// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Rational numbers //! //! ## Compatibility //! //! The `num-rational` crate is tested for rustc 1.31 and greater. #![doc(html_root_url = "https://docs.rs/num-rational/0.4")] #![no_std] // Ratio ops often use other "suspicious" ops #![allow(clippy::suspicious_arithmetic_impl)] #![allow(clippy::suspicious_op_assign_impl)] #[cfg(feature = "std")] #[macro_use] extern crate std; use core::cmp; use core::fmt; use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex}; use core::hash::{Hash, Hasher}; use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub}; use core::str::FromStr; #[cfg(feature = "std")] use std::error::Error; #[cfg(feature = "num-bigint")] use num_bigint::{BigInt, BigUint, Sign, ToBigInt}; use num_integer::Integer; use num_traits::float::FloatCore; use num_traits::ToPrimitive; use num_traits::{ Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Inv, Num, NumCast, One, Pow, Signed, Zero, }; mod pow; /// Represents the ratio between two numbers. #[derive(Copy, Clone, Debug)] #[allow(missing_docs)] pub struct Ratio { /// Numerator. numer: T, /// Denominator. denom: T, } /// Alias for a `Ratio` of machine-sized integers. #[deprecated( since = "0.4.0", note = "it's better to use a specific size, like `Rational32` or `Rational64`" )] pub type Rational = Ratio; /// Alias for a `Ratio` of 32-bit-sized integers. pub type Rational32 = Ratio; /// Alias for a `Ratio` of 64-bit-sized integers. pub type Rational64 = Ratio; #[cfg(feature = "num-bigint")] /// Alias for arbitrary precision rationals. pub type BigRational = Ratio; /// These method are `const` for Rust 1.31 and later. impl Ratio { /// Creates a `Ratio` without checking for `denom == 0` or reducing. /// /// **There are several methods that will panic if used on a `Ratio` with /// `denom == 0`.** #[inline] pub const fn new_raw(numer: T, denom: T) -> Ratio { Ratio { numer, denom } } /// Gets an immutable reference to the numerator. #[inline] pub const fn numer(&self) -> &T { &self.numer } /// Gets an immutable reference to the denominator. #[inline] pub const fn denom(&self) -> &T { &self.denom } } impl Ratio { /// Creates a new `Ratio`. /// /// **Panics if `denom` is zero.** #[inline] pub fn new(numer: T, denom: T) -> Ratio { let mut ret = Ratio::new_raw(numer, denom); ret.reduce(); ret } /// Creates a `Ratio` representing the integer `t`. #[inline] pub fn from_integer(t: T) -> Ratio { Ratio::new_raw(t, One::one()) } /// Converts to an integer, rounding towards zero. #[inline] pub fn to_integer(&self) -> T { self.trunc().numer } /// Returns true if the rational number is an integer (denominator is 1). #[inline] pub fn is_integer(&self) -> bool { self.denom.is_one() } /// Puts self into lowest terms, with `denom` > 0. /// /// **Panics if `denom` is zero.** fn reduce(&mut self) { if self.denom.is_zero() { panic!("denominator == 0"); } if self.numer.is_zero() { self.denom.set_one(); return; } if self.numer == self.denom { self.set_one(); return; } let g: T = self.numer.gcd(&self.denom); // FIXME(#5992): assignment operator overloads // T: Clone + Integer != T: Clone + NumAssign #[inline] fn replace_with(x: &mut T, f: impl FnOnce(T) -> T) { let y = core::mem::replace(x, T::zero()); *x = f(y); } // self.numer /= g; replace_with(&mut self.numer, |x| x / g.clone()); // self.denom /= g; replace_with(&mut self.denom, |x| x / g); // keep denom positive! if self.denom < T::zero() { replace_with(&mut self.numer, |x| T::zero() - x); replace_with(&mut self.denom, |x| T::zero() - x); } } /// Returns a reduced copy of self. /// /// In general, it is not necessary to use this method, as the only /// method of procuring a non-reduced fraction is through `new_raw`. /// /// **Panics if `denom` is zero.** pub fn reduced(&self) -> Ratio { let mut ret = self.clone(); ret.reduce(); ret } /// Returns the reciprocal. /// /// **Panics if the `Ratio` is zero.** #[inline] pub fn recip(&self) -> Ratio { self.clone().into_recip() } #[inline] fn into_recip(self) -> Ratio { match self.numer.cmp(&T::zero()) { cmp::Ordering::Equal => panic!("division by zero"), cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer), cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer), } } /// Rounds towards minus infinity. #[inline] pub fn floor(&self) -> Ratio { if *self < Zero::zero() { let one: T = One::one(); Ratio::from_integer( (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), ) } else { Ratio::from_integer(self.numer.clone() / self.denom.clone()) } } /// Rounds towards plus infinity. #[inline] pub fn ceil(&self) -> Ratio { if *self < Zero::zero() { Ratio::from_integer(self.numer.clone() / self.denom.clone()) } else { let one: T = One::one(); Ratio::from_integer( (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), ) } } /// Rounds to the nearest integer. Rounds half-way cases away from zero. #[inline] pub fn round(&self) -> Ratio { let zero: Ratio = Zero::zero(); let one: T = One::one(); let two: T = one.clone() + one.clone(); // Find unsigned fractional part of rational number let mut fractional = self.fract(); if fractional < zero { fractional = zero - fractional }; // The algorithm compares the unsigned fractional part with 1/2, that // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use // a >= (b/2)+1. This avoids overflow issues. let half_or_larger = if fractional.denom.is_even() { fractional.numer >= fractional.denom / two } else { fractional.numer >= (fractional.denom / two) + one }; if half_or_larger { let one: Ratio = One::one(); if *self >= Zero::zero() { self.trunc() + one } else { self.trunc() - one } } else { self.trunc() } } /// Rounds towards zero. #[inline] pub fn trunc(&self) -> Ratio { Ratio::from_integer(self.numer.clone() / self.denom.clone()) } /// Returns the fractional part of a number, with division rounded towards zero. /// /// Satisfies `self == self.trunc() + self.fract()`. #[inline] pub fn fract(&self) -> Ratio { Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) } /// Raises the `Ratio` to the power of an exponent. #[inline] pub fn pow(&self, expon: i32) -> Ratio where for<'a> &'a T: Pow, { Pow::pow(self, expon) } } #[cfg(feature = "num-bigint")] impl Ratio { /// Converts a float into a rational number. pub fn from_float(f: T) -> Option { if !f.is_finite() { return None; } let (mantissa, exponent, sign) = f.integer_decode(); let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; if exponent < 0 { let one: BigInt = One::one(); let denom: BigInt = one << ((-exponent) as usize); let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) } else { let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); numer <<= exponent as usize; Some(Ratio::from_integer(BigInt::from_biguint( bigint_sign, numer, ))) } } } impl Default for Ratio { /// Returns zero fn default() -> Self { Ratio::zero() } } // From integer impl From for Ratio where T: Clone + Integer, { fn from(x: T) -> Ratio { Ratio::from_integer(x) } } // From pair (through the `new` constructor) impl From<(T, T)> for Ratio where T: Clone + Integer, { fn from(pair: (T, T)) -> Ratio { Ratio::new(pair.0, pair.1) } } // Comparisons // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy // for those multiplications to overflow fixed-size integers, so we need to take care. impl Ord for Ratio { #[inline] fn cmp(&self, other: &Self) -> cmp::Ordering { // With equal denominators, the numerators can be directly compared if self.denom == other.denom { let ord = self.numer.cmp(&other.numer); return if self.denom < T::zero() { ord.reverse() } else { ord }; } // With equal numerators, the denominators can be inversely compared if self.numer == other.numer { if self.numer.is_zero() { return cmp::Ordering::Equal; } let ord = self.denom.cmp(&other.denom); return if self.numer < T::zero() { ord } else { ord.reverse() }; } // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the // division below, or even always avoid it for BigInt and BigUint. // FIXME- future breaking change to add Checked* to Integer? // Compare as floored integers and remainders let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); match self_int.cmp(&other_int) { cmp::Ordering::Greater => cmp::Ordering::Greater, cmp::Ordering::Less => cmp::Ordering::Less, cmp::Ordering::Equal => { match (self_rem.is_zero(), other_rem.is_zero()) { (true, true) => cmp::Ordering::Equal, (true, false) => cmp::Ordering::Less, (false, true) => cmp::Ordering::Greater, (false, false) => { // Compare the reciprocals of the remaining fractions in reverse let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); self_recip.cmp(&other_recip).reverse() } } } } } } impl PartialOrd for Ratio { #[inline] fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl PartialEq for Ratio { #[inline] fn eq(&self, other: &Self) -> bool { self.cmp(other) == cmp::Ordering::Equal } } impl Eq for Ratio {} // NB: We can't just `#[derive(Hash)]`, because it needs to agree // with `Eq` even for non-reduced ratios. impl Hash for Ratio { fn hash(&self, state: &mut H) { recurse(&self.numer, &self.denom, state); fn recurse(numer: &T, denom: &T, state: &mut H) { if !denom.is_zero() { let (int, rem) = numer.div_mod_floor(denom); int.hash(state); recurse(denom, &rem, state); } else { denom.hash(state); } } } } mod iter_sum_product { use crate::Ratio; use core::iter::{Product, Sum}; use num_integer::Integer; use num_traits::{One, Zero}; impl Sum for Ratio { fn sum(iter: I) -> Self where I: Iterator>, { iter.fold(Self::zero(), |sum, num| sum + num) } } impl<'a, T: Integer + Clone> Sum<&'a Ratio> for Ratio { fn sum(iter: I) -> Self where I: Iterator>, { iter.fold(Self::zero(), |sum, num| sum + num) } } impl Product for Ratio { fn product(iter: I) -> Self where I: Iterator>, { iter.fold(Self::one(), |prod, num| prod * num) } } impl<'a, T: Integer + Clone> Product<&'a Ratio> for Ratio { fn product(iter: I) -> Self where I: Iterator>, { iter.fold(Self::one(), |prod, num| prod * num) } } } mod opassign { use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; use crate::Ratio; use num_integer::Integer; use num_traits::NumAssign; impl AddAssign for Ratio { fn add_assign(&mut self, other: Ratio) { if self.denom == other.denom { self.numer += other.numer } else { let lcm = self.denom.lcm(&other.denom); let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); let rhs_numer = other.numer * (lcm.clone() / other.denom); self.numer = lhs_numer + rhs_numer; self.denom = lcm; } self.reduce(); } } // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) impl DivAssign for Ratio { fn div_assign(&mut self, other: Ratio) { let gcd_ac = self.numer.gcd(&other.numer); let gcd_bd = self.denom.gcd(&other.denom); self.numer /= gcd_ac.clone(); self.numer *= other.denom / gcd_bd.clone(); self.denom /= gcd_bd; self.denom *= other.numer / gcd_ac; self.reduce(); // TODO: remove this line. see #8. } } // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) impl MulAssign for Ratio { fn mul_assign(&mut self, other: Ratio) { let gcd_ad = self.numer.gcd(&other.denom); let gcd_bc = self.denom.gcd(&other.numer); self.numer /= gcd_ad.clone(); self.numer *= other.numer / gcd_bc.clone(); self.denom /= gcd_bc; self.denom *= other.denom / gcd_ad; self.reduce(); // TODO: remove this line. see #8. } } impl RemAssign for Ratio { fn rem_assign(&mut self, other: Ratio) { if self.denom == other.denom { self.numer %= other.numer } else { let lcm = self.denom.lcm(&other.denom); let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); let rhs_numer = other.numer * (lcm.clone() / other.denom); self.numer = lhs_numer % rhs_numer; self.denom = lcm; } self.reduce(); } } impl SubAssign for Ratio { fn sub_assign(&mut self, other: Ratio) { if self.denom == other.denom { self.numer -= other.numer } else { let lcm = self.denom.lcm(&other.denom); let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); let rhs_numer = other.numer * (lcm.clone() / other.denom); self.numer = lhs_numer - rhs_numer; self.denom = lcm; } self.reduce(); } } // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b impl AddAssign for Ratio { fn add_assign(&mut self, other: T) { self.numer += self.denom.clone() * other; self.reduce(); } } impl DivAssign for Ratio { fn div_assign(&mut self, other: T) { let gcd = self.numer.gcd(&other); self.numer /= gcd.clone(); self.denom *= other / gcd; self.reduce(); // TODO: remove this line. see #8. } } impl MulAssign for Ratio { fn mul_assign(&mut self, other: T) { let gcd = self.denom.gcd(&other); self.denom /= gcd.clone(); self.numer *= other / gcd; self.reduce(); // TODO: remove this line. see #8. } } // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b impl RemAssign for Ratio { fn rem_assign(&mut self, other: T) { self.numer %= self.denom.clone() * other; self.reduce(); } } // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b impl SubAssign for Ratio { fn sub_assign(&mut self, other: T) { self.numer -= self.denom.clone() * other; self.reduce(); } } macro_rules! forward_op_assign { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio> for Ratio { #[inline] fn $method(&mut self, other: &Ratio) { self.$method(other.clone()) } } impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio { #[inline] fn $method(&mut self, other: &T) { self.$method(other.clone()) } } }; } forward_op_assign!(impl AddAssign, add_assign); forward_op_assign!(impl DivAssign, div_assign); forward_op_assign!(impl MulAssign, mul_assign); forward_op_assign!(impl RemAssign, rem_assign); forward_op_assign!(impl SubAssign, sub_assign); } macro_rules! forward_ref_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio> for &'a Ratio { type Output = Ratio; #[inline] fn $method(self, other: &'b Ratio) -> Ratio { self.clone().$method(other.clone()) } } impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio { type Output = Ratio; #[inline] fn $method(self, other: &'b T) -> Ratio { self.clone().$method(other.clone()) } } }; } macro_rules! forward_ref_val_binop { (impl $imp:ident, $method:ident) => { impl<'a, T> $imp> for &'a Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn $method(self, other: Ratio) -> Ratio { self.clone().$method(other) } } impl<'a, T> $imp for &'a Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn $method(self, other: T) -> Ratio { self.clone().$method(other) } } }; } macro_rules! forward_val_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, T> $imp<&'a Ratio> for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn $method(self, other: &Ratio) -> Ratio { self.$method(other.clone()) } } impl<'a, T> $imp<&'a T> for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn $method(self, other: &T) -> Ratio { self.$method(other.clone()) } } }; } macro_rules! forward_all_binop { (impl $imp:ident, $method:ident) => { forward_ref_ref_binop!(impl $imp, $method); forward_ref_val_binop!(impl $imp, $method); forward_val_ref_binop!(impl $imp, $method); }; } // Arithmetic forward_all_binop!(impl Mul, mul); // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) impl Mul> for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn mul(self, rhs: Ratio) -> Ratio { let gcd_ad = self.numer.gcd(&rhs.denom); let gcd_bc = self.denom.gcd(&rhs.numer); Ratio::new( self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), self.denom / gcd_bc * (rhs.denom / gcd_ad), ) } } // a/b * c/1 = (a*c) / (b*1) = (a*c) / b impl Mul for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn mul(self, rhs: T) -> Ratio { let gcd = self.denom.gcd(&rhs); Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) } } forward_all_binop!(impl Div, div); // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) impl Div> for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn div(self, rhs: Ratio) -> Ratio { let gcd_ac = self.numer.gcd(&rhs.numer); let gcd_bd = self.denom.gcd(&rhs.denom); Ratio::new( self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), self.denom / gcd_bd * (rhs.numer / gcd_ac), ) } } // (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) impl Div for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn div(self, rhs: T) -> Ratio { let gcd = self.numer.gcd(&rhs); Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) } } macro_rules! arith_impl { (impl $imp:ident, $method:ident) => { forward_all_binop!(impl $imp, $method); // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) impl $imp> for Ratio { type Output = Ratio; #[inline] fn $method(self, rhs: Ratio) -> Ratio { if self.denom == rhs.denom { return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); } let lcm = self.denom.lcm(&rhs.denom); let lhs_numer = self.numer * (lcm.clone() / self.denom); let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); Ratio::new(lhs_numer.$method(rhs_numer), lcm) } } // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern impl $imp for Ratio { type Output = Ratio; #[inline] fn $method(self, rhs: T) -> Ratio { Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) } } }; } arith_impl!(impl Add, add); arith_impl!(impl Sub, sub); arith_impl!(impl Rem, rem); // a/b * c/d = (a*c)/(b*d) impl CheckedMul for Ratio where T: Clone + Integer + CheckedMul, { #[inline] fn checked_mul(&self, rhs: &Ratio) -> Option> { let gcd_ad = self.numer.gcd(&rhs.denom); let gcd_bc = self.denom.gcd(&rhs.numer); Some(Ratio::new( (self.numer.clone() / gcd_ad.clone()) .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?, (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?, )) } } // (a/b) / (c/d) = (a*d)/(b*c) impl CheckedDiv for Ratio where T: Clone + Integer + CheckedMul, { #[inline] fn checked_div(&self, rhs: &Ratio) -> Option> { if rhs.is_zero() { return None; } let (numer, denom) = if self.denom == rhs.denom { (self.numer.clone(), rhs.numer.clone()) } else if self.numer == rhs.numer { (rhs.denom.clone(), self.denom.clone()) } else { let gcd_ac = self.numer.gcd(&rhs.numer); let gcd_bd = self.denom.gcd(&rhs.denom); ( (self.numer.clone() / gcd_ac.clone()) .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?, (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?, ) }; // Manual `reduce()`, avoiding sharp edges if denom.is_zero() { None } else if numer.is_zero() { Some(Self::zero()) } else if numer == denom { Some(Self::one()) } else { let g = numer.gcd(&denom); let numer = numer / g.clone(); let denom = denom / g; let raw = if denom < T::zero() { // We need to keep denom positive, but 2's-complement MIN may // overflow negation -- instead we can check multiplying -1. let n1 = T::zero() - T::one(); Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?) } else { Ratio::new_raw(numer, denom) }; Some(raw) } } } // As arith_impl! but for Checked{Add,Sub} traits macro_rules! checked_arith_impl { (impl $imp:ident, $method:ident) => { impl $imp for Ratio { #[inline] fn $method(&self, rhs: &Ratio) -> Option> { let gcd = self.denom.clone().gcd(&rhs.denom); let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?; let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?; let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?; Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm)) } } }; } // a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) checked_arith_impl!(impl CheckedAdd, checked_add); // a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) checked_arith_impl!(impl CheckedSub, checked_sub); impl Neg for Ratio where T: Clone + Integer + Neg, { type Output = Ratio; #[inline] fn neg(self) -> Ratio { Ratio::new_raw(-self.numer, self.denom) } } impl<'a, T> Neg for &'a Ratio where T: Clone + Integer + Neg, { type Output = Ratio; #[inline] fn neg(self) -> Ratio { -self.clone() } } impl Inv for Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn inv(self) -> Ratio { self.recip() } } impl<'a, T> Inv for &'a Ratio where T: Clone + Integer, { type Output = Ratio; #[inline] fn inv(self) -> Ratio { self.recip() } } // Constants impl Zero for Ratio { #[inline] fn zero() -> Ratio { Ratio::new_raw(Zero::zero(), One::one()) } #[inline] fn is_zero(&self) -> bool { self.numer.is_zero() } #[inline] fn set_zero(&mut self) { self.numer.set_zero(); self.denom.set_one(); } } impl One for Ratio { #[inline] fn one() -> Ratio { Ratio::new_raw(One::one(), One::one()) } #[inline] fn is_one(&self) -> bool { self.numer == self.denom } #[inline] fn set_one(&mut self) { self.numer.set_one(); self.denom.set_one(); } } impl Num for Ratio { type FromStrRadixErr = ParseRatioError; /// Parses `numer/denom` where the numbers are in base `radix`. fn from_str_radix(s: &str, radix: u32) -> Result, ParseRatioError> { if s.splitn(2, '/').count() == 2 { let mut parts = s.splitn(2, '/').map(|ss| { T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError, }) }); let numer: T = parts.next().unwrap()?; let denom: T = parts.next().unwrap()?; if denom.is_zero() { Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator, }) } else { Ok(Ratio::new(numer, denom)) } } else { Err(ParseRatioError { kind: RatioErrorKind::ParseError, }) } } } impl Signed for Ratio { #[inline] fn abs(&self) -> Ratio { if self.is_negative() { -self.clone() } else { self.clone() } } #[inline] fn abs_sub(&self, other: &Ratio) -> Ratio { if *self <= *other { Zero::zero() } else { self - other } } #[inline] fn signum(&self) -> Ratio { if self.is_positive() { Self::one() } else if self.is_zero() { Self::zero() } else { -Self::one() } } #[inline] fn is_positive(&self) -> bool { (self.numer.is_positive() && self.denom.is_positive()) || (self.numer.is_negative() && self.denom.is_negative()) } #[inline] fn is_negative(&self) -> bool { (self.numer.is_negative() && self.denom.is_positive()) || (self.numer.is_positive() && self.denom.is_negative()) } } // String conversions macro_rules! impl_formatting { ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => { impl $fmt_trait for Ratio { #[cfg(feature = "std")] fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { let pre_pad = if self.denom.is_one() { format!($fmt_str, self.numer) } else { if f.alternate() { format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom) } else { format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom) } }; // TODO: replace with strip_prefix, when stabalized let (pre_pad, non_negative) = { if pre_pad.starts_with("-") { (&pre_pad[1..], false) } else { (&pre_pad[..], true) } }; f.pad_integral(non_negative, $prefix, pre_pad) } #[cfg(not(feature = "std"))] fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { let plus = if f.sign_plus() && self.numer >= T::zero() { "+" } else { "" }; if self.denom.is_one() { if f.alternate() { write!(f, concat!("{}", $fmt_alt), plus, self.numer) } else { write!(f, concat!("{}", $fmt_str), plus, self.numer) } } else { if f.alternate() { write!( f, concat!("{}", $fmt_alt, "/", $fmt_alt), plus, self.numer, self.denom ) } else { write!( f, concat!("{}", $fmt_str, "/", $fmt_str), plus, self.numer, self.denom ) } } } } }; } impl_formatting!(Display, "", "{}", "{:#}"); impl_formatting!(Octal, "0o", "{:o}", "{:#o}"); impl_formatting!(Binary, "0b", "{:b}", "{:#b}"); impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}"); impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}"); impl_formatting!(LowerExp, "", "{:e}", "{:#e}"); impl_formatting!(UpperExp, "", "{:E}", "{:#E}"); impl FromStr for Ratio { type Err = ParseRatioError; /// Parses `numer/denom` or just `numer`. fn from_str(s: &str) -> Result, ParseRatioError> { let mut split = s.splitn(2, '/'); let n = split.next().ok_or(ParseRatioError { kind: RatioErrorKind::ParseError, })?; let num = FromStr::from_str(n).map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError, })?; let d = split.next().unwrap_or("1"); let den = FromStr::from_str(d).map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError, })?; if Zero::is_zero(&den) { Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator, }) } else { Ok(Ratio::new(num, den)) } } } impl Into<(T, T)> for Ratio { fn into(self) -> (T, T) { (self.numer, self.denom) } } #[cfg(feature = "serde")] impl serde::Serialize for Ratio where T: serde::Serialize + Clone + Integer + PartialOrd, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (self.numer(), self.denom()).serialize(serializer) } } #[cfg(feature = "serde")] impl<'de, T> serde::Deserialize<'de> for Ratio where T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { use serde::de::Error; use serde::de::Unexpected; let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?; if denom.is_zero() { Err(Error::invalid_value( Unexpected::Signed(0), &"a ratio with non-zero denominator", )) } else { Ok(Ratio::new_raw(numer, denom)) } } } // FIXME: Bubble up specific errors #[derive(Copy, Clone, Debug, PartialEq)] pub struct ParseRatioError { kind: RatioErrorKind, } #[derive(Copy, Clone, Debug, PartialEq)] enum RatioErrorKind { ParseError, ZeroDenominator, } impl fmt::Display for ParseRatioError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.kind.description().fmt(f) } } #[cfg(feature = "std")] impl Error for ParseRatioError { #[allow(deprecated)] fn description(&self) -> &str { self.kind.description() } } impl RatioErrorKind { fn description(&self) -> &'static str { match *self { RatioErrorKind::ParseError => "failed to parse integer", RatioErrorKind::ZeroDenominator => "zero value denominator", } } } #[cfg(feature = "num-bigint")] impl FromPrimitive for Ratio { fn from_i64(n: i64) -> Option { Some(Ratio::from_integer(n.into())) } fn from_i128(n: i128) -> Option { Some(Ratio::from_integer(n.into())) } fn from_u64(n: u64) -> Option { Some(Ratio::from_integer(n.into())) } fn from_u128(n: u128) -> Option { Some(Ratio::from_integer(n.into())) } fn from_f32(n: f32) -> Option { Ratio::from_float(n) } fn from_f64(n: f64) -> Option { Ratio::from_float(n) } } macro_rules! from_primitive_integer { ($typ:ty, $approx:ident) => { impl FromPrimitive for Ratio<$typ> { fn from_i64(n: i64) -> Option { <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) } fn from_i128(n: i128) -> Option { <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) } fn from_u64(n: u64) -> Option { <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) } fn from_u128(n: u128) -> Option { <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) } fn from_f32(n: f32) -> Option { $approx(n, 10e-20, 30) } fn from_f64(n: f64) -> Option { $approx(n, 10e-20, 30) } } }; } from_primitive_integer!(i8, approximate_float); from_primitive_integer!(i16, approximate_float); from_primitive_integer!(i32, approximate_float); from_primitive_integer!(i64, approximate_float); from_primitive_integer!(i128, approximate_float); from_primitive_integer!(isize, approximate_float); from_primitive_integer!(u8, approximate_float_unsigned); from_primitive_integer!(u16, approximate_float_unsigned); from_primitive_integer!(u32, approximate_float_unsigned); from_primitive_integer!(u64, approximate_float_unsigned); from_primitive_integer!(u128, approximate_float_unsigned); from_primitive_integer!(usize, approximate_float_unsigned); impl Ratio { pub fn approximate_float(f: F) -> Option> { // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems // to work well. Might want to choose something based on the types in the future, e.g. // T::max().recip() and T::bits() or something similar. let epsilon = ::from(10e-20).expect("Can't convert 10e-20"); approximate_float(f, epsilon, 30) } } fn approximate_float(val: F, max_error: F, max_iterations: usize) -> Option> where T: Integer + Signed + Bounded + NumCast + Clone, F: FloatCore + NumCast, { let negative = val.is_sign_negative(); let abs_val = val.abs(); let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?; // Make negative again if needed Some(if negative { r.neg() } else { r }) } // No Unsigned constraint because this also works on positive integers and is called // like that, see above fn approximate_float_unsigned(val: F, max_error: F, max_iterations: usize) -> Option> where T: Integer + Bounded + NumCast + Clone, F: FloatCore + NumCast, { // Continued fractions algorithm // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac if val < F::zero() || val.is_nan() { return None; } let mut q = val; let mut n0 = T::zero(); let mut d0 = T::one(); let mut n1 = T::one(); let mut d1 = T::zero(); let t_max = T::max_value(); let t_max_f = ::from(t_max.clone())?; // 1/epsilon > T::MAX let epsilon = t_max_f.recip(); // Overflow if q > t_max_f { return None; } for _ in 0..max_iterations { let a = match ::from(q) { None => break, Some(a) => a, }; let a_f = match ::from(a.clone()) { None => break, Some(a_f) => a_f, }; let f = q - a_f; // Prevent overflow if !a.is_zero() && (n1 > t_max.clone() / a.clone() || d1 > t_max.clone() / a.clone() || a.clone() * n1.clone() > t_max.clone() - n0.clone() || a.clone() * d1.clone() > t_max.clone() - d0.clone()) { break; } let n = a.clone() * n1.clone() + n0.clone(); let d = a.clone() * d1.clone() + d0.clone(); n0 = n1; d0 = d1; n1 = n.clone(); d1 = d.clone(); // Simplify fraction. Doing so here instead of at the end // allows us to get closer to the target value without overflows let g = Integer::gcd(&n1, &d1); if !g.is_zero() { n1 = n1 / g.clone(); d1 = d1 / g.clone(); } // Close enough? let (n_f, d_f) = match (::from(n), ::from(d)) { (Some(n_f), Some(d_f)) => (n_f, d_f), _ => break, }; if (n_f / d_f - val).abs() < max_error { break; } // Prevent division by ~0 if f < epsilon { break; } q = f.recip(); } // Overflow if d1.is_zero() { return None; } Some(Ratio::new(n1, d1)) } #[cfg(not(feature = "num-bigint"))] macro_rules! to_primitive_small { ($($type_name:ty)*) => ($( impl ToPrimitive for Ratio<$type_name> { fn to_i64(&self) -> Option { self.to_integer().to_i64() } fn to_i128(&self) -> Option { self.to_integer().to_i128() } fn to_u64(&self) -> Option { self.to_integer().to_u64() } fn to_u128(&self) -> Option { self.to_integer().to_u128() } fn to_f64(&self) -> Option { let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap(); if float.is_nan() { None } else { Some(float) } } } )*) } #[cfg(not(feature = "num-bigint"))] to_primitive_small!(u8 i8 u16 i16 u32 i32); #[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))] to_primitive_small!(usize isize); #[cfg(not(feature = "num-bigint"))] macro_rules! to_primitive_64 { ($($type_name:ty)*) => ($( impl ToPrimitive for Ratio<$type_name> { fn to_i64(&self) -> Option { self.to_integer().to_i64() } fn to_i128(&self) -> Option { self.to_integer().to_i128() } fn to_u64(&self) -> Option { self.to_integer().to_u64() } fn to_u128(&self) -> Option { self.to_integer().to_u128() } fn to_f64(&self) -> Option { let float = ratio_to_f64( self.numer as i128, self.denom as i128 ); if float.is_nan() { None } else { Some(float) } } } )*) } #[cfg(not(feature = "num-bigint"))] to_primitive_64!(u64 i64); #[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))] to_primitive_64!(usize isize); #[cfg(feature = "num-bigint")] impl ToPrimitive for Ratio { fn to_i64(&self) -> Option { self.to_integer().to_i64() } fn to_i128(&self) -> Option { self.to_integer().to_i128() } fn to_u64(&self) -> Option { self.to_integer().to_u64() } fn to_u128(&self) -> Option { self.to_integer().to_u128() } fn to_f64(&self) -> Option { let float = match (self.numer.to_i64(), self.denom.to_i64()) { (Some(numer), Some(denom)) => ratio_to_f64( >::from(numer), >::from(denom), ), _ => { let numer: BigInt = self.numer.to_bigint()?; let denom: BigInt = self.denom.to_bigint()?; ratio_to_f64(numer, denom) } }; if float.is_nan() { None } else { Some(float) } } } trait Bits { fn bits(&self) -> u64; } #[cfg(feature = "num-bigint")] impl Bits for BigInt { fn bits(&self) -> u64 { self.bits() } } impl Bits for i128 { fn bits(&self) -> u64 { (128 - self.wrapping_abs().leading_zeros()).into() } } /// Converts a ratio of `T` to an f64. /// /// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than /// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`. fn ratio_to_f64 + ToPrimitive>( numer: T, denom: T, ) -> f64 { use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX}; assert_eq!( RADIX, 2, "only floating point implementations with radix 2 are supported" ); // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64. const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS; const MIN_EXACT_INT: i64 = -MAX_EXACT_INT; let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap(); if !flo_sign.is_normal() { return flo_sign; } // Fast track: both sides can losslessly be converted to f64s. In this case, letting the // FPU do the job is faster and easier. In any other case, converting to f64s may lead // to an inexact result: https://stackoverflow.com/questions/56641441/. if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) { if MIN_EXACT_INT <= n && n <= MAX_EXACT_INT && MIN_EXACT_INT <= d && d <= MAX_EXACT_INT { return n.to_f64().unwrap() / d.to_f64().unwrap(); } } // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will // be used as the mantissa of the resulting float, and the remaining two are for rounding. // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or // 56 bits. let mut numer = numer.abs(); let mut denom = denom.abs(); let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) { Some(diff) => (true, diff), None => (false, denom.bits() - numer.bits()), }; // Filter out overflows and underflows. After this step, the signed difference fits in an // isize. if is_diff_positive && absolute_diff > MAX_EXP as u64 { return INFINITY * flo_sign; } if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 { return 0.0 * flo_sign; } let diff = if is_diff_positive { absolute_diff.to_isize().unwrap() } else { -absolute_diff.to_isize().unwrap() }; // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the // quotient is going to be subnormal, in which case it may have fewer bits. let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2; if shift >= 0 { denom <<= shift as usize } else { numer <<= -shift as usize }; let (quotient, remainder) = numer.div_rem(&denom); // This is guaranteed to fit since we've set up quotient to be at most 56 bits. let mut quotient = quotient.to_u64().unwrap(); let n_rounding_bits = { let quotient_bits = 64 - quotient.leading_zeros() as isize; let subnormal_bits = MIN_EXP as isize - shift; quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize } as usize; debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3); let rounding_bit_mask = (1u64 << n_rounding_bits) - 1; // Round to 53 bits with round-to-even. For rounding, we need to take into account both // our rounding bits and the division's remainder. let ls_bit = quotient & (1u64 << n_rounding_bits) != 0; let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0; let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0; if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) { quotient += 1u64 << n_rounding_bits; } quotient &= !rounding_bit_mask; // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3 // trailing zeros, so there is no risk of a rounding error here. let q_float = quotient as f64 * flo_sign; ldexp(q_float, shift as i32) } /// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not /// representable. fn ldexp(x: f64, exp: i32) -> f64 { use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX}; assert_eq!( RADIX, 2, "only floating point implementations with radix 2 are supported" ); const EXPONENT_MASK: u64 = 0x7ff << 52; const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe; const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32; if x.is_zero() || x.is_infinite() || x.is_nan() { return x; } // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize. if exp > 3 * MAX_EXP { return INFINITY * x.signum(); } else if exp < -3 * MAX_EXP { return 0.0 * x.signum(); } // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range. let (bits, curr_exp) = if !x.is_normal() { // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of // precision or rounding. let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER); let bits = normal_x.to_bits(); // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. ( bits, ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER, ) } else { let bits = x.to_bits(); let curr_exp = (bits & EXPONENT_MASK) >> 52; // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. (bits, curr_exp as i32) }; // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between // -2*MAX_EXP and 2*MAX_EXP. let new_exp = curr_exp + exp; if new_exp > MAX_UNSIGNED_EXPONENT { INFINITY * x.signum() } else if new_exp > 0 { // Normal case: exponent is not too large nor subnormal. let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); f64::from_bits(new_bits) } else if new_exp >= -(MANTISSA_DIGITS as i32) { // Result is subnormal but may not be zero. // In this case, we increase the exponent by 54 to make it normal, then multiply the end // result by 2^-53. This results in a single multiplication with no prior rounding error, // so there is no risk of double rounding. let new_exp = new_exp + MIN_SUBNORMAL_POWER; debug_assert!(new_exp >= 0); let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER) } else { // Result is zero. return 0.0 * x.signum(); } } #[cfg(test)] #[cfg(feature = "std")] fn hash(x: &T) -> u64 { use std::collections::hash_map::RandomState; use std::hash::BuildHasher; let mut hasher = ::Hasher::new(); x.hash(&mut hasher); hasher.finish() } #[cfg(test)] mod test { use super::ldexp; #[cfg(all(feature = "num-bigint"))] use super::BigInt; #[cfg(feature = "num-bigint")] use super::BigRational; use super::{Ratio, Rational64}; use core::f64; use core::i32; use core::i64; use core::str::FromStr; use num_integer::Integer; use num_traits::ToPrimitive; use num_traits::{FromPrimitive, One, Pow, Signed, Zero}; pub const _0: Rational64 = Ratio { numer: 0, denom: 1 }; pub const _1: Rational64 = Ratio { numer: 1, denom: 1 }; pub const _2: Rational64 = Ratio { numer: 2, denom: 1 }; pub const _NEG2: Rational64 = Ratio { numer: -2, denom: 1, }; pub const _8: Rational64 = Ratio { numer: 8, denom: 1 }; pub const _15: Rational64 = Ratio { numer: 15, denom: 1, }; pub const _16: Rational64 = Ratio { numer: 16, denom: 1, }; pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 }; pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 }; pub const _1_15: Rational64 = Ratio { numer: 1, denom: 15, }; pub const _1_16: Rational64 = Ratio { numer: 1, denom: 16, }; pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 }; pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 }; pub const _NEG1_2: Rational64 = Ratio { numer: -1, denom: 2, }; pub const _1_NEG2: Rational64 = Ratio { numer: 1, denom: -2, }; pub const _NEG1_NEG2: Rational64 = Ratio { numer: -1, denom: -2, }; pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 }; pub const _NEG1_3: Rational64 = Ratio { numer: -1, denom: 3, }; pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 }; pub const _NEG2_3: Rational64 = Ratio { numer: -2, denom: 3, }; pub const _MIN: Rational64 = Ratio { numer: i64::MIN, denom: 1, }; pub const _MIN_P1: Rational64 = Ratio { numer: i64::MIN + 1, denom: 1, }; pub const _MAX: Rational64 = Ratio { numer: i64::MAX, denom: 1, }; pub const _MAX_M1: Rational64 = Ratio { numer: i64::MAX - 1, denom: 1, }; pub const _BILLION: Rational64 = Ratio { numer: 1_000_000_000, denom: 1, }; #[cfg(feature = "num-bigint")] pub fn to_big(n: Rational64) -> BigRational { Ratio::new( FromPrimitive::from_i64(n.numer).unwrap(), FromPrimitive::from_i64(n.denom).unwrap(), ) } #[cfg(not(feature = "num-bigint"))] pub fn to_big(n: Rational64) -> Rational64 { Ratio::new( FromPrimitive::from_i64(n.numer).unwrap(), FromPrimitive::from_i64(n.denom).unwrap(), ) } #[test] fn test_test_constants() { // check our constants are what Ratio::new etc. would make. assert_eq!(_0, Zero::zero()); assert_eq!(_1, One::one()); assert_eq!(_2, Ratio::from_integer(2)); assert_eq!(_1_2, Ratio::new(1, 2)); assert_eq!(_3_2, Ratio::new(3, 2)); assert_eq!(_NEG1_2, Ratio::new(-1, 2)); assert_eq!(_2, From::from(2)); } #[test] fn test_new_reduce() { assert_eq!(Ratio::new(2, 2), One::one()); assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); } #[test] #[should_panic] fn test_new_zero() { let _a = Ratio::new(1, 0); } #[test] fn test_approximate_float() { assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); assert_eq!(Ratio::::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); assert_eq!(Ratio::::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); assert_eq!(Ratio::::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); assert_eq!(Ratio::::from_f32(127.5f32), None); assert_eq!(Ratio::::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); assert_eq!( Ratio::::from_f32(-126.5f32), Some(Ratio::new(-126i8, 1)) ); assert_eq!( Ratio::::from_f32(-127.0f32), Some(Ratio::new(-127i8, 1)) ); assert_eq!(Ratio::::from_f32(-127.5f32), None); assert_eq!(Ratio::::from_f32(-127f32), None); assert_eq!(Ratio::::from_f32(127f32), Some(Ratio::new(127u8, 1))); assert_eq!(Ratio::::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); assert_eq!(Ratio::::from_f32(256f32), None); assert_eq!(Ratio::::from_f64(-10e200), None); assert_eq!(Ratio::::from_f64(10e200), None); assert_eq!(Ratio::::from_f64(f64::INFINITY), None); assert_eq!(Ratio::::from_f64(f64::NEG_INFINITY), None); assert_eq!(Ratio::::from_f64(f64::NAN), None); assert_eq!( Ratio::::from_f64(f64::EPSILON), Some(Ratio::new(1, 4503599627370496)) ); assert_eq!(Ratio::::from_f64(0.0), Some(Ratio::new(0, 1))); assert_eq!(Ratio::::from_f64(-0.0), Some(Ratio::new(0, 1))); } #[test] #[allow(clippy::eq_op)] fn test_cmp() { assert!(_0 == _0 && _1 == _1); assert!(_0 != _1 && _1 != _0); assert!(_0 < _1 && !(_1 < _0)); assert!(_1 > _0 && !(_0 > _1)); assert!(_0 <= _0 && _1 <= _1); assert!(_0 <= _1 && !(_1 <= _0)); assert!(_0 >= _0 && _1 >= _1); assert!(_1 >= _0 && !(_0 >= _1)); let _0_2: Rational64 = Ratio::new_raw(0, 2); assert_eq!(_0, _0_2); } #[test] fn test_cmp_overflow() { use core::cmp::Ordering; // issue #7 example: let big = Ratio::new(128u8, 1); let small = big.recip(); assert!(big > small); // try a few that are closer together // (some matching numer, some matching denom, some neither) let ratios = [ Ratio::new(125_i8, 127_i8), Ratio::new(63_i8, 64_i8), Ratio::new(124_i8, 125_i8), Ratio::new(125_i8, 126_i8), Ratio::new(126_i8, 127_i8), Ratio::new(127_i8, 126_i8), ]; fn check_cmp(a: Ratio, b: Ratio, ord: Ordering) { #[cfg(feature = "std")] println!("comparing {} and {}", a, b); assert_eq!(a.cmp(&b), ord); assert_eq!(b.cmp(&a), ord.reverse()); } for (i, &a) in ratios.iter().enumerate() { check_cmp(a, a, Ordering::Equal); check_cmp(-a, a, Ordering::Less); for &b in &ratios[i + 1..] { check_cmp(a, b, Ordering::Less); check_cmp(-a, -b, Ordering::Greater); check_cmp(a.recip(), b.recip(), Ordering::Greater); check_cmp(-a.recip(), -b.recip(), Ordering::Less); } } } #[test] fn test_to_integer() { assert_eq!(_0.to_integer(), 0); assert_eq!(_1.to_integer(), 1); assert_eq!(_2.to_integer(), 2); assert_eq!(_1_2.to_integer(), 0); assert_eq!(_3_2.to_integer(), 1); assert_eq!(_NEG1_2.to_integer(), 0); } #[test] fn test_numer() { assert_eq!(_0.numer(), &0); assert_eq!(_1.numer(), &1); assert_eq!(_2.numer(), &2); assert_eq!(_1_2.numer(), &1); assert_eq!(_3_2.numer(), &3); assert_eq!(_NEG1_2.numer(), &(-1)); } #[test] fn test_denom() { assert_eq!(_0.denom(), &1); assert_eq!(_1.denom(), &1); assert_eq!(_2.denom(), &1); assert_eq!(_1_2.denom(), &2); assert_eq!(_3_2.denom(), &2); assert_eq!(_NEG1_2.denom(), &2); } #[test] fn test_is_integer() { assert!(_0.is_integer()); assert!(_1.is_integer()); assert!(_2.is_integer()); assert!(!_1_2.is_integer()); assert!(!_3_2.is_integer()); assert!(!_NEG1_2.is_integer()); } #[cfg(not(feature = "std"))] use core::fmt::{self, Write}; #[cfg(not(feature = "std"))] #[derive(Debug)] struct NoStdTester { cursor: usize, buf: [u8; NoStdTester::BUF_SIZE], } #[cfg(not(feature = "std"))] impl NoStdTester { fn new() -> NoStdTester { NoStdTester { buf: [0; Self::BUF_SIZE], cursor: 0, } } fn clear(&mut self) { self.buf = [0; Self::BUF_SIZE]; self.cursor = 0; } const WRITE_ERR: &'static str = "Formatted output too long"; const BUF_SIZE: usize = 32; } #[cfg(not(feature = "std"))] impl Write for NoStdTester { fn write_str(&mut self, s: &str) -> fmt::Result { for byte in s.bytes() { self.buf[self.cursor] = byte; self.cursor += 1; if self.cursor >= self.buf.len() { return Err(fmt::Error {}); } } Ok(()) } } #[cfg(not(feature = "std"))] impl PartialEq for NoStdTester { fn eq(&self, other: &str) -> bool { let other = other.as_bytes(); for index in 0..self.cursor { if self.buf.get(index) != other.get(index) { return false; } } true } } macro_rules! assert_fmt_eq { ($fmt_args:expr, $string:expr) => { #[cfg(not(feature = "std"))] { let mut tester = NoStdTester::new(); write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR); assert_eq!(tester, *$string); tester.clear(); } #[cfg(feature = "std")] { assert_eq!(std::fmt::format($fmt_args), $string); } }; } #[test] fn test_show() { // Test: // :b :o :x, :X, :? // alternate or not (#) // positive and negative // padding // does not test precision (i.e. truncation) assert_fmt_eq!(format_args!("{}", _2), "2"); assert_fmt_eq!(format_args!("{:+}", _2), "+2"); assert_fmt_eq!(format_args!("{:-}", _2), "2"); assert_fmt_eq!(format_args!("{}", _1_2), "1/2"); assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); // test negatives assert_fmt_eq!(format_args!("{}", _0), "0"); assert_fmt_eq!(format_args!("{}", -_2), "-2"); assert_fmt_eq!(format_args!("{:+}", -_2), "-2"); assert_fmt_eq!(format_args!("{:b}", _2), "10"); assert_fmt_eq!(format_args!("{:#b}", _2), "0b10"); assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10"); assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10"); assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10"); assert_fmt_eq!(format_args!("{:b}", _0), "0"); assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10"); // no std does not support padding #[cfg(feature = "std")] assert_eq!(&format!("{:010b}", _1_2), "0000001/10"); #[cfg(feature = "std")] assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10"); let half_i8: Ratio = Ratio::new(1_i8, 2_i8); assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10"); assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10"); #[cfg(feature = "std")] assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001"); assert_fmt_eq!(format_args!("{:o}", _8), "10"); assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10"); assert_fmt_eq!(format_args!("{:o}", _0), "0"); assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10"); #[cfg(feature = "std")] assert_eq!(&format!("{:010o}", _1_8), "0000001/10"); #[cfg(feature = "std")] assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10"); assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2"); assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2"); assert_fmt_eq!(format_args!("{:x}", _16), "10"); assert_fmt_eq!(format_args!("{:x}", _15), "f"); assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10"); assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f"); assert_fmt_eq!(format_args!("{:x}", _0), "0"); assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10"); #[cfg(feature = "std")] assert_eq!(&format!("{:010x}", _1_16), "0000001/10"); #[cfg(feature = "std")] assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10"); assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2"); assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2"); assert_fmt_eq!(format_args!("{:X}", _16), "10"); assert_fmt_eq!(format_args!("{:X}", _15), "F"); assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10"); assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F"); assert_fmt_eq!(format_args!("{:X}", _0), "0"); assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10"); #[cfg(feature = "std")] assert_eq!(format!("{:010X}", _1_16), "0000001/10"); #[cfg(feature = "std")] assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10"); assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2"); assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2"); #[cfg(has_int_exp_fmt)] { assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0"); assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0"); assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0"); assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9"); assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9"); assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9"); assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9"); assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0"); assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0"); assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0"); assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9"); assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9"); assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9"); assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9"); } } mod arith { use super::super::{Ratio, Rational64}; use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; use core::fmt::Debug; use num_integer::Integer; use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; #[test] fn test_add() { fn test(a: Rational64, b: Rational64, c: Rational64) { assert_eq!(a + b, c); assert_eq!( { let mut x = a; x += b; x }, c ); assert_eq!(to_big(a) + to_big(b), to_big(c)); assert_eq!(a.checked_add(&b), Some(c)); assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); } fn test_assign(a: Rational64, b: i64, c: Rational64) { assert_eq!(a + b, c); assert_eq!( { let mut x = a; x += b; x }, c ); } test(_1, _1_2, _3_2); test(_1, _1, _2); test(_1_2, _3_2, _2); test(_1_2, _NEG1_2, _0); test_assign(_1_2, 1, _3_2); } #[test] fn test_add_overflow() { // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) // to Ratio(1+1, T::max_value()) for each integer type. // Previously, this calculation would overflow. fn test_add_typed_overflow() where T: Integer + Bounded + Clone + Debug + NumAssign, { let _1_max = Ratio::new(T::one(), T::max_value()); let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); assert_eq!( { let mut tmp = _1_max.clone(); tmp += _1_max; tmp }, _2_max ); } test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); test_add_typed_overflow::(); } #[test] fn test_sub() { fn test(a: Rational64, b: Rational64, c: Rational64) { assert_eq!(a - b, c); assert_eq!( { let mut x = a; x -= b; x }, c ); assert_eq!(to_big(a) - to_big(b), to_big(c)); assert_eq!(a.checked_sub(&b), Some(c)); assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); } fn test_assign(a: Rational64, b: i64, c: Rational64) { assert_eq!(a - b, c); assert_eq!( { let mut x = a; x -= b; x }, c ); } test(_1, _1_2, _1_2); test(_3_2, _1_2, _1); test(_1, _NEG1_2, _3_2); test_assign(_1_2, 1, _NEG1_2); } #[test] fn test_sub_overflow() { // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() // for each integer type. Previously, this calculation would overflow. fn test_sub_typed_overflow() where T: Integer + Bounded + Clone + Debug + NumAssign, { let _1_max: Ratio = Ratio::new(T::one(), T::max_value()); assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); { let mut tmp: Ratio = _1_max.clone(); tmp -= _1_max; assert!(T::is_zero(&tmp.numer)); } } test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); test_sub_typed_overflow::(); } #[test] fn test_mul() { fn test(a: Rational64, b: Rational64, c: Rational64) { assert_eq!(a * b, c); assert_eq!( { let mut x = a; x *= b; x }, c ); assert_eq!(to_big(a) * to_big(b), to_big(c)); assert_eq!(a.checked_mul(&b), Some(c)); assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); } fn test_assign(a: Rational64, b: i64, c: Rational64) { assert_eq!(a * b, c); assert_eq!( { let mut x = a; x *= b; x }, c ); } test(_1, _1_2, _1_2); test(_1_2, _3_2, Ratio::new(3, 4)); test(_1_2, _NEG1_2, Ratio::new(-1, 4)); test_assign(_1_2, 2, _1); } #[test] fn test_mul_overflow() { fn test_mul_typed_overflow() where T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, { let two = T::one() + T::one(); let _3 = T::one() + T::one() + T::one(); // 1/big * 2/3 = 1/(max/4*3), where big is max/2 // make big = max/2, but also divisible by 2 let big = T::max_value() / two.clone() / two.clone() * two.clone(); let _1_big: Ratio = Ratio::new(T::one(), big.clone()); let _2_3: Ratio = Ratio::new(two.clone(), _3.clone()); assert_eq!(None, big.clone().checked_mul(&_3.clone())); let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); assert_eq!( Some(expected.clone()), _1_big.clone().checked_mul(&_2_3.clone()) ); assert_eq!(expected, { let mut tmp = _1_big; tmp *= _2_3; tmp }); // big/3 * 3 = big/1 // make big = max/2, but make it indivisible by 3 let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); assert_eq!(None, big.clone().checked_mul(&_3.clone())); let big_3 = Ratio::new(big.clone(), _3.clone()); let expected = Ratio::new(big, T::one()); assert_eq!(expected, big_3.clone() * _3.clone()); assert_eq!(expected, { let mut tmp = big_3; tmp *= _3; tmp }); } test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); test_mul_typed_overflow::(); } #[test] fn test_div() { fn test(a: Rational64, b: Rational64, c: Rational64) { assert_eq!(a / b, c); assert_eq!( { let mut x = a; x /= b; x }, c ); assert_eq!(to_big(a) / to_big(b), to_big(c)); assert_eq!(a.checked_div(&b), Some(c)); assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); } fn test_assign(a: Rational64, b: i64, c: Rational64) { assert_eq!(a / b, c); assert_eq!( { let mut x = a; x /= b; x }, c ); } test(_1, _1_2, _2); test(_3_2, _1_2, _1 + _2); test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); test_assign(_1, 2, _1_2); } #[test] fn test_div_overflow() { fn test_div_typed_overflow() where T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, { let two = T::one() + T::one(); let _3 = T::one() + T::one() + T::one(); // 1/big / 3/2 = 1/(max/4*3), where big is max/2 // big ~ max/2, and big is divisible by 2 let big = T::max_value() / two.clone() / two.clone() * two.clone(); assert_eq!(None, big.clone().checked_mul(&_3.clone())); let _1_big: Ratio = Ratio::new(T::one(), big.clone()); let _3_two: Ratio = Ratio::new(_3.clone(), two.clone()); let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); assert_eq!( Some(expected.clone()), _1_big.clone().checked_div(&_3_two.clone()) ); assert_eq!(expected, { let mut tmp = _1_big; tmp /= _3_two; tmp }); // 3/big / 3 = 1/big where big is max/2 // big ~ max/2, and big is not divisible by 3 let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); assert_eq!(None, big.clone().checked_mul(&_3.clone())); let _3_big = Ratio::new(_3.clone(), big.clone()); let expected = Ratio::new(T::one(), big); assert_eq!(expected, _3_big.clone() / _3.clone()); assert_eq!(expected, { let mut tmp = _3_big; tmp /= _3; tmp }); } test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); test_div_typed_overflow::(); } #[test] fn test_rem() { fn test(a: Rational64, b: Rational64, c: Rational64) { assert_eq!(a % b, c); assert_eq!( { let mut x = a; x %= b; x }, c ); assert_eq!(to_big(a) % to_big(b), to_big(c)) } fn test_assign(a: Rational64, b: i64, c: Rational64) { assert_eq!(a % b, c); assert_eq!( { let mut x = a; x %= b; x }, c ); } test(_3_2, _1, _1_2); test(_3_2, _1_2, _0); test(_5_2, _3_2, _1); test(_2, _NEG1_2, _0); test(_1_2, _2, _1_2); test_assign(_3_2, 1, _1_2); } #[test] fn test_rem_overflow() { // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 // for each integer type. Previously, this calculation would overflow. fn test_rem_typed_overflow() where T: Integer + Bounded + Clone + Debug + NumAssign, { let two = T::one() + T::one(); // value near to maximum, but divisible by two let max_div2 = T::max_value() / two.clone() * two.clone(); let _1_max: Ratio = Ratio::new(T::one(), max_div2); let _1_two: Ratio = Ratio::new(T::one(), two); assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); { let mut tmp: Ratio = _1_two; tmp %= _1_max; assert!(T::is_zero(&tmp.numer)); } } test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); test_rem_typed_overflow::(); } #[test] fn test_neg() { fn test(a: Rational64, b: Rational64) { assert_eq!(-a, b); assert_eq!(-to_big(a), to_big(b)) } test(_0, _0); test(_1_2, _NEG1_2); test(-_1, _1); } #[test] #[allow(clippy::eq_op)] fn test_zero() { assert_eq!(_0 + _0, _0); assert_eq!(_0 * _0, _0); assert_eq!(_0 * _1, _0); assert_eq!(_0 / _NEG1_2, _0); assert_eq!(_0 - _0, _0); } #[test] #[should_panic] fn test_div_0() { let _a = _1 / _0; } #[test] fn test_checked_failures() { let big = Ratio::new(128u8, 1); let small = Ratio::new(1, 128u8); assert_eq!(big.checked_add(&big), None); assert_eq!(small.checked_sub(&big), None); assert_eq!(big.checked_mul(&big), None); assert_eq!(small.checked_div(&big), None); assert_eq!(_1.checked_div(&_0), None); } #[test] fn test_checked_zeros() { assert_eq!(_0.checked_add(&_0), Some(_0)); assert_eq!(_0.checked_sub(&_0), Some(_0)); assert_eq!(_0.checked_mul(&_0), Some(_0)); assert_eq!(_0.checked_div(&_0), None); } #[test] fn test_checked_min() { assert_eq!(_MIN.checked_add(&_MIN), None); assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); assert_eq!(_MIN.checked_mul(&_MIN), None); assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); assert_eq!(_0.checked_sub(&_MIN), None); assert_eq!(_0.checked_mul(&_MIN), Some(_0)); assert_eq!(_0.checked_div(&_MIN), Some(_0)); assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); assert_eq!(_1.checked_sub(&_MIN), None); assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); assert_eq!(_1.checked_div(&_MIN), None); assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); assert_eq!(_MIN.checked_mul(&_0), Some(_0)); assert_eq!(_MIN.checked_div(&_0), None); assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); assert_eq!(_MIN.checked_sub(&_1), None); assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); } #[test] fn test_checked_max() { assert_eq!(_MAX.checked_add(&_MAX), None); assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); assert_eq!(_MAX.checked_mul(&_MAX), None); assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); assert_eq!(_0.checked_mul(&_MAX), Some(_0)); assert_eq!(_0.checked_div(&_MAX), Some(_0)); assert_eq!(_1.checked_add(&_MAX), None); assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); assert_eq!(_MAX.checked_mul(&_0), Some(_0)); assert_eq!(_MAX.checked_div(&_0), None); assert_eq!(_MAX.checked_add(&_1), None); assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); } #[test] fn test_checked_min_max() { assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); assert_eq!(_MIN.checked_sub(&_MAX), None); assert_eq!(_MIN.checked_mul(&_MAX), None); assert_eq!( _MIN.checked_div(&_MAX), Some(Ratio::new(_MIN.numer, _MAX.numer)) ); assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); assert_eq!(_MAX.checked_sub(&_MIN), None); assert_eq!(_MAX.checked_mul(&_MIN), None); assert_eq!(_MAX.checked_div(&_MIN), None); } } #[test] fn test_round() { assert_eq!(_1_3.ceil(), _1); assert_eq!(_1_3.floor(), _0); assert_eq!(_1_3.round(), _0); assert_eq!(_1_3.trunc(), _0); assert_eq!(_NEG1_3.ceil(), _0); assert_eq!(_NEG1_3.floor(), -_1); assert_eq!(_NEG1_3.round(), _0); assert_eq!(_NEG1_3.trunc(), _0); assert_eq!(_2_3.ceil(), _1); assert_eq!(_2_3.floor(), _0); assert_eq!(_2_3.round(), _1); assert_eq!(_2_3.trunc(), _0); assert_eq!(_NEG2_3.ceil(), _0); assert_eq!(_NEG2_3.floor(), -_1); assert_eq!(_NEG2_3.round(), -_1); assert_eq!(_NEG2_3.trunc(), _0); assert_eq!(_1_2.ceil(), _1); assert_eq!(_1_2.floor(), _0); assert_eq!(_1_2.round(), _1); assert_eq!(_1_2.trunc(), _0); assert_eq!(_NEG1_2.ceil(), _0); assert_eq!(_NEG1_2.floor(), -_1); assert_eq!(_NEG1_2.round(), -_1); assert_eq!(_NEG1_2.trunc(), _0); assert_eq!(_1.ceil(), _1); assert_eq!(_1.floor(), _1); assert_eq!(_1.round(), _1); assert_eq!(_1.trunc(), _1); // Overflow checks let _neg1 = Ratio::from_integer(-1); let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); let _large_rat7 = Ratio::new(1, i32::MIN + 1); let _large_rat8 = Ratio::new(1, i32::MAX); assert_eq!(_large_rat1.round(), One::one()); assert_eq!(_large_rat2.round(), One::one()); assert_eq!(_large_rat3.round(), One::one()); assert_eq!(_large_rat4.round(), One::one()); assert_eq!(_large_rat5.round(), _neg1); assert_eq!(_large_rat6.round(), _neg1); assert_eq!(_large_rat7.round(), Zero::zero()); assert_eq!(_large_rat8.round(), Zero::zero()); } #[test] fn test_fract() { assert_eq!(_1.fract(), _0); assert_eq!(_NEG1_2.fract(), _NEG1_2); assert_eq!(_1_2.fract(), _1_2); assert_eq!(_3_2.fract(), _1_2); } #[test] fn test_recip() { assert_eq!(_1 * _1.recip(), _1); assert_eq!(_2 * _2.recip(), _1); assert_eq!(_1_2 * _1_2.recip(), _1); assert_eq!(_3_2 * _3_2.recip(), _1); assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); assert_eq!(_3_2.recip(), _2_3); assert_eq!(_NEG1_2.recip(), _NEG2); assert_eq!(_NEG1_2.recip().denom(), &1); } #[test] #[should_panic(expected = "division by zero")] fn test_recip_fail() { let _a = Ratio::new(0, 1).recip(); } #[test] fn test_pow() { fn test(r: Rational64, e: i32, expected: Rational64) { assert_eq!(r.pow(e), expected); assert_eq!(Pow::pow(r, e), expected); assert_eq!(Pow::pow(r, &e), expected); assert_eq!(Pow::pow(&r, e), expected); assert_eq!(Pow::pow(&r, &e), expected); #[cfg(feature = "num-bigint")] test_big(r, e, expected); } #[cfg(feature = "num-bigint")] fn test_big(r: Rational64, e: i32, expected: Rational64) { let r = BigRational::new_raw(r.numer.into(), r.denom.into()); let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into()); assert_eq!((&r).pow(e), expected); assert_eq!(Pow::pow(r.clone(), e), expected); assert_eq!(Pow::pow(r.clone(), &e), expected); assert_eq!(Pow::pow(&r, e), expected); assert_eq!(Pow::pow(&r, &e), expected); } test(_1_2, 2, Ratio::new(1, 4)); test(_1_2, -2, Ratio::new(4, 1)); test(_1, 1, _1); test(_1, i32::MAX, _1); test(_1, i32::MIN, _1); test(_NEG1_2, 2, _1_2.pow(2i32)); test(_NEG1_2, 3, -_1_2.pow(3i32)); test(_3_2, 0, _1); test(_3_2, -1, _3_2.recip()); test(_3_2, 3, Ratio::new(27, 8)); } #[test] #[cfg(feature = "std")] fn test_to_from_str() { use std::string::{String, ToString}; fn test(r: Rational64, s: String) { assert_eq!(FromStr::from_str(&s), Ok(r)); assert_eq!(r.to_string(), s); } test(_1, "1".to_string()); test(_0, "0".to_string()); test(_1_2, "1/2".to_string()); test(_3_2, "3/2".to_string()); test(_2, "2".to_string()); test(_NEG1_2, "-1/2".to_string()); } #[test] fn test_from_str_fail() { fn test(s: &str) { let rational: Result = FromStr::from_str(s); assert!(rational.is_err()); } let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; for &s in xs.iter() { test(s); } } #[cfg(feature = "num-bigint")] #[test] fn test_from_float() { use num_traits::float::FloatCore; fn test(given: T, (numer, denom): (&str, &str)) { let ratio: BigRational = Ratio::from_float(given).unwrap(); assert_eq!( ratio, Ratio::new( FromStr::from_str(numer).unwrap(), FromStr::from_str(denom).unwrap() ) ); } // f32 test(core::f32::consts::PI, ("13176795", "4194304")); test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); test( -(2f32.powf(100.)), ("-1267650600228229401496703205376", "1"), ); test( 1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376"), ); test(684729.48391f32, ("1369459", "2")); test(-8573.5918555f32, ("-4389679", "512")); // f64 test( core::f64::consts::PI, ("884279719003555", "281474976710656"), ); test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); test( -(2f64.powf(100.)), ("-1267650600228229401496703205376", "1"), ); test(684729.48391f64, ("367611342500051", "536870912")); test(-8573.5918555f64, ("-4713381968463931", "549755813888")); test( 1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376"), ); } #[cfg(feature = "num-bigint")] #[test] fn test_from_float_fail() { use core::{f32, f64}; assert_eq!(Ratio::from_float(f32::NAN), None); assert_eq!(Ratio::from_float(f32::INFINITY), None); assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); assert_eq!(Ratio::from_float(f64::NAN), None); assert_eq!(Ratio::from_float(f64::INFINITY), None); assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); } #[test] fn test_signed() { assert_eq!(_NEG1_2.abs(), _1_2); assert_eq!(_3_2.abs_sub(&_1_2), _1); assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); assert_eq!(_1_2.signum(), One::one()); assert_eq!(_NEG1_2.signum(), ->::one()); assert_eq!(_0.signum(), Zero::zero()); assert!(_NEG1_2.is_negative()); assert!(_1_NEG2.is_negative()); assert!(!_NEG1_2.is_positive()); assert!(!_1_NEG2.is_positive()); assert!(_1_2.is_positive()); assert!(_NEG1_NEG2.is_positive()); assert!(!_1_2.is_negative()); assert!(!_NEG1_NEG2.is_negative()); assert!(!_0.is_positive()); assert!(!_0.is_negative()); } #[test] #[cfg(feature = "std")] fn test_hash() { assert!(crate::hash(&_0) != crate::hash(&_1)); assert!(crate::hash(&_0) != crate::hash(&_3_2)); // a == b -> hash(a) == hash(b) let a = Rational64::new_raw(4, 2); let b = Rational64::new_raw(6, 3); assert_eq!(a, b); assert_eq!(crate::hash(&a), crate::hash(&b)); let a = Rational64::new_raw(123456789, 1000); let b = Rational64::new_raw(123456789 * 5, 5000); assert_eq!(a, b); assert_eq!(crate::hash(&a), crate::hash(&b)); } #[test] fn test_into_pair() { assert_eq!((0, 1), _0.into()); assert_eq!((-2, 1), _NEG2.into()); assert_eq!((1, -2), _1_NEG2.into()); } #[test] fn test_from_pair() { assert_eq!(_0, Ratio::from((0, 1))); assert_eq!(_1, Ratio::from((1, 1))); assert_eq!(_NEG2, Ratio::from((-2, 1))); assert_eq!(_1_NEG2, Ratio::from((1, -2))); } #[test] fn ratio_iter_sum() { // generic function to assure the iter method can be called // for any Iterator with Item = Ratio or Ratio<&impl Integer> fn iter_sums(slice: &[Ratio]) -> [Ratio; 3] { let mut manual_sum = Ratio::new(T::zero(), T::one()); for ratio in slice { manual_sum = manual_sum + ratio; } [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] } // collect into array so test works on no_std let mut nums = [Ratio::new(0, 1); 1000]; for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { nums[i] = r; } let sums = iter_sums(&nums[..]); assert_eq!(sums[0], sums[1]); assert_eq!(sums[0], sums[2]); } #[test] fn ratio_iter_product() { // generic function to assure the iter method can be called // for any Iterator with Item = Ratio or Ratio<&impl Integer> fn iter_products(slice: &[Ratio]) -> [Ratio; 3] { let mut manual_prod = Ratio::new(T::one(), T::one()); for ratio in slice { manual_prod = manual_prod * ratio; } [ manual_prod, slice.iter().product(), slice.iter().cloned().product(), ] } // collect into array so test works on no_std let mut nums = [Ratio::new(0, 1); 1000]; for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { nums[i] = r; } let products = iter_products(&nums[..]); assert_eq!(products[0], products[1]); assert_eq!(products[0], products[2]); } #[test] fn test_num_zero() { let zero = Rational64::zero(); assert!(zero.is_zero()); let mut r = Rational64::new(123, 456); assert!(!r.is_zero()); assert_eq!(r + zero, r); r.set_zero(); assert!(r.is_zero()); } #[test] fn test_num_one() { let one = Rational64::one(); assert!(one.is_one()); let mut r = Rational64::new(123, 456); assert!(!r.is_one()); assert_eq!(r * one, r); r.set_one(); assert!(r.is_one()); } #[test] fn test_const() { const N: Ratio = Ratio::new_raw(123, 456); const N_NUMER: &i32 = N.numer(); const N_DENOM: &i32 = N.denom(); assert_eq!(N_NUMER, &123); assert_eq!(N_DENOM, &456); let r = N.reduced(); assert_eq!(r.numer(), &(123 / 3)); assert_eq!(r.denom(), &(456 / 3)); } #[test] fn test_ratio_to_i64() { assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap()); assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap()); assert_eq!(None, Rational64::new(-31, 8).to_u64()); } #[test] #[cfg(feature = "num-bigint")] fn test_ratio_to_i128() { assert_eq!( 1i128 << 70, Ratio::::new(1i128 << 77, 1i128 << 7) .to_i128() .unwrap() ); } #[test] #[cfg(feature = "num-bigint")] fn test_big_ratio_to_f64() { assert_eq!( BigRational::new( "1234567890987654321234567890987654321234567890" .parse() .unwrap(), "3".parse().unwrap() ) .to_f64(), Some(411522630329218100000000000000000000000000000f64) ); assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324)); assert_eq!( // subnormal BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(), Some(2.0f64.powi(-50).powi(21)) ); assert_eq!( // definite underflow BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(), Some(0.0) ); assert_eq!( BigRational::from(BigInt::one() << 1050).to_f64(), Some(core::f64::INFINITY) ); assert_eq!( BigRational::from((-BigInt::one()) << 1050).to_f64(), Some(core::f64::NEG_INFINITY) ); assert_eq!( BigRational::new( "1234567890987654321234567890".parse().unwrap(), "987654321234567890987654321".parse().unwrap() ) .to_f64(), Some(1.2499999893125f64) ); assert_eq!( BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(), Some(core::f64::INFINITY) ); assert_eq!( BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(), Some(core::f64::NEG_INFINITY) ); assert_eq!( BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(), None ); } #[test] fn test_ratio_to_f64() { assert_eq!(Ratio::::new(1, 2).to_f64(), Some(0.5f64)); assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64)); assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64)); assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64)); assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64)); assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64)); assert_eq!( Rational64::new((1 << 52) + 1, 1 << 52).to_f64(), Some(1.0000000000000002f64), ); assert_eq!( Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(), Some(1.0000000000000002f64), ); assert_eq!( Ratio::::new_raw(1, 0).to_f64(), Some(core::f64::INFINITY) ); assert_eq!( Ratio::::new_raw(-1, 0).to_f64(), Some(core::f64::NEG_INFINITY) ); assert_eq!(Ratio::::new_raw(0, 0).to_f64(), None); } #[test] fn test_ldexp() { use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY}; assert_eq!(ldexp(1.0, 0), 1.0); assert_eq!(ldexp(1.0, 1), 2.0); assert_eq!(ldexp(0.0, 1), 0.0); assert_eq!(ldexp(-0.0, 1), -0.0); // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or // underflow. assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5)); assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1)); assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3)); // Case where initial value is subnormal assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4)); assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200)); // Near underflow (2^exp is too small to represent, but not x*2^exp) assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1)); // Near overflow assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP)); // Overflow and underflow cases assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0); assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0); assert_eq!(ldexp(1.0, MAX_EXP), INFINITY); assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY); // Special values assert_eq!(ldexp(INFINITY, 1), INFINITY); assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY); assert!(ldexp(NAN, 1).is_nan()); } }