller than |g - f| if either the integral part of the // fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are // the same but the fractional part is larger. if match (n_diff_nom / next.1).cmp(&(g_diff_nom / guess.1)) { Less => true, Greater => false, // Note that the nominator for the fractional part is smaller than its denominator // which is smaller than u32 and can't overflow the multiplication with the other // denominator, that is we can compare these fractions by multiplication with the // respective other denominator. Equal => { compare_fraction( (n_diff_nom % next.1, next.1), (g_diff_nom % guess.1, guess.1), ) == Less } } { guess = next; } } (guess.0 as u32, guess.1 as u32) } } impl From for Duration { fn from(delay: Delay) -> Self { let ratio = delay.into_ratio(); let ms = ratio.to_integer(); let rest = ratio.numer() % ratio.denom(); let nanos = (u64::from(rest) * 1_000_000) / u64::from(*ratio.denom()); Duration::from_millis(ms.into()) + Duration::from_nanos(nanos) } } #[cfg(test)] mod tests { use super::{Delay, Duration, Ratio}; #[test] fn simple() { let second = Delay::from_numer_denom_ms(1000, 1); assert_eq!(Duration::from(second), Duration::from_secs(1)); } #[test] fn fps_30() { let thirtieth = Delay::from_numer_denom_ms(1000, 30); let duration = Duration::from(thirtieth); assert_eq!(duration.as_secs(), 0); assert_eq!(duration.subsec_millis(), 33); assert_eq!(duration.subsec_nanos(), 33_333_333); } #[test] fn duration_outlier() { let oob = Duration::from_secs(0xFFFF_FFFF); let delay = Delay::from_saturating_duration(oob); assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); } #[test] fn duration_approx() { let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1); let delay = Delay::from_saturating_duration(oob); assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1); let delay = Delay::from_saturating_duration(inbounds); assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); let fine = Duration::from_millis(0xFFFF_FFFF / 1000) + Duration::from_micros(0xFFFF_FFFF % 1000); let delay = Delay::from_saturating_duration(fine); // Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`. assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000)); } #[test] fn precise() { // The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits // correct. But it may be expressed as 1_000_000/3 instead. let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333); let delay = Delay::from_saturating_duration(exceed); assert_eq!(Duration::from(delay), exceed); } #[test] fn small() { // Not quite a delay of `1 ms`. let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1); let duration = Duration::from(delay); assert_eq!(duration.as_millis(), 0); // Not precisely the original but should be smaller than 0. let delay = Delay::from_saturating_duration(duration); assert_eq!(delay.into_ratio().to_integer(), 0); } }