use super::header::{Header, ImageType, ALPHA_BIT_MASK, SCREEN_ORIGIN_BIT_MASK}; use crate::{ color::{ColorType, ExtendedColorType}, error::{ ImageError, ImageResult, LimitError, LimitErrorKind, UnsupportedError, UnsupportedErrorKind, }, image::{ImageDecoder, ImageFormat, ImageReadBuffer}, }; use byteorder::ReadBytesExt; use std::{ convert::TryFrom, io::{self, Read, Seek}, mem, }; struct ColorMap { /// sizes in bytes start_offset: usize, entry_size: usize, bytes: Vec, } impl ColorMap { pub(crate) fn from_reader( r: &mut dyn Read, start_offset: u16, num_entries: u16, bits_per_entry: u8, ) -> ImageResult { let bytes_per_entry = (bits_per_entry as usize + 7) / 8; let mut bytes = vec![0; bytes_per_entry * num_entries as usize]; r.read_exact(&mut bytes)?; Ok(ColorMap { entry_size: bytes_per_entry, start_offset: start_offset as usize, bytes, }) } /// Get one entry from the color map pub(crate) fn get(&self, index: usize) -> Option<&[u8]> { let entry = self.start_offset + self.entry_size * index; self.bytes.get(entry..entry + self.entry_size) } } /// The representation of a TGA decoder pub struct TgaDecoder { r: R, width: usize, height: usize, bytes_per_pixel: usize, has_loaded_metadata: bool, image_type: ImageType, color_type: ColorType, original_color_type: Option, header: Header, color_map: Option, // Used in read_scanline line_read: Option, line_remain_buff: Vec, } impl TgaDecoder { /// Create a new decoder that decodes from the stream `r` pub fn new(r: R) -> ImageResult> { let mut decoder = TgaDecoder { r, width: 0, height: 0, bytes_per_pixel: 0, has_loaded_metadata: false, image_type: ImageType::Unknown, color_type: ColorType::L8, original_color_type: None, header: Header::default(), color_map: None, line_read: None, line_remain_buff: Vec::new(), }; decoder.read_metadata()?; Ok(decoder) } fn read_header(&mut self) -> ImageResult<()> { self.header = Header::from_reader(&mut self.r)?; self.image_type = ImageType::new(self.header.image_type); self.width = self.header.image_width as usize; self.height = self.header.image_height as usize; self.bytes_per_pixel = (self.header.pixel_depth as usize + 7) / 8; Ok(()) } fn read_metadata(&mut self) -> ImageResult<()> { if !self.has_loaded_metadata { self.read_header()?; self.read_image_id()?; self.read_color_map()?; self.read_color_information()?; self.has_loaded_metadata = true; } Ok(()) } /// Loads the color information for the decoder /// /// To keep things simple, we won't handle bit depths that aren't divisible /// by 8 and are larger than 32. fn read_color_information(&mut self) -> ImageResult<()> { if self.header.pixel_depth % 8 != 0 || self.header.pixel_depth > 32 { // Bit depth must be divisible by 8, and must be less than or equal // to 32. return Err(ImageError::Unsupported( UnsupportedError::from_format_and_kind( ImageFormat::Tga.into(), UnsupportedErrorKind::Color(ExtendedColorType::Unknown( self.header.pixel_depth, )), ), )); } let num_alpha_bits = self.header.image_desc & ALPHA_BIT_MASK; let other_channel_bits = if self.header.map_type != 0 { self.header.map_entry_size } else { if num_alpha_bits > self.header.pixel_depth { return Err(ImageError::Unsupported( UnsupportedError::from_format_and_kind( ImageFormat::Tga.into(), UnsupportedErrorKind::Color(ExtendedColorType::Unknown( self.header.pixel_depth, )), ), )); } self.header.pixel_depth - num_alpha_bits }; let color = self.image_type.is_color(); match (num_alpha_bits, other_channel_bits, color) { // really, the encoding is BGR and BGRA, this is fixed // up with `TgaDecoder::reverse_encoding`. (0, 32, true) => self.color_type = ColorType::Rgba8, (8, 24, true) => self.color_type = ColorType::Rgba8, (0, 24, true) => self.color_type = ColorType::Rgb8, (8, 8, false) => self.color_type = ColorType::La8, (0, 8, false) => self.color_type = ColorType::L8, (8, 0, false) => { // alpha-only image is treated as L8 self.color_type = ColorType::L8; self.original_color_type = Some(ExtendedColorType::A8); } _ => { return Err(ImageError::Unsupported( UnsupportedError::from_format_and_kind( ImageFormat::Tga.into(), UnsupportedErrorKind::Color(ExtendedColorType::Unknown( self.header.pixel_depth, )), ), )) } } Ok(()) } /// Read the image id field /// /// We're not interested in this field, so this function skips it if it /// is present fn read_image_id(&mut self) -> ImageResult<()> { self.r .seek(io::SeekFrom::Current(i64::from(self.header.id_length)))?; Ok(()) } fn read_color_map(&mut self) -> ImageResult<()> { if self.header.map_type == 1 { // FIXME: we could reverse the map entries, which avoids having to reverse all pixels // in the final output individually. self.color_map = Some(ColorMap::from_reader( &mut self.r, self.header.map_origin, self.header.map_length, self.header.map_entry_size, )?); } Ok(()) } /// Expands indices into its mapped color fn expand_color_map(&self, pixel_data: &[u8]) -> io::Result> { #[inline] fn bytes_to_index(bytes: &[u8]) -> usize { let mut result = 0usize; for byte in bytes.iter() { result = result << 8 | *byte as usize; } result } let bytes_per_entry = (self.header.map_entry_size as usize + 7) / 8; let mut result = Vec::with_capacity(self.width * self.height * bytes_per_entry); if self.bytes_per_pixel == 0 { return Err(io::ErrorKind::Other.into()); } let color_map = self .color_map .as_ref() .ok_or_else(|| io::Error::from(io::ErrorKind::Other))?; for chunk in pixel_data.chunks(self.bytes_per_pixel) { let index = bytes_to_index(chunk); if let Some(color) = color_map.get(index) { result.extend_from_slice(color); } else { return Err(io::ErrorKind::Other.into()); } } Ok(result) } /// Reads a run length encoded data for given number of bytes fn read_encoded_data(&mut self, num_bytes: usize) -> io::Result> { let mut pixel_data = Vec::with_capacity(num_bytes); let mut repeat_buf = Vec::with_capacity(self.bytes_per_pixel); while pixel_data.len() < num_bytes { let run_packet = self.r.read_u8()?; // If the highest bit in `run_packet` is set, then we repeat pixels // // Note: the TGA format adds 1 to both counts because having a count // of 0 would be pointless. if (run_packet & 0x80) != 0 { // high bit set, so we will repeat the data let repeat_count = ((run_packet & !0x80) + 1) as usize; self.r .by_ref() .take(self.bytes_per_pixel as u64) .read_to_end(&mut repeat_buf)?; // get the repeating pixels from the bytes of the pixel stored in `repeat_buf` let data = repeat_buf .iter() .cycle() .take(repeat_count * self.bytes_per_pixel); pixel_data.extend(data); repeat_buf.clear(); } else { // not set, so `run_packet+1` is the number of non-encoded pixels let num_raw_bytes = (run_packet + 1) as usize * self.bytes_per_pixel; self.r .by_ref() .take(num_raw_bytes as u64) .read_to_end(&mut pixel_data)?; } } if pixel_data.len() > num_bytes { // FIXME: the last packet contained more data than we asked for! // This is at least a warning. We truncate the data since some methods rely on the // length to be accurate in the success case. pixel_data.truncate(num_bytes); } Ok(pixel_data) } /// Reads a run length encoded packet fn read_all_encoded_data(&mut self) -> ImageResult> { let num_bytes = self.width * self.height * self.bytes_per_pixel; Ok(self.read_encoded_data(num_bytes)?) } /// Reads a run length encoded line fn read_encoded_line(&mut self) -> io::Result> { let line_num_bytes = self.width * self.bytes_per_pixel; let remain_len = self.line_remain_buff.len(); if remain_len >= line_num_bytes { // `Vec::split_to` if std had it let bytes = { let bytes_after = self.line_remain_buff.split_off(line_num_bytes); mem::replace(&mut self.line_remain_buff, bytes_after) }; return Ok(bytes); } let num_bytes = line_num_bytes - remain_len; let line_data = self.read_encoded_data(num_bytes)?; let mut pixel_data = Vec::with_capacity(line_num_bytes); pixel_data.append(&mut self.line_remain_buff); pixel_data.extend_from_slice(&line_data[..num_bytes]); // put the remain data to line_remain_buff. // expects `self.line_remain_buff` to be empty from // the above `pixel_data.append` call debug_assert!(self.line_remain_buff.is_empty()); self.line_remain_buff .extend_from_slice(&line_data[num_bytes..]); Ok(pixel_data) } /// Reverse from BGR encoding to RGB encoding /// /// TGA files are stored in the BGRA encoding. This function swaps /// the blue and red bytes in the `pixels` array. fn reverse_encoding_in_output(&mut self, pixels: &mut [u8]) { // We only need to reverse the encoding of color images match self.color_type { ColorType::Rgb8 | ColorType::Rgba8 => { for chunk in pixels.chunks_mut(self.color_type.bytes_per_pixel().into()) { chunk.swap(0, 2); } } _ => {} } } /// Flip the image vertically depending on the screen origin bit /// /// The bit in position 5 of the image descriptor byte is the screen origin bit. /// If it's 1, the origin is in the top left corner. /// If it's 0, the origin is in the bottom left corner. /// This function checks the bit, and if it's 0, flips the image vertically. fn flip_vertically(&mut self, pixels: &mut [u8]) { if self.is_flipped_vertically() { if self.height == 0 { return; } let num_bytes = pixels.len(); let width_bytes = num_bytes / self.height; // Flip the image vertically. for vertical_index in 0..(self.height / 2) { let vertical_target = (self.height - vertical_index) * width_bytes - width_bytes; for horizontal_index in 0..width_bytes { let source = vertical_index * width_bytes + horizontal_index; let target = vertical_target + horizontal_index; pixels.swap(target, source); } } } } /// Check whether the image is vertically flipped /// /// The bit in position 5 of the image descriptor byte is the screen origin bit. /// If it's 1, the origin is in the top left corner. /// If it's 0, the origin is in the bottom left corner. /// This function checks the bit, and if it's 0, flips the image vertically. fn is_flipped_vertically(&self) -> bool { let screen_origin_bit = SCREEN_ORIGIN_BIT_MASK & self.header.image_desc != 0; !screen_origin_bit } fn read_scanline(&mut self, buf: &mut [u8]) -> io::Result { if let Some(line_read) = self.line_read { if line_read == self.height { return Ok(0); } } // read the pixels from the data region let mut pixel_data = if self.image_type.is_encoded() { self.read_encoded_line()? } else { let num_raw_bytes = self.width * self.bytes_per_pixel; let mut buf = vec![0; num_raw_bytes]; self.r.by_ref().read_exact(&mut buf)?; buf }; // expand the indices using the color map if necessary if self.image_type.is_color_mapped() { pixel_data = self.expand_color_map(&pixel_data)?; } self.reverse_encoding_in_output(&mut pixel_data); // copy to the output buffer buf[..pixel_data.len()].copy_from_slice(&pixel_data); self.line_read = Some(self.line_read.unwrap_or(0) + 1); Ok(pixel_data.len()) } } impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for TgaDecoder { type Reader = TGAReader; fn dimensions(&self) -> (u32, u32) { (self.width as u32, self.height as u32) } fn color_type(&self) -> ColorType { self.color_type } fn original_color_type(&self) -> ExtendedColorType { self.original_color_type .unwrap_or_else(|| self.color_type().into()) } fn scanline_bytes(&self) -> u64 { // This cannot overflow because TGA has a maximum width of u16::MAX_VALUE and // `bytes_per_pixel` is a u8. u64::from(self.color_type.bytes_per_pixel()) * self.width as u64 } fn into_reader(self) -> ImageResult { Ok(TGAReader { buffer: ImageReadBuffer::new(self.scanline_bytes(), self.total_bytes()), decoder: self, }) } fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> { assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes())); // In indexed images, we might need more bytes than pixels to read them. That's nonsensical // to encode but we'll not want to crash. let mut fallback_buf = vec![]; // read the pixels from the data region let rawbuf = if self.image_type.is_encoded() { let pixel_data = self.read_all_encoded_data()?; if self.bytes_per_pixel <= usize::from(self.color_type.bytes_per_pixel()) { buf[..pixel_data.len()].copy_from_slice(&pixel_data); &buf[..pixel_data.len()] } else { fallback_buf = pixel_data; &fallback_buf[..] } } else { let num_raw_bytes = self.width * self.height * self.bytes_per_pixel; if self.bytes_per_pixel <= usize::from(self.color_type.bytes_per_pixel()) { self.r.by_ref().read_exact(&mut buf[..num_raw_bytes])?; &buf[..num_raw_bytes] } else { fallback_buf.resize(num_raw_bytes, 0u8); self.r .by_ref() .read_exact(&mut fallback_buf[..num_raw_bytes])?; &fallback_buf[..num_raw_bytes] } }; // expand the indices using the color map if necessary if self.image_type.is_color_mapped() { let pixel_data = self.expand_color_map(rawbuf)?; // not enough data to fill the buffer, or would overflow the buffer if pixel_data.len() != buf.len() { return Err(ImageError::Limits(LimitError::from_kind( LimitErrorKind::DimensionError, ))); } buf.copy_from_slice(&pixel_data); } self.reverse_encoding_in_output(buf); self.flip_vertically(buf); Ok(()) } } pub struct TGAReader { buffer: ImageReadBuffer, decoder: TgaDecoder, } impl Read for TGAReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { let decoder = &mut self.decoder; self.buffer.read(buf, |buf| decoder.read_scanline(buf)) } }