//! Decoding of DXT (S3TC) compression //! //! DXT is an image format that supports lossy compression //! //! # Related Links //! * - Description of the DXT compression OpenGL extensions. //! //! Note: this module only implements bare DXT encoding/decoding, it does not parse formats that can contain DXT files like .dds use std::convert::TryFrom; use std::io::{self, Read, Seek, SeekFrom, Write}; use crate::color::ColorType; use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind}; use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageReadBuffer, Progress}; /// What version of DXT compression are we using? /// Note that DXT2 and DXT4 are left away as they're /// just DXT3 and DXT5 with premultiplied alpha #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum DxtVariant { /// The DXT1 format. 48 bytes of RGB data in a 4x4 pixel square is /// compressed into an 8 byte block of DXT1 data DXT1, /// The DXT3 format. 64 bytes of RGBA data in a 4x4 pixel square is /// compressed into a 16 byte block of DXT3 data DXT3, /// The DXT5 format. 64 bytes of RGBA data in a 4x4 pixel square is /// compressed into a 16 byte block of DXT5 data DXT5, } impl DxtVariant { /// Returns the amount of bytes of raw image data /// that is encoded in a single DXTn block fn decoded_bytes_per_block(self) -> usize { match self { DxtVariant::DXT1 => 48, DxtVariant::DXT3 | DxtVariant::DXT5 => 64, } } /// Returns the amount of bytes per block of encoded DXTn data fn encoded_bytes_per_block(self) -> usize { match self { DxtVariant::DXT1 => 8, DxtVariant::DXT3 | DxtVariant::DXT5 => 16, } } /// Returns the color type that is stored in this DXT variant pub fn color_type(self) -> ColorType { match self { DxtVariant::DXT1 => ColorType::Rgb8, DxtVariant::DXT3 | DxtVariant::DXT5 => ColorType::Rgba8, } } } /// DXT decoder pub struct DxtDecoder { inner: R, width_blocks: u32, height_blocks: u32, variant: DxtVariant, row: u32, } impl DxtDecoder { /// Create a new DXT decoder that decodes from the stream ```r```. /// As DXT is often stored as raw buffers with the width/height /// somewhere else the width and height of the image need /// to be passed in ```width``` and ```height```, as well as the /// DXT variant in ```variant```. /// width and height are required to be powers of 2 and at least 4. /// otherwise an error will be returned pub fn new( r: R, width: u32, height: u32, variant: DxtVariant, ) -> Result, ImageError> { if width % 4 != 0 || height % 4 != 0 { // TODO: this is actually a bit of a weird case. We could return `DecodingError` but // it's not really the format that is wrong However, the encoder should surely return // `EncodingError` so it would be the logical choice for symmetry. return Err(ImageError::Parameter(ParameterError::from_kind( ParameterErrorKind::DimensionMismatch, ))); } let width_blocks = width / 4; let height_blocks = height / 4; Ok(DxtDecoder { inner: r, width_blocks, height_blocks, variant, row: 0, }) } fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result { assert_eq!(u64::try_from(buf.len()), Ok(self.scanline_bytes())); let mut src = vec![0u8; self.variant.encoded_bytes_per_block() * self.width_blocks as usize]; self.inner.read_exact(&mut src)?; match self.variant { DxtVariant::DXT1 => decode_dxt1_row(&src, buf), DxtVariant::DXT3 => decode_dxt3_row(&src, buf), DxtVariant::DXT5 => decode_dxt5_row(&src, buf), } self.row += 1; Ok(buf.len()) } } // Note that, due to the way that DXT compression works, a scanline is considered to consist out of // 4 lines of pixels. impl<'a, R: 'a + Read> ImageDecoder<'a> for DxtDecoder { type Reader = DxtReader; fn dimensions(&self) -> (u32, u32) { (self.width_blocks * 4, self.height_blocks * 4) } fn color_type(&self) -> ColorType { self.variant.color_type() } fn scanline_bytes(&self) -> u64 { self.variant.decoded_bytes_per_block() as u64 * u64::from(self.width_blocks) } fn into_reader(self) -> ImageResult { Ok(DxtReader { buffer: ImageReadBuffer::new(self.scanline_bytes(), self.total_bytes()), decoder: self, }) } fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> { assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes())); for chunk in buf.chunks_mut(self.scanline_bytes().max(1) as usize) { self.read_scanline(chunk)?; } Ok(()) } } impl<'a, R: 'a + Read + Seek> ImageDecoderRect<'a> for DxtDecoder { fn read_rect_with_progress( &mut self, x: u32, y: u32, width: u32, height: u32, buf: &mut [u8], progress_callback: F, ) -> ImageResult<()> { let encoded_scanline_bytes = self.variant.encoded_bytes_per_block() as u64 * u64::from(self.width_blocks); let start = self.inner.stream_position()?; image::load_rect( x, y, width, height, buf, progress_callback, self, |s, scanline| { s.inner .seek(SeekFrom::Start(start + scanline * encoded_scanline_bytes))?; Ok(()) }, |s, buf| s.read_scanline(buf).map(|_| ()), )?; self.inner.seek(SeekFrom::Start(start))?; Ok(()) } } /// DXT reader pub struct DxtReader { buffer: ImageReadBuffer, decoder: DxtDecoder, } impl Read for DxtReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { let decoder = &mut self.decoder; self.buffer.read(buf, |buf| decoder.read_scanline(buf)) } } /// DXT encoder pub struct DxtEncoder { w: W, } impl DxtEncoder { /// Create a new encoder that writes its output to ```w``` pub fn new(w: W) -> DxtEncoder { DxtEncoder { w } } /// Encodes the image data ```data``` /// that has dimensions ```width``` and ```height``` /// in ```DxtVariant``` ```variant``` /// data is assumed to be in variant.color_type() pub fn encode( mut self, data: &[u8], width: u32, height: u32, variant: DxtVariant, ) -> ImageResult<()> { if width % 4 != 0 || height % 4 != 0 { // TODO: this is not very idiomatic yet. Should return an EncodingError. return Err(ImageError::Parameter(ParameterError::from_kind( ParameterErrorKind::DimensionMismatch, ))); } let width_blocks = width / 4; let height_blocks = height / 4; let stride = variant.decoded_bytes_per_block(); assert!(data.len() >= width_blocks as usize * height_blocks as usize * stride); for chunk in data.chunks(width_blocks as usize * stride) { let data = match variant { DxtVariant::DXT1 => encode_dxt1_row(chunk), DxtVariant::DXT3 => encode_dxt3_row(chunk), DxtVariant::DXT5 => encode_dxt5_row(chunk), }; self.w.write_all(&data)?; } Ok(()) } } /** * Actual encoding/decoding logic below. */ use std::mem::swap; type Rgb = [u8; 3]; /// decodes a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value into 8-bit RGB /// mapping is done so min/max range values are preserved. So for 5-bit /// values 0x00 -> 0x00 and 0x1F -> 0xFF fn enc565_decode(value: u16) -> Rgb { let red = (value >> 11) & 0x1F; let green = (value >> 5) & 0x3F; let blue = (value) & 0x1F; [ (red * 0xFF / 0x1F) as u8, (green * 0xFF / 0x3F) as u8, (blue * 0xFF / 0x1F) as u8, ] } /// encodes an 8-bit RGB value into a 5-bit R, 6-bit G, 5-bit B 16-bit packed color value /// mapping preserves min/max values. It is guaranteed that i == encode(decode(i)) for all i fn enc565_encode(rgb: Rgb) -> u16 { let red = (u16::from(rgb[0]) * 0x1F + 0x7E) / 0xFF; let green = (u16::from(rgb[1]) * 0x3F + 0x7E) / 0xFF; let blue = (u16::from(rgb[2]) * 0x1F + 0x7E) / 0xFF; (red << 11) | (green << 5) | blue } /// utility function: squares a value fn square(a: i32) -> i32 { a * a } /// returns the squared error between two RGB values fn diff(a: Rgb, b: Rgb) -> i32 { square(i32::from(a[0]) - i32::from(b[0])) + square(i32::from(a[1]) - i32::from(b[1])) + square(i32::from(a[2]) - i32::from(b[2])) } /* * Functions for decoding DXT compression */ /// Constructs the DXT5 alpha lookup table from the two alpha entries /// if alpha0 > alpha1, constructs a table of [a0, a1, 6 linearly interpolated values from a0 to a1] /// if alpha0 <= alpha1, constructs a table of [a0, a1, 4 linearly interpolated values from a0 to a1, 0, 0xFF] fn alpha_table_dxt5(alpha0: u8, alpha1: u8) -> [u8; 8] { let mut table = [alpha0, alpha1, 0, 0, 0, 0, 0, 0xFF]; if alpha0 > alpha1 { for i in 2..8u16 { table[i as usize] = (((8 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 7) as u8; } } else { for i in 2..6u16 { table[i as usize] = (((6 - i) * u16::from(alpha0) + (i - 1) * u16::from(alpha1)) / 5) as u8; } } table } /// decodes an 8-byte dxt color block into the RGB channels of a 16xRGB or 16xRGBA block. /// source should have a length of 8, dest a length of 48 (RGB) or 64 (RGBA) fn decode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) { // sanity checks, also enable the compiler to elide all following bound checks assert!(source.len() == 8 && (dest.len() == 48 || dest.len() == 64)); // calculate pitch to store RGB values in dest (3 for RGB, 4 for RGBA) let pitch = dest.len() / 16; // extract color data let color0 = u16::from(source[0]) | (u16::from(source[1]) << 8); let color1 = u16::from(source[2]) | (u16::from(source[3]) << 8); let color_table = u32::from(source[4]) | (u32::from(source[5]) << 8) | (u32::from(source[6]) << 16) | (u32::from(source[7]) << 24); // let color_table = source[4..8].iter().rev().fold(0, |t, &b| (t << 8) | b as u32); // decode the colors to rgb format let mut colors = [[0; 3]; 4]; colors[0] = enc565_decode(color0); colors[1] = enc565_decode(color1); // determine color interpolation method if color0 > color1 || !is_dxt1 { // linearly interpolate the other two color table entries for i in 0..3 { colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8; colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8; } } else { // linearly interpolate one other entry, keep the other at 0 for i in 0..3 { colors[2][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8; } } // serialize the result. Every color is determined by looking up // two bits in color_table which identify which color to actually pick from the 4 possible colors for i in 0..16 { dest[i * pitch..i * pitch + 3] .copy_from_slice(&colors[(color_table >> (i * 2)) as usize & 3]); } } /// Decodes a 16-byte bock of dxt5 data to a 16xRGBA block fn decode_dxt5_block(source: &[u8], dest: &mut [u8]) { assert!(source.len() == 16 && dest.len() == 64); // extract alpha index table (stored as little endian 64-bit value) let alpha_table = source[2..8] .iter() .rev() .fold(0, |t, &b| (t << 8) | u64::from(b)); // alhpa level decode let alphas = alpha_table_dxt5(source[0], source[1]); // serialize alpha for i in 0..16 { dest[i * 4 + 3] = alphas[(alpha_table >> (i * 3)) as usize & 7]; } // handle colors decode_dxt_colors(&source[8..16], dest, false); } /// Decodes a 16-byte bock of dxt3 data to a 16xRGBA block fn decode_dxt3_block(source: &[u8], dest: &mut [u8]) { assert!(source.len() == 16 && dest.len() == 64); // extract alpha index table (stored as little endian 64-bit value) let alpha_table = source[0..8] .iter() .rev() .fold(0, |t, &b| (t << 8) | u64::from(b)); // serialize alpha (stored as 4-bit values) for i in 0..16 { dest[i * 4 + 3] = ((alpha_table >> (i * 4)) as u8 & 0xF) * 0x11; } // handle colors decode_dxt_colors(&source[8..16], dest, false); } /// Decodes a 8-byte bock of dxt5 data to a 16xRGB block fn decode_dxt1_block(source: &[u8], dest: &mut [u8]) { assert!(source.len() == 8 && dest.len() == 48); decode_dxt_colors(source, dest, true); } /// Decode a row of DXT1 data to four rows of RGB data. /// source.len() should be a multiple of 8, otherwise this panics. fn decode_dxt1_row(source: &[u8], dest: &mut [u8]) { assert!(source.len() % 8 == 0); let block_count = source.len() / 8; assert!(dest.len() >= block_count * 48); // contains the 16 decoded pixels per block let mut decoded_block = [0u8; 48]; for (x, encoded_block) in source.chunks(8).enumerate() { decode_dxt1_block(encoded_block, &mut decoded_block); // copy the values from the decoded block to linewise RGB layout for line in 0..4 { let offset = (block_count * line + x) * 12; dest[offset..offset + 12].copy_from_slice(&decoded_block[line * 12..(line + 1) * 12]); } } } /// Decode a row of DXT3 data to four rows of RGBA data. /// source.len() should be a multiple of 16, otherwise this panics. fn decode_dxt3_row(source: &[u8], dest: &mut [u8]) { assert!(source.len() % 16 == 0); let block_count = source.len() / 16; assert!(dest.len() >= block_count * 64); // contains the 16 decoded pixels per block let mut decoded_block = [0u8; 64]; for (x, encoded_block) in source.chunks(16).enumerate() { decode_dxt3_block(encoded_block, &mut decoded_block); // copy the values from the decoded block to linewise RGB layout for line in 0..4 { let offset = (block_count * line + x) * 16; dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]); } } } /// Decode a row of DXT5 data to four rows of RGBA data. /// source.len() should be a multiple of 16, otherwise this panics. fn decode_dxt5_row(source: &[u8], dest: &mut [u8]) { assert!(source.len() % 16 == 0); let block_count = source.len() / 16; assert!(dest.len() >= block_count * 64); // contains the 16 decoded pixels per block let mut decoded_block = [0u8; 64]; for (x, encoded_block) in source.chunks(16).enumerate() { decode_dxt5_block(encoded_block, &mut decoded_block); // copy the values from the decoded block to linewise RGB layout for line in 0..4 { let offset = (block_count * line + x) * 16; dest[offset..offset + 16].copy_from_slice(&decoded_block[line * 16..(line + 1) * 16]); } } } /* * Functions for encoding DXT compression */ /// Tries to perform the color encoding part of dxt compression /// the approach taken is simple, it picks unique combinations /// of the colors present in the block, and attempts to encode the /// block with each, picking the encoding that yields the least /// squared error out of all of them. /// /// This could probably be faster but is already reasonably fast /// and a good reference impl to optimize others against. /// /// Another way to perform this analysis would be to perform a /// singular value decomposition of the different colors, and /// then pick 2 points on this line as the base colors. But /// this is still rather unwieldy math and has issues /// with the 3-linear-colors-and-0 case, it's also worse /// at conserving the original colors. /// /// source: should be RGBAx16 or RGBx16 bytes of data, /// dest 8 bytes of resulting encoded color data fn encode_dxt_colors(source: &[u8], dest: &mut [u8], is_dxt1: bool) { // sanity checks and determine stride when parsing the source data assert!((source.len() == 64 || source.len() == 48) && dest.len() == 8); let stride = source.len() / 16; // reference colors array let mut colors = [[0u8; 3]; 4]; // Put the colors we're going to be processing in an array with pure RGB layout // note: we reverse the pixel order here. The reason for this is found in the inner quantization loop. let mut targets = [[0u8; 3]; 16]; for (s, d) in source.chunks(stride).rev().zip(&mut targets) { *d = [s[0], s[1], s[2]]; } // roundtrip all colors through the r5g6b5 encoding for rgb in &mut targets { *rgb = enc565_decode(enc565_encode(*rgb)); } // and deduplicate the set of colors to choose from as the algorithm is O(N^2) in this let mut colorspace_ = [[0u8; 3]; 16]; let mut colorspace_len = 0; for color in &targets { if !colorspace_[..colorspace_len].contains(color) { colorspace_[colorspace_len] = *color; colorspace_len += 1; } } let mut colorspace = &colorspace_[..colorspace_len]; // in case of slight gradients it can happen that there's only one entry left in the color table. // as the resulting banding can be quite bad if we would just left the block at the closest // encodable color, we have a special path here that tries to emulate the wanted color // using the linear interpolation between gradients if colorspace.len() == 1 { // the base color we got from colorspace reduction let ref_rgb = colorspace[0]; // the unreduced color in this block that's the furthest away from the actual block let mut rgb = targets .iter() .cloned() .max_by_key(|rgb| diff(*rgb, ref_rgb)) .unwrap(); // amplify differences by 2.5, which should push them to the next quantized value // if possible without overshoot for i in 0..3 { rgb[i] = ((i16::from(rgb[i]) - i16::from(ref_rgb[i])) * 5 / 2 + i16::from(ref_rgb[i])) as u8; } // roundtrip it through quantization let encoded = enc565_encode(rgb); let rgb = enc565_decode(encoded); // in case this didn't land us a different color the best way to represent this field is // as a single color block if rgb == ref_rgb { dest[0] = encoded as u8; dest[1] = (encoded >> 8) as u8; for d in dest.iter_mut().take(8).skip(2) { *d = 0; } return; } // we did find a separate value: add it to the options so after one round of quantization // we're done colorspace_[1] = rgb; colorspace = &colorspace_[..2]; } // block quantization loop: we basically just try every possible combination, returning // the combination with the least squared error // stores the best candidate colors let mut chosen_colors = [[0; 3]; 4]; // did this index table use the [0,0,0] variant let mut chosen_use_0 = false; // error calculated for the last entry let mut chosen_error = 0xFFFF_FFFFu32; // loop through unique permutations of the colorspace, where c1 != c2 'search: for (i, &c1) in colorspace.iter().enumerate() { colors[0] = c1; for &c2 in &colorspace[0..i] { colors[1] = c2; if is_dxt1 { // what's inside here is ran at most 120 times. for use_0 in 0..2 { // and 240 times here. if use_0 != 0 { // interpolate one color, set the other to 0 for i in 0..3 { colors[2][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) + 1) / 2) as u8; } colors[3] = [0, 0, 0]; } else { // interpolate to get 2 more colors for i in 0..3 { colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8; colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8; } } // calculate the total error if we were to quantize the block with these color combinations // both these loops have statically known iteration counts and are well vectorizable // note that the inside of this can be run about 15360 times worst case, i.e. 960 times per // pixel. let total_error = targets .iter() .map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap()) .sum(); // update the match if we found a better one if total_error < chosen_error { chosen_colors = colors; chosen_use_0 = use_0 != 0; chosen_error = total_error; // if we've got a perfect or at most 1 LSB off match, we're done if total_error < 4 { break 'search; } } } } else { // what's inside here is ran at most 120 times. // interpolate to get 2 more colors for i in 0..3 { colors[2][i] = ((u16::from(colors[0][i]) * 2 + u16::from(colors[1][i]) + 1) / 3) as u8; colors[3][i] = ((u16::from(colors[0][i]) + u16::from(colors[1][i]) * 2 + 1) / 3) as u8; } // calculate the total error if we were to quantize the block with these color combinations // both these loops have statically known iteration counts and are well vectorizable // note that the inside of this can be run about 15360 times worst case, i.e. 960 times per // pixel. let total_error = targets .iter() .map(|t| colors.iter().map(|c| diff(*c, *t) as u32).min().unwrap()) .sum(); // update the match if we found a better one if total_error < chosen_error { chosen_colors = colors; chosen_error = total_error; // if we've got a perfect or at most 1 LSB off match, we're done if total_error < 4 { break 'search; } } } } } // calculate the final indices // note that targets is already in reverse pixel order, to make the index computation easy. let mut chosen_indices = 0u32; for t in &targets { let (idx, _) = chosen_colors .iter() .enumerate() .min_by_key(|&(_, c)| diff(*c, *t)) .unwrap(); chosen_indices = (chosen_indices << 2) | idx as u32; } // encode the colors let mut color0 = enc565_encode(chosen_colors[0]); let mut color1 = enc565_encode(chosen_colors[1]); // determine encoding. Note that color0 == color1 is impossible at this point if is_dxt1 { if color0 > color1 { if chosen_use_0 { swap(&mut color0, &mut color1); // Indexes are packed 2 bits wide, swap index 0/1 but preserve 2/3. let filter = (chosen_indices & 0xAAAA_AAAA) >> 1; chosen_indices ^= filter ^ 0x5555_5555; } } else if !chosen_use_0 { swap(&mut color0, &mut color1); // Indexes are packed 2 bits wide, swap index 0/1 and 2/3. chosen_indices ^= 0x5555_5555; } } // encode everything. dest[0] = color0 as u8; dest[1] = (color0 >> 8) as u8; dest[2] = color1 as u8; dest[3] = (color1 >> 8) as u8; for i in 0..4 { dest[i + 4] = (chosen_indices >> (i * 8)) as u8; } } /// Encodes a buffer of 16 alpha bytes into a dxt5 alpha index table, /// where the alpha table they are indexed against is created by /// calling alpha_table_dxt5(alpha0, alpha1) /// returns the resulting error and alpha table fn encode_dxt5_alpha(alpha0: u8, alpha1: u8, alphas: &[u8; 16]) -> (i32, u64) { // create a table for the given alpha ranges let table = alpha_table_dxt5(alpha0, alpha1); let mut indices = 0u64; let mut total_error = 0i32; // least error brute force search for (i, &a) in alphas.iter().enumerate() { let (index, error) = table .iter() .enumerate() .map(|(i, &e)| (i, square(i32::from(e) - i32::from(a)))) .min_by_key(|&(_, e)| e) .unwrap(); total_error += error; indices |= (index as u64) << (i * 3); } (total_error, indices) } /// Encodes a RGBAx16 sequence of bytes to a 16 bytes DXT5 block fn encode_dxt5_block(source: &[u8], dest: &mut [u8]) { assert!(source.len() == 64 && dest.len() == 16); // perform dxt color encoding encode_dxt_colors(source, &mut dest[8..16], false); // copy out the alpha bytes let mut alphas = [0; 16]; for i in 0..16 { alphas[i] = source[i * 4 + 3]; } // try both alpha compression methods, see which has the least error. let alpha07 = alphas.iter().cloned().min().unwrap(); let alpha17 = alphas.iter().cloned().max().unwrap(); let (error7, indices7) = encode_dxt5_alpha(alpha07, alpha17, &alphas); // if all alphas are 0 or 255 it doesn't particularly matter what we do here. let alpha05 = alphas .iter() .cloned() .filter(|&i| i != 255) .max() .unwrap_or(255); let alpha15 = alphas .iter() .cloned() .filter(|&i| i != 0) .min() .unwrap_or(0); let (error5, indices5) = encode_dxt5_alpha(alpha05, alpha15, &alphas); // pick the best one, encode the min/max values let mut alpha_table = if error5 < error7 { dest[0] = alpha05; dest[1] = alpha15; indices5 } else { dest[0] = alpha07; dest[1] = alpha17; indices7 }; // encode the alphas for byte in dest[2..8].iter_mut() { *byte = alpha_table as u8; alpha_table >>= 8; } } /// Encodes a RGBAx16 sequence of bytes into a 16 bytes DXT3 block fn encode_dxt3_block(source: &[u8], dest: &mut [u8]) { assert!(source.len() == 64 && dest.len() == 16); // perform dxt color encoding encode_dxt_colors(source, &mut dest[8..16], false); // DXT3 alpha compression is very simple, just round towards the nearest value // index the alpha values into the 64bit alpha table let mut alpha_table = 0u64; for i in 0..16 { let alpha = u64::from(source[i * 4 + 3]); let alpha = (alpha + 0x8) / 0x11; alpha_table |= alpha << (i * 4); } // encode the alpha values for byte in &mut dest[0..8] { *byte = alpha_table as u8; alpha_table >>= 8; } } /// Encodes a RGBx16 sequence of bytes into a 8 bytes DXT1 block fn encode_dxt1_block(source: &[u8], dest: &mut [u8]) { assert!(source.len() == 48 && dest.len() == 8); // perform dxt color encoding encode_dxt_colors(source, dest, true); } /// Decode a row of DXT1 data to four rows of RGBA data. /// source.len() should be a multiple of 8, otherwise this panics. fn encode_dxt1_row(source: &[u8]) -> Vec { assert!(source.len() % 48 == 0); let block_count = source.len() / 48; let mut dest = vec![0u8; block_count * 8]; // contains the 16 decoded pixels per block let mut decoded_block = [0u8; 48]; for (x, encoded_block) in dest.chunks_mut(8).enumerate() { // copy the values from the decoded block to linewise RGB layout for line in 0..4 { let offset = (block_count * line + x) * 12; decoded_block[line * 12..(line + 1) * 12].copy_from_slice(&source[offset..offset + 12]); } encode_dxt1_block(&decoded_block, encoded_block); } dest } /// Decode a row of DXT3 data to four rows of RGBA data. /// source.len() should be a multiple of 16, otherwise this panics. fn encode_dxt3_row(source: &[u8]) -> Vec { assert!(source.len() % 64 == 0); let block_count = source.len() / 64; let mut dest = vec![0u8; block_count * 16]; // contains the 16 decoded pixels per block let mut decoded_block = [0u8; 64]; for (x, encoded_block) in dest.chunks_mut(16).enumerate() { // copy the values from the decoded block to linewise RGB layout for line in 0..4 { let offset = (block_count * line + x) * 16; decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]); } encode_dxt3_block(&decoded_block, encoded_block); } dest } /// Decode a row of DXT5 data to four rows of RGBA data. /// source.len() should be a multiple of 16, otherwise this panics. fn encode_dxt5_row(source: &[u8]) -> Vec { assert!(source.len() % 64 == 0); let block_count = source.len() / 64; let mut dest = vec![0u8; block_count * 16]; // contains the 16 decoded pixels per block let mut decoded_block = [0u8; 64]; for (x, encoded_block) in dest.chunks_mut(16).enumerate() { // copy the values from the decoded block to linewise RGB layout for line in 0..4 { let offset = (block_count * line + x) * 16; decoded_block[line * 16..(line + 1) * 16].copy_from_slice(&source[offset..offset + 16]); } encode_dxt5_block(&decoded_block, encoded_block); } dest }