use std::io; use std::io::{Seek, Write}; use std::path::Path; use std::u32; #[cfg(feature = "gif")] use crate::codecs::gif; #[cfg(feature = "png")] use crate::codecs::png; #[cfg(feature = "pnm")] use crate::codecs::pnm; use crate::buffer_::{ ConvertBuffer, Gray16Image, GrayAlpha16Image, GrayAlphaImage, GrayImage, ImageBuffer, Rgb16Image, RgbImage, Rgba16Image, RgbaImage, }; use crate::color::{self, IntoColor}; use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind}; use crate::flat::FlatSamples; use crate::image::{ GenericImage, GenericImageView, ImageDecoder, ImageEncoder, ImageFormat, ImageOutputFormat, }; use crate::imageops; use crate::io::free_functions; use crate::math::resize_dimensions; use crate::traits::Pixel; use crate::{image, Luma, LumaA}; use crate::{Rgb32FImage, Rgba32FImage}; /// A Dynamic Image /// /// This represents a _matrix_ of _pixels_ which are _convertible_ from and to an _RGBA_ /// representation. More variants that adhere to these principles may get added in the future, in /// particular to cover other combinations typically used. /// /// # Usage /// /// This type can act as a converter between specific `ImageBuffer` instances. /// /// ``` /// use image::{DynamicImage, GrayImage, RgbImage}; /// /// let rgb: RgbImage = RgbImage::new(10, 10); /// let luma: GrayImage = DynamicImage::ImageRgb8(rgb).into_luma8(); /// ``` /// /// # Design /// /// There is no goal to provide an all-encompassing type with all possible memory layouts. This /// would hardly be feasible as a simple enum, due to the sheer number of combinations of channel /// kinds, channel order, and bit depth. Rather, this type provides an opinionated selection with /// normalized channel order which can store common pixel values without loss. #[derive(Clone, Debug, PartialEq)] #[non_exhaustive] pub enum DynamicImage { /// Each pixel in this image is 8-bit Luma ImageLuma8(GrayImage), /// Each pixel in this image is 8-bit Luma with alpha ImageLumaA8(GrayAlphaImage), /// Each pixel in this image is 8-bit Rgb ImageRgb8(RgbImage), /// Each pixel in this image is 8-bit Rgb with alpha ImageRgba8(RgbaImage), /// Each pixel in this image is 16-bit Luma ImageLuma16(Gray16Image), /// Each pixel in this image is 16-bit Luma with alpha ImageLumaA16(GrayAlpha16Image), /// Each pixel in this image is 16-bit Rgb ImageRgb16(Rgb16Image), /// Each pixel in this image is 16-bit Rgb with alpha ImageRgba16(Rgba16Image), /// Each pixel in this image is 32-bit float Rgb ImageRgb32F(Rgb32FImage), /// Each pixel in this image is 32-bit float Rgb with alpha ImageRgba32F(Rgba32FImage), } macro_rules! dynamic_map( ($dynimage: expr, $image: pat => $action: expr) => ({ use DynamicImage::*; match $dynimage { ImageLuma8($image) => ImageLuma8($action), ImageLumaA8($image) => ImageLumaA8($action), ImageRgb8($image) => ImageRgb8($action), ImageRgba8($image) => ImageRgba8($action), ImageLuma16($image) => ImageLuma16($action), ImageLumaA16($image) => ImageLumaA16($action), ImageRgb16($image) => ImageRgb16($action), ImageRgba16($image) => ImageRgba16($action), ImageRgb32F($image) => ImageRgb32F($action), ImageRgba32F($image) => ImageRgba32F($action), } }); ($dynimage: expr, |$image: pat| $action: expr) => ( match $dynimage { DynamicImage::ImageLuma8($image) => $action, DynamicImage::ImageLumaA8($image) => $action, DynamicImage::ImageRgb8($image) => $action, DynamicImage::ImageRgba8($image) => $action, DynamicImage::ImageLuma16($image) => $action, DynamicImage::ImageLumaA16($image) => $action, DynamicImage::ImageRgb16($image) => $action, DynamicImage::ImageRgba16($image) => $action, DynamicImage::ImageRgb32F($image) => $action, DynamicImage::ImageRgba32F($image) => $action, } ); ); impl DynamicImage { /// Creates a dynamic image backed by a buffer of gray pixels. pub fn new_luma8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLuma8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of gray /// pixels with transparency. pub fn new_luma_a8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLumaA8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGB pixels. pub fn new_rgb8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgb8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGBA pixels. pub fn new_rgba8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgba8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of gray pixels. pub fn new_luma16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLuma16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of gray /// pixels with transparency. pub fn new_luma_a16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLumaA16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGB pixels. pub fn new_rgb16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgb16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGBA pixels. pub fn new_rgba16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgba16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGB pixels. pub fn new_rgb32f(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgb32F(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGBA pixels. pub fn new_rgba32f(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgba32F(ImageBuffer::new(w, h)) } /// Decodes an encoded image into a dynamic image. pub fn from_decoder<'a>(decoder: impl ImageDecoder<'a>) -> ImageResult { decoder_to_image(decoder) } /// Returns a copy of this image as an RGB image. pub fn to_rgb8(&self) -> RgbImage { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as an RGB image. pub fn to_rgb16(&self) -> Rgb16Image { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as an RGB image. pub fn to_rgb32f(&self) -> Rgb32FImage { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as an RGBA image. pub fn to_rgba8(&self) -> RgbaImage { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as an RGBA image. pub fn to_rgba16(&self) -> Rgba16Image { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as an RGBA image. pub fn to_rgba32f(&self) -> Rgba32FImage { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as a Luma image. pub fn to_luma8(&self) -> GrayImage { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as a Luma image. pub fn to_luma16(&self) -> Gray16Image { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as a Luma image. pub fn to_luma32f(&self) -> ImageBuffer, Vec> { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as a LumaA image. pub fn to_luma_alpha8(&self) -> GrayAlphaImage { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as a LumaA image. pub fn to_luma_alpha16(&self) -> GrayAlpha16Image { dynamic_map!(*self, |ref p| p.convert()) } /// Returns a copy of this image as a LumaA image. pub fn to_luma_alpha32f(&self) -> ImageBuffer, Vec> { dynamic_map!(*self, |ref p| p.convert()) } /// Consume the image and returns a RGB image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgb8(self) -> RgbImage { match self { DynamicImage::ImageRgb8(x) => x, x => x.to_rgb8(), } } /// Consume the image and returns a RGB image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgb16(self) -> Rgb16Image { match self { DynamicImage::ImageRgb16(x) => x, x => x.to_rgb16(), } } /// Consume the image and returns a RGB image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgb32f(self) -> Rgb32FImage { match self { DynamicImage::ImageRgb32F(x) => x, x => x.to_rgb32f(), } } /// Consume the image and returns a RGBA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgba8(self) -> RgbaImage { match self { DynamicImage::ImageRgba8(x) => x, x => x.to_rgba8(), } } /// Consume the image and returns a RGBA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgba16(self) -> Rgba16Image { match self { DynamicImage::ImageRgba16(x) => x, x => x.to_rgba16(), } } /// Consume the image and returns a RGBA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgba32f(self) -> Rgba32FImage { match self { DynamicImage::ImageRgba32F(x) => x, x => x.to_rgba32f(), } } /// Consume the image and returns a Luma image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_luma8(self) -> GrayImage { match self { DynamicImage::ImageLuma8(x) => x, x => x.to_luma8(), } } /// Consume the image and returns a Luma image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_luma16(self) -> Gray16Image { match self { DynamicImage::ImageLuma16(x) => x, x => x.to_luma16(), } } /// Consume the image and returns a LumaA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_luma_alpha8(self) -> GrayAlphaImage { match self { DynamicImage::ImageLumaA8(x) => x, x => x.to_luma_alpha8(), } } /// Consume the image and returns a LumaA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_luma_alpha16(self) -> GrayAlpha16Image { match self { DynamicImage::ImageLumaA16(x) => x, x => x.to_luma_alpha16(), } } /// Return a cut-out of this image delimited by the bounding rectangle. /// /// Note: this method does *not* modify the object, /// and its signature will be replaced with `crop_imm()`'s in the 0.24 release pub fn crop(&mut self, x: u32, y: u32, width: u32, height: u32) -> DynamicImage { dynamic_map!(*self, ref mut p => imageops::crop(p, x, y, width, height).to_image()) } /// Return a cut-out of this image delimited by the bounding rectangle. pub fn crop_imm(&self, x: u32, y: u32, width: u32, height: u32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::crop_imm(p, x, y, width, height).to_image()) } /// Return a reference to an 8bit RGB image pub fn as_rgb8(&self) -> Option<&RgbImage> { match *self { DynamicImage::ImageRgb8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit RGB image pub fn as_mut_rgb8(&mut self) -> Option<&mut RgbImage> { match *self { DynamicImage::ImageRgb8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit RGBA image pub fn as_rgba8(&self) -> Option<&RgbaImage> { match *self { DynamicImage::ImageRgba8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit RGBA image pub fn as_mut_rgba8(&mut self) -> Option<&mut RgbaImage> { match *self { DynamicImage::ImageRgba8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit Grayscale image pub fn as_luma8(&self) -> Option<&GrayImage> { match *self { DynamicImage::ImageLuma8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit Grayscale image pub fn as_mut_luma8(&mut self) -> Option<&mut GrayImage> { match *self { DynamicImage::ImageLuma8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit Grayscale image with an alpha channel pub fn as_luma_alpha8(&self) -> Option<&GrayAlphaImage> { match *self { DynamicImage::ImageLumaA8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit Grayscale image with an alpha channel pub fn as_mut_luma_alpha8(&mut self) -> Option<&mut GrayAlphaImage> { match *self { DynamicImage::ImageLumaA8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit RGB image pub fn as_rgb16(&self) -> Option<&Rgb16Image> { match *self { DynamicImage::ImageRgb16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit RGB image pub fn as_mut_rgb16(&mut self) -> Option<&mut Rgb16Image> { match *self { DynamicImage::ImageRgb16(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit RGBA image pub fn as_rgba16(&self) -> Option<&Rgba16Image> { match *self { DynamicImage::ImageRgba16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit RGBA image pub fn as_mut_rgba16(&mut self) -> Option<&mut Rgba16Image> { match *self { DynamicImage::ImageRgba16(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 32bit RGB image pub fn as_rgb32f(&self) -> Option<&Rgb32FImage> { match *self { DynamicImage::ImageRgb32F(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 32bit RGB image pub fn as_mut_rgb32f(&mut self) -> Option<&mut Rgb32FImage> { match *self { DynamicImage::ImageRgb32F(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 32bit RGBA image pub fn as_rgba32f(&self) -> Option<&Rgba32FImage> { match *self { DynamicImage::ImageRgba32F(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit RGBA image pub fn as_mut_rgba32f(&mut self) -> Option<&mut Rgba32FImage> { match *self { DynamicImage::ImageRgba32F(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit Grayscale image pub fn as_luma16(&self) -> Option<&Gray16Image> { match *self { DynamicImage::ImageLuma16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit Grayscale image pub fn as_mut_luma16(&mut self) -> Option<&mut Gray16Image> { match *self { DynamicImage::ImageLuma16(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit Grayscale image with an alpha channel pub fn as_luma_alpha16(&self) -> Option<&GrayAlpha16Image> { match *self { DynamicImage::ImageLumaA16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit Grayscale image with an alpha channel pub fn as_mut_luma_alpha16(&mut self) -> Option<&mut GrayAlpha16Image> { match *self { DynamicImage::ImageLumaA16(ref mut p) => Some(p), _ => None, } } /// Return a view on the raw sample buffer for 8 bit per channel images. pub fn as_flat_samples_u8(&self) -> Option> { match *self { DynamicImage::ImageLuma8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageLumaA8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgb8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgba8(ref p) => Some(p.as_flat_samples()), _ => None, } } /// Return a view on the raw sample buffer for 16 bit per channel images. pub fn as_flat_samples_u16(&self) -> Option> { match *self { DynamicImage::ImageLuma16(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageLumaA16(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgb16(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgba16(ref p) => Some(p.as_flat_samples()), _ => None, } } /// Return a view on the raw sample buffer for 32bit per channel images. pub fn as_flat_samples_f32(&self) -> Option> { match *self { DynamicImage::ImageRgb32F(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgba32F(ref p) => Some(p.as_flat_samples()), _ => None, } } /// Return this image's pixels as a native endian byte slice. pub fn as_bytes(&self) -> &[u8] { // we can do this because every variant contains an `ImageBuffer<_, Vec<_>>` dynamic_map!(*self, |ref image_buffer| bytemuck::cast_slice( image_buffer.as_raw().as_ref() )) } // TODO: choose a name under which to expose? fn inner_bytes(&self) -> &[u8] { // we can do this because every variant contains an `ImageBuffer<_, Vec<_>>` dynamic_map!(*self, |ref image_buffer| bytemuck::cast_slice( image_buffer.inner_pixels() )) } /// Return this image's pixels as a byte vector. If the `ImageBuffer` /// container is `Vec`, this operation is free. Otherwise, a copy /// is returned. pub fn into_bytes(self) -> Vec { // we can do this because every variant contains an `ImageBuffer<_, Vec<_>>` dynamic_map!(self, |image_buffer| { match bytemuck::allocation::try_cast_vec(image_buffer.into_raw()) { Ok(vec) => vec, Err((_, vec)) => { // Fallback: vector requires an exact alignment and size match // Reuse of the allocation as done in the Ok branch only works if the // underlying container is exactly Vec (or compatible but that's the only // alternative at the time of writing). // In all other cases we must allocate a new vector with the 'same' contents. bytemuck::cast_slice(&vec).to_owned() } } }) } /// Return a copy of this image's pixels as a byte vector. /// Deprecated, because it does nothing but hide an expensive clone operation. #[deprecated( since = "0.24.0", note = "use `image.into_bytes()` or `image.as_bytes().to_vec()` instead" )] pub fn to_bytes(&self) -> Vec { self.as_bytes().to_vec() } /// Return this image's color type. pub fn color(&self) -> color::ColorType { match *self { DynamicImage::ImageLuma8(_) => color::ColorType::L8, DynamicImage::ImageLumaA8(_) => color::ColorType::La8, DynamicImage::ImageRgb8(_) => color::ColorType::Rgb8, DynamicImage::ImageRgba8(_) => color::ColorType::Rgba8, DynamicImage::ImageLuma16(_) => color::ColorType::L16, DynamicImage::ImageLumaA16(_) => color::ColorType::La16, DynamicImage::ImageRgb16(_) => color::ColorType::Rgb16, DynamicImage::ImageRgba16(_) => color::ColorType::Rgba16, DynamicImage::ImageRgb32F(_) => color::ColorType::Rgb32F, DynamicImage::ImageRgba32F(_) => color::ColorType::Rgba32F, } } /// Returns the width of the underlying image pub fn width(&self) -> u32 { dynamic_map!(*self, |ref p| { p.width() }) } /// Returns the height of the underlying image pub fn height(&self) -> u32 { dynamic_map!(*self, |ref p| { p.height() }) } /// Return a grayscale version of this image. /// Returns `Luma` images in most cases. However, for `f32` images, /// this will return a grayscale `Rgb/Rgba` image instead. pub fn grayscale(&self) -> DynamicImage { match *self { DynamicImage::ImageLuma8(ref p) => DynamicImage::ImageLuma8(p.clone()), DynamicImage::ImageLumaA8(ref p) => { DynamicImage::ImageLumaA8(imageops::grayscale_alpha(p)) } DynamicImage::ImageRgb8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)), DynamicImage::ImageRgba8(ref p) => { DynamicImage::ImageLumaA8(imageops::grayscale_alpha(p)) } DynamicImage::ImageLuma16(ref p) => DynamicImage::ImageLuma16(p.clone()), DynamicImage::ImageLumaA16(ref p) => { DynamicImage::ImageLumaA16(imageops::grayscale_alpha(p)) } DynamicImage::ImageRgb16(ref p) => DynamicImage::ImageLuma16(imageops::grayscale(p)), DynamicImage::ImageRgba16(ref p) => { DynamicImage::ImageLumaA16(imageops::grayscale_alpha(p)) } DynamicImage::ImageRgb32F(ref p) => { DynamicImage::ImageRgb32F(imageops::grayscale_with_type(p)) } DynamicImage::ImageRgba32F(ref p) => { DynamicImage::ImageRgba32F(imageops::grayscale_with_type_alpha(p)) } } } /// Invert the colors of this image. /// This method operates inplace. pub fn invert(&mut self) { dynamic_map!(*self, |ref mut p| imageops::invert(p)) } /// Resize this image using the specified filter algorithm. /// Returns a new image. The image's aspect ratio is preserved. /// The image is scaled to the maximum possible size that fits /// within the bounds specified by `nwidth` and `nheight`. pub fn resize(&self, nwidth: u32, nheight: u32, filter: imageops::FilterType) -> DynamicImage { if (nwidth, nheight) == self.dimensions() { return self.clone(); } let (width2, height2) = resize_dimensions(self.width(), self.height(), nwidth, nheight, false); self.resize_exact(width2, height2, filter) } /// Resize this image using the specified filter algorithm. /// Returns a new image. Does not preserve aspect ratio. /// `nwidth` and `nheight` are the new image's dimensions pub fn resize_exact( &self, nwidth: u32, nheight: u32, filter: imageops::FilterType, ) -> DynamicImage { dynamic_map!(*self, ref p => imageops::resize(p, nwidth, nheight, filter)) } /// Scale this image down to fit within a specific size. /// Returns a new image. The image's aspect ratio is preserved. /// The image is scaled to the maximum possible size that fits /// within the bounds specified by `nwidth` and `nheight`. /// /// This method uses a fast integer algorithm where each source /// pixel contributes to exactly one target pixel. /// May give aliasing artifacts if new size is close to old size. pub fn thumbnail(&self, nwidth: u32, nheight: u32) -> DynamicImage { let (width2, height2) = resize_dimensions(self.width(), self.height(), nwidth, nheight, false); self.thumbnail_exact(width2, height2) } /// Scale this image down to a specific size. /// Returns a new image. Does not preserve aspect ratio. /// `nwidth` and `nheight` are the new image's dimensions. /// This method uses a fast integer algorithm where each source /// pixel contributes to exactly one target pixel. /// May give aliasing artifacts if new size is close to old size. pub fn thumbnail_exact(&self, nwidth: u32, nheight: u32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::thumbnail(p, nwidth, nheight)) } /// Resize this image using the specified filter algorithm. /// Returns a new image. The image's aspect ratio is preserved. /// The image is scaled to the maximum possible size that fits /// within the larger (relative to aspect ratio) of the bounds /// specified by `nwidth` and `nheight`, then cropped to /// fit within the other bound. pub fn resize_to_fill( &self, nwidth: u32, nheight: u32, filter: imageops::FilterType, ) -> DynamicImage { let (width2, height2) = resize_dimensions(self.width(), self.height(), nwidth, nheight, true); let mut intermediate = self.resize_exact(width2, height2, filter); let (iwidth, iheight) = intermediate.dimensions(); let ratio = u64::from(iwidth) * u64::from(nheight); let nratio = u64::from(nwidth) * u64::from(iheight); if nratio > ratio { intermediate.crop(0, (iheight - nheight) / 2, nwidth, nheight) } else { intermediate.crop((iwidth - nwidth) / 2, 0, nwidth, nheight) } } /// Performs a Gaussian blur on this image. /// `sigma` is a measure of how much to blur by. pub fn blur(&self, sigma: f32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::blur(p, sigma)) } /// Performs an unsharpen mask on this image. /// `sigma` is the amount to blur the image by. /// `threshold` is a control of how much to sharpen. /// /// See pub fn unsharpen(&self, sigma: f32, threshold: i32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::unsharpen(p, sigma, threshold)) } /// Filters this image with the specified 3x3 kernel. pub fn filter3x3(&self, kernel: &[f32]) -> DynamicImage { if kernel.len() != 9 { panic!("filter must be 3 x 3") } dynamic_map!(*self, ref p => imageops::filter3x3(p, kernel)) } /// Adjust the contrast of this image. /// `contrast` is the amount to adjust the contrast by. /// Negative values decrease the contrast and positive values increase the contrast. pub fn adjust_contrast(&self, c: f32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::contrast(p, c)) } /// Brighten the pixels of this image. /// `value` is the amount to brighten each pixel by. /// Negative values decrease the brightness and positive values increase it. pub fn brighten(&self, value: i32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::brighten(p, value)) } /// Hue rotate the supplied image. /// `value` is the degrees to rotate each pixel by. /// 0 and 360 do nothing, the rest rotates by the given degree value. /// just like the css webkit filter hue-rotate(180) pub fn huerotate(&self, value: i32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::huerotate(p, value)) } /// Flip this image vertically pub fn flipv(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::flip_vertical(p)) } /// Flip this image horizontally pub fn fliph(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::flip_horizontal(p)) } /// Rotate this image 90 degrees clockwise. pub fn rotate90(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::rotate90(p)) } /// Rotate this image 180 degrees clockwise. pub fn rotate180(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::rotate180(p)) } /// Rotate this image 270 degrees clockwise. pub fn rotate270(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::rotate270(p)) } /// Encode this image and write it to ```w```. /// /// Assumes the writer is buffered. In most cases, /// you should wrap your writer in a `BufWriter` for best performance. pub fn write_to>( &self, w: &mut W, format: F, ) -> ImageResult<()> { #[allow(unused_variables)] // When no features are supported let w = w; #[allow(unused_variables, unused_mut)] let mut bytes = self.inner_bytes(); #[allow(unused_variables)] let (width, height) = self.dimensions(); #[allow(unused_variables, unused_mut)] let mut color = self.color(); let format = format.into(); // TODO do not repeat this match statement across the crate #[allow(deprecated)] match format { #[cfg(feature = "png")] image::ImageOutputFormat::Png => { let p = png::PngEncoder::new(w); p.write_image(bytes, width, height, color)?; Ok(()) } #[cfg(feature = "pnm")] image::ImageOutputFormat::Pnm(subtype) => { let p = pnm::PnmEncoder::new(w).with_subtype(subtype); p.write_image(bytes, width, height, color)?; Ok(()) } #[cfg(feature = "gif")] image::ImageOutputFormat::Gif => { let mut g = gif::GifEncoder::new(w); g.encode_frame(crate::animation::Frame::new(self.to_rgba8()))?; Ok(()) } format => write_buffer_with_format(w, bytes, width, height, color, format), } } /// Encode this image with the provided encoder. pub fn write_with_encoder(&self, encoder: impl ImageEncoder) -> ImageResult<()> { dynamic_map!(self, |ref p| p.write_with_encoder(encoder)) } /// Saves the buffer to a file at the path specified. /// /// The image format is derived from the file extension. pub fn save(&self, path: Q) -> ImageResult<()> where Q: AsRef, { dynamic_map!(*self, |ref p| p.save(path)) } /// Saves the buffer to a file at the specified path in /// the specified format. /// /// See [`save_buffer_with_format`](fn.save_buffer_with_format.html) for /// supported types. pub fn save_with_format(&self, path: Q, format: ImageFormat) -> ImageResult<()> where Q: AsRef, { dynamic_map!(*self, |ref p| p.save_with_format(path, format)) } } impl From for DynamicImage { fn from(image: GrayImage) -> Self { DynamicImage::ImageLuma8(image) } } impl From for DynamicImage { fn from(image: GrayAlphaImage) -> Self { DynamicImage::ImageLumaA8(image) } } impl From for DynamicImage { fn from(image: RgbImage) -> Self { DynamicImage::ImageRgb8(image) } } impl From for DynamicImage { fn from(image: RgbaImage) -> Self { DynamicImage::ImageRgba8(image) } } impl From for DynamicImage { fn from(image: Gray16Image) -> Self { DynamicImage::ImageLuma16(image) } } impl From for DynamicImage { fn from(image: GrayAlpha16Image) -> Self { DynamicImage::ImageLumaA16(image) } } impl From for DynamicImage { fn from(image: Rgb16Image) -> Self { DynamicImage::ImageRgb16(image) } } impl From for DynamicImage { fn from(image: Rgba16Image) -> Self { DynamicImage::ImageRgba16(image) } } impl From for DynamicImage { fn from(image: Rgb32FImage) -> Self { DynamicImage::ImageRgb32F(image) } } impl From for DynamicImage { fn from(image: Rgba32FImage) -> Self { DynamicImage::ImageRgba32F(image) } } impl From, Vec>> for DynamicImage { fn from(image: ImageBuffer, Vec>) -> Self { DynamicImage::ImageRgb32F(image.convert()) } } impl From, Vec>> for DynamicImage { fn from(image: ImageBuffer, Vec>) -> Self { DynamicImage::ImageRgba32F(image.convert()) } } #[allow(deprecated)] impl GenericImageView for DynamicImage { type Pixel = color::Rgba; // TODO use f32 as default for best precision and unbounded color? fn dimensions(&self) -> (u32, u32) { dynamic_map!(*self, |ref p| p.dimensions()) } fn bounds(&self) -> (u32, u32, u32, u32) { dynamic_map!(*self, |ref p| p.bounds()) } fn get_pixel(&self, x: u32, y: u32) -> color::Rgba { dynamic_map!(*self, |ref p| p.get_pixel(x, y).to_rgba().into_color()) } } #[allow(deprecated)] impl GenericImage for DynamicImage { fn put_pixel(&mut self, x: u32, y: u32, pixel: color::Rgba) { match *self { DynamicImage::ImageLuma8(ref mut p) => p.put_pixel(x, y, pixel.to_luma()), DynamicImage::ImageLumaA8(ref mut p) => p.put_pixel(x, y, pixel.to_luma_alpha()), DynamicImage::ImageRgb8(ref mut p) => p.put_pixel(x, y, pixel.to_rgb()), DynamicImage::ImageRgba8(ref mut p) => p.put_pixel(x, y, pixel), DynamicImage::ImageLuma16(ref mut p) => p.put_pixel(x, y, pixel.to_luma().into_color()), DynamicImage::ImageLumaA16(ref mut p) => { p.put_pixel(x, y, pixel.to_luma_alpha().into_color()) } DynamicImage::ImageRgb16(ref mut p) => p.put_pixel(x, y, pixel.to_rgb().into_color()), DynamicImage::ImageRgba16(ref mut p) => p.put_pixel(x, y, pixel.into_color()), DynamicImage::ImageRgb32F(ref mut p) => p.put_pixel(x, y, pixel.to_rgb().into_color()), DynamicImage::ImageRgba32F(ref mut p) => p.put_pixel(x, y, pixel.into_color()), } } fn blend_pixel(&mut self, x: u32, y: u32, pixel: color::Rgba) { match *self { DynamicImage::ImageLuma8(ref mut p) => p.blend_pixel(x, y, pixel.to_luma()), DynamicImage::ImageLumaA8(ref mut p) => p.blend_pixel(x, y, pixel.to_luma_alpha()), DynamicImage::ImageRgb8(ref mut p) => p.blend_pixel(x, y, pixel.to_rgb()), DynamicImage::ImageRgba8(ref mut p) => p.blend_pixel(x, y, pixel), DynamicImage::ImageLuma16(ref mut p) => { p.blend_pixel(x, y, pixel.to_luma().into_color()) } DynamicImage::ImageLumaA16(ref mut p) => { p.blend_pixel(x, y, pixel.to_luma_alpha().into_color()) } DynamicImage::ImageRgb16(ref mut p) => p.blend_pixel(x, y, pixel.to_rgb().into_color()), DynamicImage::ImageRgba16(ref mut p) => p.blend_pixel(x, y, pixel.into_color()), DynamicImage::ImageRgb32F(ref mut p) => { p.blend_pixel(x, y, pixel.to_rgb().into_color()) } DynamicImage::ImageRgba32F(ref mut p) => p.blend_pixel(x, y, pixel.into_color()), } } /// Do not use is function: It is unimplemented! fn get_pixel_mut(&mut self, _: u32, _: u32) -> &mut color::Rgba { unimplemented!() } } impl Default for DynamicImage { fn default() -> Self { Self::ImageRgba8(Default::default()) } } /// Decodes an image and stores it into a dynamic image fn decoder_to_image<'a, I: ImageDecoder<'a>>(decoder: I) -> ImageResult { let (w, h) = decoder.dimensions(); let color_type = decoder.color_type(); let image = match color_type { color::ColorType::Rgb8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb8) } color::ColorType::Rgba8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba8) } color::ColorType::L8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLuma8) } color::ColorType::La8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLumaA8) } color::ColorType::Rgb16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb16) } color::ColorType::Rgba16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba16) } color::ColorType::Rgb32F => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb32F) } color::ColorType::Rgba32F => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba32F) } color::ColorType::L16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLuma16) } color::ColorType::La16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLumaA16) } }; match image { Some(image) => Ok(image), None => Err(ImageError::Parameter(ParameterError::from_kind( ParameterErrorKind::DimensionMismatch, ))), } } /// Open the image located at the path specified. /// The image's format is determined from the path's file extension. /// /// Try [`io::Reader`] for more advanced uses, including guessing the format based on the file's /// content before its path. /// /// [`io::Reader`]: io/struct.Reader.html pub fn open

(path: P) -> ImageResult where P: AsRef, { // thin wrapper function to strip generics before calling open_impl free_functions::open_impl(path.as_ref()) } /// Read a tuple containing the (width, height) of the image located at the specified path. /// This is faster than fully loading the image and then getting its dimensions. /// /// Try [`io::Reader`] for more advanced uses, including guessing the format based on the file's /// content before its path or manually supplying the format. /// /// [`io::Reader`]: io/struct.Reader.html pub fn image_dimensions

(path: P) -> ImageResult<(u32, u32)> where P: AsRef, { // thin wrapper function to strip generics before calling open_impl free_functions::image_dimensions_impl(path.as_ref()) } /// Saves the supplied buffer to a file at the path specified. /// /// The image format is derived from the file extension. The buffer is assumed to have /// the correct format according to the specified color type. /// /// This will lead to corrupted files if the buffer contains malformed data. Currently only /// jpeg, png, ico, pnm, bmp, exr and tiff files are supported. pub fn save_buffer

( path: P, buf: &[u8], width: u32, height: u32, color: color::ColorType, ) -> ImageResult<()> where P: AsRef, { // thin wrapper function to strip generics before calling save_buffer_impl free_functions::save_buffer_impl(path.as_ref(), buf, width, height, color) } /// Saves the supplied buffer to a file at the path specified /// in the specified format. /// /// The buffer is assumed to have the correct format according /// to the specified color type. /// This will lead to corrupted files if the buffer contains /// malformed data. Currently only jpeg, png, ico, bmp, exr and /// tiff files are supported. pub fn save_buffer_with_format

( path: P, buf: &[u8], width: u32, height: u32, color: color::ColorType, format: ImageFormat, ) -> ImageResult<()> where P: AsRef, { // thin wrapper function to strip generics free_functions::save_buffer_with_format_impl(path.as_ref(), buf, width, height, color, format) } /// Writes the supplied buffer to a writer in the specified format. /// /// The buffer is assumed to have the correct format according /// to the specified color type. /// This will lead to corrupted writers if the buffer contains /// malformed data. /// /// See [`ImageOutputFormat`](enum.ImageOutputFormat.html) for /// supported types. /// /// Assumes the writer is buffered. In most cases, /// you should wrap your writer in a `BufWriter` for best performance. pub fn write_buffer_with_format( buffered_writer: &mut W, buf: &[u8], width: u32, height: u32, color: color::ColorType, format: F, ) -> ImageResult<()> where W: Write + Seek, F: Into, { // thin wrapper function to strip generics free_functions::write_buffer_impl(buffered_writer, buf, width, height, color, format.into()) } /// Create a new image from a byte slice /// /// Makes an educated guess about the image format. /// TGA is not supported by this function. /// /// Try [`io::Reader`] for more advanced uses. /// /// [`io::Reader`]: io/struct.Reader.html pub fn load_from_memory(buffer: &[u8]) -> ImageResult { let format = free_functions::guess_format(buffer)?; load_from_memory_with_format(buffer, format) } /// Create a new image from a byte slice /// /// This is just a simple wrapper that constructs an `std::io::Cursor` around the buffer and then /// calls `load` with that reader. /// /// Try [`io::Reader`] for more advanced uses. /// /// [`load`]: fn.load.html /// [`io::Reader`]: io/struct.Reader.html #[inline(always)] pub fn load_from_memory_with_format(buf: &[u8], format: ImageFormat) -> ImageResult { let b = io::Cursor::new(buf); free_functions::load(b, format) } #[cfg(test)] mod bench { #[cfg(feature = "benchmarks")] use test; #[bench] #[cfg(feature = "benchmarks")] fn bench_conversion(b: &mut test::Bencher) { let a = super::DynamicImage::ImageRgb8(crate::ImageBuffer::new(1000, 1000)); b.iter(|| a.to_luma8()); b.bytes = 1000 * 1000 * 3 } } #[cfg(test)] mod test { #[test] fn test_empty_file() { assert!(super::load_from_memory(b"").is_err()); } #[cfg(feature = "jpeg")] #[test] fn image_dimensions() { let im_path = "./tests/images/jpg/progressive/cat.jpg"; let dims = super::image_dimensions(im_path).unwrap(); assert_eq!(dims, (320, 240)); } #[cfg(feature = "png")] #[test] fn open_16bpc_png() { let im_path = "./tests/images/png/16bpc/basn6a16.png"; let image = super::open(im_path).unwrap(); assert_eq!(image.color(), super::color::ColorType::Rgba16); } fn test_grayscale(mut img: super::DynamicImage, alpha_discarded: bool) { use crate::image::{GenericImage, GenericImageView}; img.put_pixel(0, 0, crate::color::Rgba([255, 0, 0, 100])); let expected_alpha = if alpha_discarded { 255 } else { 100 }; assert_eq!( img.grayscale().get_pixel(0, 0), crate::color::Rgba([54, 54, 54, expected_alpha]) ); } fn test_grayscale_alpha_discarded(img: super::DynamicImage) { test_grayscale(img, true); } fn test_grayscale_alpha_preserved(img: super::DynamicImage) { test_grayscale(img, false); } #[test] fn test_grayscale_luma8() { test_grayscale_alpha_discarded(super::DynamicImage::new_luma8(1, 1)); } #[test] fn test_grayscale_luma_a8() { test_grayscale_alpha_preserved(super::DynamicImage::new_luma_a8(1, 1)); } #[test] fn test_grayscale_rgb8() { test_grayscale_alpha_discarded(super::DynamicImage::new_rgb8(1, 1)); } #[test] fn test_grayscale_rgba8() { test_grayscale_alpha_preserved(super::DynamicImage::new_rgba8(1, 1)); } #[test] fn test_grayscale_luma16() { test_grayscale_alpha_discarded(super::DynamicImage::new_luma16(1, 1)); } #[test] fn test_grayscale_luma_a16() { test_grayscale_alpha_preserved(super::DynamicImage::new_luma_a16(1, 1)); } #[test] fn test_grayscale_rgb16() { test_grayscale_alpha_discarded(super::DynamicImage::new_rgb16(1, 1)); } #[test] fn test_grayscale_rgba16() { test_grayscale_alpha_preserved(super::DynamicImage::new_rgba16(1, 1)); } #[test] fn test_grayscale_rgb32f() { test_grayscale_alpha_discarded(super::DynamicImage::new_rgb32f(1, 1)); } #[test] fn test_grayscale_rgba32f() { test_grayscale_alpha_preserved(super::DynamicImage::new_rgba32f(1, 1)); } #[test] fn test_dynamic_image_default_implementation() { // Test that structs wrapping a DynamicImage are able to auto-derive the Default trait // ensures that DynamicImage implements Default (if it didn't, this would cause a compile error). #[derive(Default)] struct Foo { _image: super::DynamicImage, } } #[test] fn test_to_vecu8() { let _ = super::DynamicImage::new_luma8(1, 1).into_bytes(); let _ = super::DynamicImage::new_luma16(1, 1).into_bytes(); } #[test] fn issue_1705_can_turn_16bit_image_into_bytes() { let pixels = vec![65535u16; 64 * 64]; let img = super::ImageBuffer::from_vec(64, 64, pixels).unwrap(); let img = super::DynamicImage::ImageLuma16(img.into()); assert!(img.as_luma16().is_some()); let bytes: Vec = img.into_bytes(); assert_eq!(bytes, vec![0xFF; 64 * 64 * 2]); } }