// Malicious JPEG files can cause operations in the idct to overflow. // One example is tests/crashtest/images/imagetestsuite/b0b8914cc5f7a6eff409f16d8cc236c5.jpg // That's why wrapping operators are needed. // Note: we have many values that are straight from a reference. // Do not warn on them or try to automatically change them. #![allow(clippy::excessive_precision)] // Note: consistency for unrolled, scaled offset loops #![allow(clippy::erasing_op)] #![allow(clippy::identity_op)] use crate::parser::Dimensions; use core::{convert::TryFrom, num::Wrapping}; pub(crate) fn choose_idct_size(full_size: Dimensions, requested_size: Dimensions) -> usize { fn scaled(len: u16, scale: usize) -> u16 { ((len as u32 * scale as u32 - 1) / 8 + 1) as u16 } for &scale in &[1, 2, 4] { if scaled(full_size.width, scale) >= requested_size.width || scaled(full_size.height, scale) >= requested_size.height { return scale; } } 8 } #[test] fn test_choose_idct_size() { assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 200, height: 200 } ), 1 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 500, height: 500 } ), 1 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 684, height: 456 } ), 1 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 999, height: 456 } ), 1 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 684, height: 999 } ), 1 ); assert_eq!( choose_idct_size( Dimensions { width: 500, height: 333 }, Dimensions { width: 63, height: 42 } ), 1 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 685, height: 999 } ), 2 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 1000, height: 1000 } ), 2 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 1400, height: 1400 } ), 4 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 5472, height: 3648 } ), 8 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 16384, height: 16384 } ), 8 ); assert_eq!( choose_idct_size( Dimensions { width: 1, height: 1 }, Dimensions { width: 65535, height: 65535 } ), 8 ); assert_eq!( choose_idct_size( Dimensions { width: 5472, height: 3648 }, Dimensions { width: 16384, height: 16384 } ), 8 ); } pub(crate) fn dequantize_and_idct_block( scale: usize, coefficients: &[i16; 64], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8], ) { match scale { 8 => dequantize_and_idct_block_8x8( coefficients, quantization_table, output_linestride, output, ), 4 => dequantize_and_idct_block_4x4( coefficients, quantization_table, output_linestride, output, ), 2 => dequantize_and_idct_block_2x2( coefficients, quantization_table, output_linestride, output, ), 1 => dequantize_and_idct_block_1x1( coefficients, quantization_table, output_linestride, output, ), _ => panic!("Unsupported IDCT scale {}/8", scale), } } pub fn dequantize_and_idct_block_8x8( coefficients: &[i16; 64], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8], ) { #[cfg(not(feature = "platform_independent"))] if let Some(idct) = crate::arch::get_dequantize_and_idct_block_8x8() { #[allow(unsafe_code)] unsafe { return idct(coefficients, quantization_table, output_linestride, output); } } let output = output.chunks_mut(output_linestride); dequantize_and_idct_block_8x8_inner(coefficients, quantization_table, output) } // This is based on stb_image's 'stbi__idct_block'. fn dequantize_and_idct_block_8x8_inner<'a, I>( coefficients: &[i16; 64], quantization_table: &[u16; 64], output: I, ) where I: IntoIterator, I::IntoIter: ExactSizeIterator, { let output = output.into_iter(); debug_assert!( output.len() >= 8, "Output iterator has the wrong length: {}", output.len() ); let mut temp = [Wrapping(0); 64]; // columns for i in 0..8 { if coefficients[i + 8] == 0 && coefficients[i + 16] == 0 && coefficients[i + 24] == 0 && coefficients[i + 32] == 0 && coefficients[i + 40] == 0 && coefficients[i + 48] == 0 && coefficients[i + 56] == 0 { let dcterm = dequantize(coefficients[i], quantization_table[i]) << 2; temp[i] = dcterm; temp[i + 8] = dcterm; temp[i + 16] = dcterm; temp[i + 24] = dcterm; temp[i + 32] = dcterm; temp[i + 40] = dcterm; temp[i + 48] = dcterm; temp[i + 56] = dcterm; } else { let s0 = dequantize(coefficients[i], quantization_table[i]); let s1 = dequantize(coefficients[i + 8], quantization_table[i + 8]); let s2 = dequantize(coefficients[i + 16], quantization_table[i + 16]); let s3 = dequantize(coefficients[i + 24], quantization_table[i + 24]); let s4 = dequantize(coefficients[i + 32], quantization_table[i + 32]); let s5 = dequantize(coefficients[i + 40], quantization_table[i + 40]); let s6 = dequantize(coefficients[i + 48], quantization_table[i + 48]); let s7 = dequantize(coefficients[i + 56], quantization_table[i + 56]); let Kernel { xs: [x0, x1, x2, x3], ts: [t0, t1, t2, t3], } = kernel( [s0, s1, s2, s3, s4, s5, s6, s7], // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision 512, ); temp[i] = (x0 + t3) >> 10; temp[i + 56] = (x0 - t3) >> 10; temp[i + 8] = (x1 + t2) >> 10; temp[i + 48] = (x1 - t2) >> 10; temp[i + 16] = (x2 + t1) >> 10; temp[i + 40] = (x2 - t1) >> 10; temp[i + 24] = (x3 + t0) >> 10; temp[i + 32] = (x3 - t0) >> 10; } } for (chunk, output_chunk) in temp.chunks_exact(8).zip(output) { let chunk = <&[_; 8]>::try_from(chunk).unwrap(); // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. // so we want to round that, which means adding 0.5 * 1<<17, // aka 65536. Also, we'll end up with -128 to 127 that we want // to encode as 0..255 by adding 128, so we'll add that before the shift const X_SCALE: i32 = 65536 + (128 << 17); // eliminate downstream bounds checks let output_chunk = &mut output_chunk[..8]; // TODO When the minimum rust version supports it // let [s0, rest @ ..] = chunk; let (s0, rest) = chunk.split_first().unwrap(); if *rest == [Wrapping(0); 7] { let dcterm = stbi_clamp((stbi_fsh(*s0) + Wrapping(X_SCALE)) >> 17); output_chunk[0] = dcterm; output_chunk[1] = dcterm; output_chunk[2] = dcterm; output_chunk[3] = dcterm; output_chunk[4] = dcterm; output_chunk[5] = dcterm; output_chunk[6] = dcterm; output_chunk[7] = dcterm; } else { let Kernel { xs: [x0, x1, x2, x3], ts: [t0, t1, t2, t3], } = kernel(*chunk, X_SCALE); output_chunk[0] = stbi_clamp((x0 + t3) >> 17); output_chunk[7] = stbi_clamp((x0 - t3) >> 17); output_chunk[1] = stbi_clamp((x1 + t2) >> 17); output_chunk[6] = stbi_clamp((x1 - t2) >> 17); output_chunk[2] = stbi_clamp((x2 + t1) >> 17); output_chunk[5] = stbi_clamp((x2 - t1) >> 17); output_chunk[3] = stbi_clamp((x3 + t0) >> 17); output_chunk[4] = stbi_clamp((x3 - t0) >> 17); } } } struct Kernel { xs: [Wrapping; 4], ts: [Wrapping; 4], } #[inline] fn kernel_x([s0, s2, s4, s6]: [Wrapping; 4], x_scale: i32) -> [Wrapping; 4] { // Even `chunk` indicies let (t2, t3); { let p2 = s2; let p3 = s6; let p1 = (p2 + p3) * stbi_f2f(0.5411961); t2 = p1 + p3 * stbi_f2f(-1.847759065); t3 = p1 + p2 * stbi_f2f(0.765366865); } let (t0, t1); { let p2 = s0; let p3 = s4; t0 = stbi_fsh(p2 + p3); t1 = stbi_fsh(p2 - p3); } let x0 = t0 + t3; let x3 = t0 - t3; let x1 = t1 + t2; let x2 = t1 - t2; let x_scale = Wrapping(x_scale); [x0 + x_scale, x1 + x_scale, x2 + x_scale, x3 + x_scale] } #[inline] fn kernel_t([s1, s3, s5, s7]: [Wrapping; 4]) -> [Wrapping; 4] { // Odd `chunk` indicies let mut t0 = s7; let mut t1 = s5; let mut t2 = s3; let mut t3 = s1; let p3 = t0 + t2; let p4 = t1 + t3; let p1 = t0 + t3; let p2 = t1 + t2; let p5 = (p3 + p4) * stbi_f2f(1.175875602); t0 *= stbi_f2f(0.298631336); t1 *= stbi_f2f(2.053119869); t2 *= stbi_f2f(3.072711026); t3 *= stbi_f2f(1.501321110); let p1 = p5 + p1 * stbi_f2f(-0.899976223); let p2 = p5 + p2 * stbi_f2f(-2.562915447); let p3 = p3 * stbi_f2f(-1.961570560); let p4 = p4 * stbi_f2f(-0.390180644); t3 += p1 + p4; t2 += p2 + p3; t1 += p2 + p4; t0 += p1 + p3; [t0, t1, t2, t3] } #[inline] fn kernel([s0, s1, s2, s3, s4, s5, s6, s7]: [Wrapping; 8], x_scale: i32) -> Kernel { Kernel { xs: kernel_x([s0, s2, s4, s6], x_scale), ts: kernel_t([s1, s3, s5, s7]), } } #[inline(always)] fn dequantize(c: i16, q: u16) -> Wrapping { Wrapping(i32::from(c) * i32::from(q)) } // 4x4 and 2x2 IDCT based on Rakesh Dugad and Narendra Ahuja: "A Fast Scheme for Image Size Change in the Compressed Domain" (2001). // http://sylvana.net/jpegcrop/jidctred/ fn dequantize_and_idct_block_4x4( coefficients: &[i16; 64], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8], ) { debug_assert_eq!(coefficients.len(), 64); let mut temp = [Wrapping(0i32); 4 * 4]; const CONST_BITS: usize = 12; const PASS1_BITS: usize = 2; const FINAL_BITS: usize = CONST_BITS + PASS1_BITS + 3; // columns for i in 0..4 { let s0 = Wrapping(coefficients[i + 8 * 0] as i32 * quantization_table[i + 8 * 0] as i32); let s1 = Wrapping(coefficients[i + 8 * 1] as i32 * quantization_table[i + 8 * 1] as i32); let s2 = Wrapping(coefficients[i + 8 * 2] as i32 * quantization_table[i + 8 * 2] as i32); let s3 = Wrapping(coefficients[i + 8 * 3] as i32 * quantization_table[i + 8 * 3] as i32); let x0 = (s0 + s2) << PASS1_BITS; let x2 = (s0 - s2) << PASS1_BITS; let p1 = (s1 + s3) * stbi_f2f(0.541196100); let t0 = (p1 + s3 * stbi_f2f(-1.847759065) + Wrapping(512)) >> (CONST_BITS - PASS1_BITS); let t2 = (p1 + s1 * stbi_f2f(0.765366865) + Wrapping(512)) >> (CONST_BITS - PASS1_BITS); temp[i + 4 * 0] = x0 + t2; temp[i + 4 * 3] = x0 - t2; temp[i + 4 * 1] = x2 + t0; temp[i + 4 * 2] = x2 - t0; } for i in 0..4 { let s0 = temp[i * 4 + 0]; let s1 = temp[i * 4 + 1]; let s2 = temp[i * 4 + 2]; let s3 = temp[i * 4 + 3]; let x0 = (s0 + s2) << CONST_BITS; let x2 = (s0 - s2) << CONST_BITS; let p1 = (s1 + s3) * stbi_f2f(0.541196100); let t0 = p1 + s3 * stbi_f2f(-1.847759065); let t2 = p1 + s1 * stbi_f2f(0.765366865); // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. // so we want to round that, which means adding 0.5 * 1<<17, // aka 65536. Also, we'll end up with -128 to 127 that we want // to encode as 0..255 by adding 128, so we'll add that before the shift let x0 = x0 + Wrapping(1 << (FINAL_BITS - 1)) + Wrapping(128 << FINAL_BITS); let x2 = x2 + Wrapping(1 << (FINAL_BITS - 1)) + Wrapping(128 << FINAL_BITS); let output = &mut output[i * output_linestride..][..4]; output[0] = stbi_clamp((x0 + t2) >> FINAL_BITS); output[3] = stbi_clamp((x0 - t2) >> FINAL_BITS); output[1] = stbi_clamp((x2 + t0) >> FINAL_BITS); output[2] = stbi_clamp((x2 - t0) >> FINAL_BITS); } } fn dequantize_and_idct_block_2x2( coefficients: &[i16; 64], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8], ) { debug_assert_eq!(coefficients.len(), 64); const SCALE_BITS: usize = 3; // Column 0 let s00 = Wrapping(coefficients[8 * 0] as i32 * quantization_table[8 * 0] as i32); let s10 = Wrapping(coefficients[8 * 1] as i32 * quantization_table[8 * 1] as i32); let x0 = s00 + s10; let x2 = s00 - s10; // Column 1 let s01 = Wrapping(coefficients[8 * 0 + 1] as i32 * quantization_table[8 * 0 + 1] as i32); let s11 = Wrapping(coefficients[8 * 1 + 1] as i32 * quantization_table[8 * 1 + 1] as i32); let x1 = s01 + s11; let x3 = s01 - s11; let x0 = x0 + Wrapping(1 << (SCALE_BITS - 1)) + Wrapping(128 << SCALE_BITS); let x2 = x2 + Wrapping(1 << (SCALE_BITS - 1)) + Wrapping(128 << SCALE_BITS); // Row 0 output[0] = stbi_clamp((x0 + x1) >> SCALE_BITS); output[1] = stbi_clamp((x0 - x1) >> SCALE_BITS); // Row 1 output[output_linestride + 0] = stbi_clamp((x2 + x3) >> SCALE_BITS); output[output_linestride + 1] = stbi_clamp((x2 - x3) >> SCALE_BITS); } fn dequantize_and_idct_block_1x1( coefficients: &[i16; 64], quantization_table: &[u16; 64], _output_linestride: usize, output: &mut [u8], ) { debug_assert_eq!(coefficients.len(), 64); let s0 = (Wrapping(coefficients[0] as i32 * quantization_table[0] as i32) + Wrapping(128 * 8)) / Wrapping(8); output[0] = stbi_clamp(s0); } // take a -128..127 value and stbi__clamp it and convert to 0..255 fn stbi_clamp(x: Wrapping) -> u8 { x.0.max(0).min(255) as u8 } fn stbi_f2f(x: f32) -> Wrapping { Wrapping((x * 4096.0 + 0.5) as i32) } fn stbi_fsh(x: Wrapping) -> Wrapping { x << 12 } #[test] fn test_dequantize_and_idct_block_8x8() { #[cfg_attr(rustfmt, rustfmt_skip)] let coefficients: [i16; 8 * 8] = [ -14, -39, 58, -2, 3, 3, 0, 1, 11, 27, 4, -3, 3, 0, 1, 0, -6, -13, -9, -1, -2, -1, 0, 0, -4, 0, -1, -2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, -3, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; #[cfg_attr(rustfmt, rustfmt_skip)] let quantization_table: [u16; 8 * 8] = [ 8, 6, 5, 8, 12, 20, 26, 31, 6, 6, 7, 10, 13, 29, 30, 28, 7, 7, 8, 12, 20, 29, 35, 28, 7, 9, 11, 15, 26, 44, 40, 31, 9, 11, 19, 28, 34, 55, 52, 39, 12, 18, 28, 32, 41, 52, 57, 46, 25, 32, 39, 44, 52, 61, 60, 51, 36, 46, 48, 49, 56, 50, 52, 50 ]; let output_linestride: usize = 8; let mut output = [0u8; 8 * 8]; dequantize_and_idct_block_8x8( &coefficients, &quantization_table, output_linestride, &mut output, ); #[cfg_attr(rustfmt, rustfmt_skip)] let expected_output = [ 118, 92, 110, 83, 77, 93, 144, 198, 172, 116, 114, 87, 78, 93, 146, 191, 194, 107, 91, 76, 71, 93, 160, 198, 196, 100, 80, 74, 67, 92, 174, 209, 182, 104, 88, 81, 68, 89, 178, 206, 105, 64, 59, 59, 63, 94, 183, 201, 35, 27, 28, 37, 72, 121, 203, 204, 37, 45, 41, 47, 98, 154, 223, 208 ]; for i in 0..64 { assert!((output[i] as i16 - expected_output[i] as i16).abs() <= 1); } } #[test] fn test_dequantize_and_idct_block_8x8_all_zero() { let mut output = [0u8; 8 * 8]; dequantize_and_idct_block_8x8(&[0; 8 * 8], &[666; 8 * 8], 8, &mut output); assert_eq!(&output[..], &[128; 8 * 8][..]); } #[test] fn test_dequantize_and_idct_block_8x8_saturated() { // Arch-specific IDCT implementations need not handle i16::MAX values. #[cfg(not(feature = "platform_independent"))] if crate::arch::get_dequantize_and_idct_block_8x8().is_some() { return; } let mut output = [0u8; 8 * 8]; dequantize_and_idct_block_8x8(&[i16::MAX; 8 * 8], &[u16::MAX; 8 * 8], 8, &mut output); #[cfg_attr(rustfmt, rustfmt_skip)] let expected = [ 0, 0, 0, 255, 255, 0, 0, 255, 0, 0, 215, 0, 0, 255, 255, 0, 255, 255, 255, 255, 255, 0, 0, 255, 0, 0, 255, 0, 255, 0, 255, 255, 0, 0, 255, 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 170, 0, 0, 255, 0, 0, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0, 0 ]; assert_eq!(&output[..], &expected[..]); }