use alloc::borrow::ToOwned; use alloc::vec; use alloc::vec::Vec; use core::iter; use std::io::Read; use crate::read_u8; use crate::error::{Error, Result}; use crate::marker::Marker; use crate::parser::ScanInfo; const LUT_BITS: u8 = 8; #[derive(Debug)] pub struct HuffmanDecoder { bits: u64, num_bits: u8, marker: Option, } impl HuffmanDecoder { pub fn new() -> HuffmanDecoder { HuffmanDecoder { bits: 0, num_bits: 0, marker: None, } } // Section F.2.2.3 // Figure F.16 pub fn decode(&mut self, reader: &mut R, table: &HuffmanTable) -> Result { if self.num_bits < 16 { self.read_bits(reader)?; } let (value, size) = table.lut[self.peek_bits(LUT_BITS) as usize]; if size > 0 { self.consume_bits(size); Ok(value) } else { let bits = self.peek_bits(16); for i in LUT_BITS .. 16 { let code = (bits >> (15 - i)) as i32; if code <= table.maxcode[i as usize] { self.consume_bits(i + 1); let index = (code + table.delta[i as usize]) as usize; return Ok(table.values[index]); } } Err(Error::Format("failed to decode huffman code".to_owned())) } } pub fn decode_fast_ac(&mut self, reader: &mut R, table: &HuffmanTable) -> Result> { if let Some(ref ac_lut) = table.ac_lut { if self.num_bits < LUT_BITS { self.read_bits(reader)?; } let (value, run_size) = ac_lut[self.peek_bits(LUT_BITS) as usize]; if run_size != 0 { let run = run_size >> 4; let size = run_size & 0x0f; self.consume_bits(size); return Ok(Some((value, run))); } } Ok(None) } #[inline] pub fn get_bits(&mut self, reader: &mut R, count: u8) -> Result { if self.num_bits < count { self.read_bits(reader)?; } let bits = self.peek_bits(count); self.consume_bits(count); Ok(bits) } #[inline] pub fn receive_extend(&mut self, reader: &mut R, count: u8) -> Result { let value = self.get_bits(reader, count)?; Ok(extend(value, count)) } pub fn reset(&mut self) { self.bits = 0; self.num_bits = 0; } pub fn take_marker(&mut self, reader: &mut R) -> Result> { self.read_bits(reader).map(|_| self.marker.take()) } #[inline] fn peek_bits(&mut self, count: u8) -> u16 { debug_assert!(count <= 16); debug_assert!(self.num_bits >= count); ((self.bits >> (64 - count)) & ((1 << count) - 1)) as u16 } #[inline] fn consume_bits(&mut self, count: u8) { debug_assert!(self.num_bits >= count); self.bits <<= count as usize; self.num_bits -= count; } fn read_bits(&mut self, reader: &mut R) -> Result<()> { while self.num_bits <= 56 { // Fill with zero bits if we have reached the end. let byte = match self.marker { Some(_) => 0, None => read_u8(reader)?, }; if byte == 0xFF { let mut next_byte = read_u8(reader)?; // Check for byte stuffing. if next_byte != 0x00 { // We seem to have reached the end of entropy-coded data and encountered a // marker. Since we can't put data back into the reader, we have to continue // reading to identify the marker so we can pass it on. // Section B.1.1.2 // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’." while next_byte == 0xFF { next_byte = read_u8(reader)?; } match next_byte { 0x00 => return Err(Error::Format("FF 00 found where marker was expected".to_owned())), _ => self.marker = Some(Marker::from_u8(next_byte).unwrap()), } continue; } } self.bits |= (byte as u64) << (56 - self.num_bits); self.num_bits += 8; } Ok(()) } } // Section F.2.2.1 // Figure F.12 fn extend(value: u16, count: u8) -> i16 { let vt = 1 << (count as u16 - 1); if value < vt { value as i16 + (-1 << count as i16) + 1 } else { value as i16 } } #[derive(Clone, Copy, Debug, PartialEq)] pub enum HuffmanTableClass { DC, AC, } pub struct HuffmanTable { values: Vec, delta: [i32; 16], maxcode: [i32; 16], lut: [(u8, u8); 1 << LUT_BITS], ac_lut: Option<[(i16, u8); 1 << LUT_BITS]>, } impl HuffmanTable { pub fn new(bits: &[u8; 16], values: &[u8], class: HuffmanTableClass) -> Result { let (huffcode, huffsize) = derive_huffman_codes(bits)?; // Section F.2.2.3 // Figure F.15 // delta[i] is set to VALPTR(I) - MINCODE(I) let mut delta = [0i32; 16]; let mut maxcode = [-1i32; 16]; let mut j = 0; for i in 0 .. 16 { if bits[i] != 0 { delta[i] = j as i32 - huffcode[j] as i32; j += bits[i] as usize; maxcode[i] = huffcode[j - 1] as i32; } } // Build a lookup table for faster decoding. let mut lut = [(0u8, 0u8); 1 << LUT_BITS]; for (i, &size) in huffsize.iter().enumerate().filter(|&(_, &size)| size <= LUT_BITS) { let bits_remaining = LUT_BITS - size; let start = (huffcode[i] << bits_remaining) as usize; let val = (values[i], size); for b in &mut lut[start..][..1 << bits_remaining] { *b = val; } } // Build a lookup table for small AC coefficients which both decodes the value and does the // equivalent of receive_extend. let ac_lut = match class { HuffmanTableClass::DC => None, HuffmanTableClass::AC => { let mut table = [(0i16, 0u8); 1 << LUT_BITS]; for (i, &(value, size)) in lut.iter().enumerate() { let run_length = value >> 4; let magnitude_category = value & 0x0f; if magnitude_category > 0 && size + magnitude_category <= LUT_BITS { let unextended_ac_value = (((i << size) & ((1 << LUT_BITS) - 1)) >> (LUT_BITS - magnitude_category)) as u16; let ac_value = extend(unextended_ac_value, magnitude_category); table[i] = (ac_value, (run_length << 4) | (size + magnitude_category)); } } Some(table) }, }; Ok(HuffmanTable { values: values.to_vec(), delta, maxcode, lut, ac_lut, }) } } // Section C.2 fn derive_huffman_codes(bits: &[u8; 16]) -> Result<(Vec, Vec)> { // Figure C.1 let huffsize = bits.iter() .enumerate() .fold(Vec::new(), |mut acc, (i, &value)| { acc.extend(iter::repeat((i + 1) as u8).take(value as usize)); acc }); // Figure C.2 let mut huffcode = vec![0u16; huffsize.len()]; let mut code_size = huffsize[0]; let mut code = 0u32; for (i, &size) in huffsize.iter().enumerate() { while code_size < size { code <<= 1; code_size += 1; } if code >= (1u32 << size) { return Err(Error::Format("bad huffman code length".to_owned())); } huffcode[i] = code as u16; code += 1; } Ok((huffcode, huffsize)) } // https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml // "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at // least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and // *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must // use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the // MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT // segment to them, or else the decoder won't have any idea how to decompress the data. // The exact table necessary is given in the OpenDML spec."" pub fn fill_default_mjpeg_tables(scan: &ScanInfo, dc_huffman_tables: &mut[Option], ac_huffman_tables: &mut[Option]) { // Section K.3.3 if dc_huffman_tables[0].is_none() && scan.dc_table_indices.iter().any(|&i| i == 0) { // Table K.3 dc_huffman_tables[0] = Some(HuffmanTable::new( &[0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap()); } if dc_huffman_tables[1].is_none() && scan.dc_table_indices.iter().any(|&i| i == 1) { // Table K.4 dc_huffman_tables[1] = Some(HuffmanTable::new( &[0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00], &[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap()); } if ac_huffman_tables[0].is_none() && scan.ac_table_indices.iter().any(|&i| i == 0) { // Table K.5 ac_huffman_tables[0] = Some(HuffmanTable::new( &[0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D], &[0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA ], HuffmanTableClass::AC).unwrap()); } if ac_huffman_tables[1].is_none() && scan.ac_table_indices.iter().any(|&i| i == 1) { // Table K.6 ac_huffman_tables[1] = Some(HuffmanTable::new( &[0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77], &[0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0, 0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA ], HuffmanTableClass::AC).unwrap()); } }