// SPDX-License-Identifier: Apache-2.0 OR MIT // Critical section based fallback implementations // // This module supports two different critical section implementations: // - Built-in "disable all interrupts". // - Call into the `critical-section` crate (which allows the user to plug any implementation). // // The `critical-section`-based fallback is enabled when the user asks for it with the `critical-section` // Cargo feature. // // The "disable interrupts" fallback is not sound on multi-core systems. // Also, this uses privileged instructions to disable interrupts, so it usually // doesn't work on unprivileged mode. Using this fallback in an environment where privileged // instructions are not available is also usually considered **unsound**, // although the details are system-dependent. // // Therefore, this implementation will only be enabled in one of the following cases: // // - When the user explicitly declares that the system is single-core and that // privileged instructions are available using an unsafe cfg. // - When we can safely assume that the system is single-core and that // privileged instructions are available on the system. // // AVR, which is single core[^avr1] and LLVM also generates code that disables // interrupts [^avr2] in atomic ops by default, is considered the latter. // MSP430 as well. // // See also README.md of this directory. // // [^avr1]: https://github.com/llvm/llvm-project/blob/llvmorg-17.0.0-rc2/llvm/lib/Target/AVR/AVRExpandPseudoInsts.cpp#L1074 // [^avr2]: https://github.com/llvm/llvm-project/blob/llvmorg-17.0.0-rc2/llvm/test/CodeGen/AVR/atomics/load16.ll#L5 // On some platforms, atomic load/store can be implemented in a more efficient // way than disabling interrupts. On MSP430, some RMWs that do not return the // previous value can also be optimized. // // Note: On single-core systems, it is okay to use critical session-based // CAS together with atomic load/store. The load/store will not be // called while interrupts are disabled, and since the load/store is // atomic, it is not affected by interrupts even if interrupts are enabled. #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] use arch::atomic; #[cfg(not(feature = "critical-section"))] #[cfg_attr( all( target_arch = "arm", any(target_feature = "mclass", portable_atomic_target_feature = "mclass"), ), path = "armv6m.rs" )] #[cfg_attr( all( target_arch = "arm", not(any(target_feature = "mclass", portable_atomic_target_feature = "mclass")), ), path = "armv4t.rs" )] #[cfg_attr(target_arch = "avr", path = "avr.rs")] #[cfg_attr(target_arch = "msp430", path = "msp430.rs")] #[cfg_attr(any(target_arch = "riscv32", target_arch = "riscv64"), path = "riscv.rs")] #[cfg_attr(target_arch = "xtensa", path = "xtensa.rs")] mod arch; use core::{cell::UnsafeCell, sync::atomic::Ordering}; // Critical section implementations might use locks internally. #[cfg(feature = "critical-section")] const IS_ALWAYS_LOCK_FREE: bool = false; // Consider atomic operations based on disabling interrupts on single-core // systems are lock-free. (We consider the pre-v6 ARM Linux's atomic operations // provided in a similar way by the Linux kernel to be lock-free.) #[cfg(not(feature = "critical-section"))] const IS_ALWAYS_LOCK_FREE: bool = true; #[cfg(feature = "critical-section")] #[inline] fn with(f: F) -> R where F: FnOnce() -> R, { critical_section::with(|_| f()) } #[cfg(not(feature = "critical-section"))] #[inline] fn with(f: F) -> R where F: FnOnce() -> R, { // Get current interrupt state and disable interrupts let state = arch::disable(); let r = f(); // Restore interrupt state // SAFETY: the state was retrieved by the previous `disable`. unsafe { arch::restore(state) } r } #[cfg_attr(target_pointer_width = "16", repr(C, align(2)))] #[cfg_attr(target_pointer_width = "32", repr(C, align(4)))] #[cfg_attr(target_pointer_width = "64", repr(C, align(8)))] #[cfg_attr(target_pointer_width = "128", repr(C, align(16)))] pub(crate) struct AtomicPtr { p: UnsafeCell<*mut T>, } // SAFETY: any data races are prevented by disabling interrupts or // atomic intrinsics (see module-level comments). unsafe impl Send for AtomicPtr {} // SAFETY: any data races are prevented by disabling interrupts or // atomic intrinsics (see module-level comments). unsafe impl Sync for AtomicPtr {} impl AtomicPtr { #[inline] pub(crate) const fn new(p: *mut T) -> Self { Self { p: UnsafeCell::new(p) } } #[inline] pub(crate) fn is_lock_free() -> bool { Self::is_always_lock_free() } #[inline] pub(crate) const fn is_always_lock_free() -> bool { IS_ALWAYS_LOCK_FREE } #[inline] pub(crate) fn get_mut(&mut self) -> &mut *mut T { // SAFETY: the mutable reference guarantees unique ownership. // (UnsafeCell::get_mut requires Rust 1.50) unsafe { &mut *self.p.get() } } #[inline] pub(crate) fn into_inner(self) -> *mut T { self.p.into_inner() } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn load(&self, order: Ordering) -> *mut T { crate::utils::assert_load_ordering(order); #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] { self.as_native().load(order) } #[cfg(any(target_arch = "avr", feature = "critical-section"))] // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { self.p.get().read() }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn store(&self, ptr: *mut T, order: Ordering) { crate::utils::assert_store_ordering(order); #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] { self.as_native().store(ptr, order); } #[cfg(any(target_arch = "avr", feature = "critical-section"))] // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { self.p.get().write(ptr) }); } #[inline] pub(crate) fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T { let _ = order; #[cfg(portable_atomic_force_amo)] { self.as_native().swap(ptr, order) } #[cfg(not(portable_atomic_force_amo))] // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.p.get().read(); self.p.get().write(ptr); prev }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange( &self, current: *mut T, new: *mut T, success: Ordering, failure: Ordering, ) -> Result<*mut T, *mut T> { crate::utils::assert_compare_exchange_ordering(success, failure); // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.p.get().read(); if prev == current { self.p.get().write(new); Ok(prev) } else { Err(prev) } }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange_weak( &self, current: *mut T, new: *mut T, success: Ordering, failure: Ordering, ) -> Result<*mut T, *mut T> { self.compare_exchange(current, new, success, failure) } #[inline] pub(crate) const fn as_ptr(&self) -> *mut *mut T { self.p.get() } #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] #[inline] fn as_native(&self) -> &atomic::AtomicPtr { // SAFETY: AtomicPtr and atomic::AtomicPtr have the same layout and // guarantee atomicity in a compatible way. (see module-level comments) unsafe { &*(self as *const Self as *const atomic::AtomicPtr) } } } macro_rules! atomic_int { (base, $atomic_type:ident, $int_type:ident, $align:literal) => { #[repr(C, align($align))] pub(crate) struct $atomic_type { v: UnsafeCell<$int_type>, } // Send is implicitly implemented. // SAFETY: any data races are prevented by disabling interrupts or // atomic intrinsics (see module-level comments). unsafe impl Sync for $atomic_type {} impl $atomic_type { #[inline] pub(crate) const fn new(v: $int_type) -> Self { Self { v: UnsafeCell::new(v) } } #[inline] pub(crate) fn is_lock_free() -> bool { Self::is_always_lock_free() } #[inline] pub(crate) const fn is_always_lock_free() -> bool { IS_ALWAYS_LOCK_FREE } #[inline] pub(crate) fn get_mut(&mut self) -> &mut $int_type { // SAFETY: the mutable reference guarantees unique ownership. // (UnsafeCell::get_mut requires Rust 1.50) unsafe { &mut *self.v.get() } } #[inline] pub(crate) fn into_inner(self) -> $int_type { self.v.into_inner() } #[inline] pub(crate) const fn as_ptr(&self) -> *mut $int_type { self.v.get() } } }; (load_store_atomic $([$kind:ident])?, $atomic_type:ident, $int_type:ident, $align:literal) => { atomic_int!(base, $atomic_type, $int_type, $align); #[cfg(not(portable_atomic_force_amo))] atomic_int!(cas[emulate], $atomic_type, $int_type); #[cfg(portable_atomic_force_amo)] atomic_int!(cas $([$kind])?, $atomic_type, $int_type); impl $atomic_type { #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn load(&self, order: Ordering) -> $int_type { crate::utils::assert_load_ordering(order); #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] { self.as_native().load(order) } #[cfg(any(target_arch = "avr", feature = "critical-section"))] // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { self.v.get().read() }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn store(&self, val: $int_type, order: Ordering) { crate::utils::assert_store_ordering(order); #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] { self.as_native().store(val, order); } #[cfg(any(target_arch = "avr", feature = "critical-section"))] // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { self.v.get().write(val) }); } #[cfg(not(any(target_arch = "avr", feature = "critical-section")))] #[inline] fn as_native(&self) -> &atomic::$atomic_type { // SAFETY: $atomic_type and atomic::$atomic_type have the same layout and // guarantee atomicity in a compatible way. (see module-level comments) unsafe { &*(self as *const Self as *const atomic::$atomic_type) } } } #[cfg(not(all(target_arch = "msp430", not(feature = "critical-section"))))] impl_default_no_fetch_ops!($atomic_type, $int_type); impl_default_bit_opts!($atomic_type, $int_type); #[cfg(not(all(target_arch = "msp430", not(feature = "critical-section"))))] impl $atomic_type { #[inline] pub(crate) fn not(&self, order: Ordering) { self.fetch_not(order); } } #[cfg(all(target_arch = "msp430", not(feature = "critical-section")))] impl $atomic_type { #[inline] pub(crate) fn add(&self, val: $int_type, order: Ordering) { self.as_native().add(val, order); } #[inline] pub(crate) fn sub(&self, val: $int_type, order: Ordering) { self.as_native().sub(val, order); } #[inline] pub(crate) fn and(&self, val: $int_type, order: Ordering) { self.as_native().and(val, order); } #[inline] pub(crate) fn or(&self, val: $int_type, order: Ordering) { self.as_native().or(val, order); } #[inline] pub(crate) fn xor(&self, val: $int_type, order: Ordering) { self.as_native().xor(val, order); } #[inline] pub(crate) fn not(&self, order: Ordering) { self.as_native().not(order); } } }; (load_store_critical_session, $atomic_type:ident, $int_type:ident, $align:literal) => { atomic_int!(base, $atomic_type, $int_type, $align); atomic_int!(cas[emulate], $atomic_type, $int_type); impl_default_no_fetch_ops!($atomic_type, $int_type); impl_default_bit_opts!($atomic_type, $int_type); impl $atomic_type { #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn load(&self, order: Ordering) -> $int_type { crate::utils::assert_load_ordering(order); // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { self.v.get().read() }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn store(&self, val: $int_type, order: Ordering) { crate::utils::assert_store_ordering(order); // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { self.v.get().write(val) }); } #[inline] pub(crate) fn not(&self, order: Ordering) { self.fetch_not(order); } } }; (cas[emulate], $atomic_type:ident, $int_type:ident) => { impl $atomic_type { #[inline] pub(crate) fn swap(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(val); prev }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange( &self, current: $int_type, new: $int_type, success: Ordering, failure: Ordering, ) -> Result<$int_type, $int_type> { crate::utils::assert_compare_exchange_ordering(success, failure); // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); if prev == current { self.v.get().write(new); Ok(prev) } else { Err(prev) } }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange_weak( &self, current: $int_type, new: $int_type, success: Ordering, failure: Ordering, ) -> Result<$int_type, $int_type> { self.compare_exchange(current, new, success, failure) } #[inline] pub(crate) fn fetch_add(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_add(val)); prev }) } #[inline] pub(crate) fn fetch_sub(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_sub(val)); prev }) } #[inline] pub(crate) fn fetch_and(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev & val); prev }) } #[inline] pub(crate) fn fetch_nand(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(!(prev & val)); prev }) } #[inline] pub(crate) fn fetch_or(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev | val); prev }) } #[inline] pub(crate) fn fetch_xor(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev ^ val); prev }) } #[inline] pub(crate) fn fetch_max(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(core::cmp::max(prev, val)); prev }) } #[inline] pub(crate) fn fetch_min(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(core::cmp::min(prev, val)); prev }) } #[inline] pub(crate) fn fetch_not(&self, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(!prev); prev }) } #[inline] pub(crate) fn fetch_neg(&self, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_neg()); prev }) } #[inline] pub(crate) fn neg(&self, order: Ordering) { self.fetch_neg(order); } } }; // cfg(portable_atomic_force_amo) 32-bit(RV32)/{32,64}-bit(RV64) RMW (cas, $atomic_type:ident, $int_type:ident) => { impl $atomic_type { #[inline] pub(crate) fn swap(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().swap(val, order) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange( &self, current: $int_type, new: $int_type, success: Ordering, failure: Ordering, ) -> Result<$int_type, $int_type> { crate::utils::assert_compare_exchange_ordering(success, failure); // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); if prev == current { self.v.get().write(new); Ok(prev) } else { Err(prev) } }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange_weak( &self, current: $int_type, new: $int_type, success: Ordering, failure: Ordering, ) -> Result<$int_type, $int_type> { self.compare_exchange(current, new, success, failure) } #[inline] pub(crate) fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_add(val, order) } #[inline] pub(crate) fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_sub(val, order) } #[inline] pub(crate) fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_and(val, order) } #[inline] pub(crate) fn fetch_nand(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(!(prev & val)); prev }) } #[inline] pub(crate) fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_or(val, order) } #[inline] pub(crate) fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_xor(val, order) } #[inline] pub(crate) fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_max(val, order) } #[inline] pub(crate) fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_min(val, order) } #[inline] pub(crate) fn fetch_not(&self, order: Ordering) -> $int_type { self.as_native().fetch_not(order) } #[inline] pub(crate) fn fetch_neg(&self, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_neg()); prev }) } #[inline] pub(crate) fn neg(&self, order: Ordering) { self.fetch_neg(order); } } }; // cfg(portable_atomic_force_amo) {8,16}-bit RMW (cas[sub_word], $atomic_type:ident, $int_type:ident) => { impl $atomic_type { #[inline] pub(crate) fn swap(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(val); prev }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange( &self, current: $int_type, new: $int_type, success: Ordering, failure: Ordering, ) -> Result<$int_type, $int_type> { crate::utils::assert_compare_exchange_ordering(success, failure); // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); if prev == current { self.v.get().write(new); Ok(prev) } else { Err(prev) } }) } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn compare_exchange_weak( &self, current: $int_type, new: $int_type, success: Ordering, failure: Ordering, ) -> Result<$int_type, $int_type> { self.compare_exchange(current, new, success, failure) } #[inline] pub(crate) fn fetch_add(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_add(val)); prev }) } #[inline] pub(crate) fn fetch_sub(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_sub(val)); prev }) } #[inline] pub(crate) fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_and(val, order) } #[inline] pub(crate) fn fetch_nand(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(!(prev & val)); prev }) } #[inline] pub(crate) fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_or(val, order) } #[inline] pub(crate) fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type { self.as_native().fetch_xor(val, order) } #[inline] pub(crate) fn fetch_max(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(core::cmp::max(prev, val)); prev }) } #[inline] pub(crate) fn fetch_min(&self, val: $int_type, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(core::cmp::min(prev, val)); prev }) } #[inline] pub(crate) fn fetch_not(&self, order: Ordering) -> $int_type { self.as_native().fetch_not(order) } #[inline] pub(crate) fn fetch_neg(&self, _order: Ordering) -> $int_type { // SAFETY: any data races are prevented by disabling interrupts (see // module-level comments) and the raw pointer is valid because we got it // from a reference. with(|| unsafe { let prev = self.v.get().read(); self.v.get().write(prev.wrapping_neg()); prev }) } #[inline] pub(crate) fn neg(&self, order: Ordering) { self.fetch_neg(order); } } }; } #[cfg(target_pointer_width = "16")] atomic_int!(load_store_atomic, AtomicIsize, isize, 2); #[cfg(target_pointer_width = "16")] atomic_int!(load_store_atomic, AtomicUsize, usize, 2); #[cfg(target_pointer_width = "32")] atomic_int!(load_store_atomic, AtomicIsize, isize, 4); #[cfg(target_pointer_width = "32")] atomic_int!(load_store_atomic, AtomicUsize, usize, 4); #[cfg(target_pointer_width = "64")] atomic_int!(load_store_atomic, AtomicIsize, isize, 8); #[cfg(target_pointer_width = "64")] atomic_int!(load_store_atomic, AtomicUsize, usize, 8); #[cfg(target_pointer_width = "128")] atomic_int!(load_store_atomic, AtomicIsize, isize, 16); #[cfg(target_pointer_width = "128")] atomic_int!(load_store_atomic, AtomicUsize, usize, 16); atomic_int!(load_store_atomic[sub_word], AtomicI8, i8, 1); atomic_int!(load_store_atomic[sub_word], AtomicU8, u8, 1); atomic_int!(load_store_atomic[sub_word], AtomicI16, i16, 2); atomic_int!(load_store_atomic[sub_word], AtomicU16, u16, 2); #[cfg(not(target_pointer_width = "16"))] atomic_int!(load_store_atomic, AtomicI32, i32, 4); #[cfg(not(target_pointer_width = "16"))] atomic_int!(load_store_atomic, AtomicU32, u32, 4); #[cfg(target_pointer_width = "16")] #[cfg(any(test, feature = "fallback"))] atomic_int!(load_store_critical_session, AtomicI32, i32, 4); #[cfg(target_pointer_width = "16")] #[cfg(any(test, feature = "fallback"))] atomic_int!(load_store_critical_session, AtomicU32, u32, 4); #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))] atomic_int!(load_store_atomic, AtomicI64, i64, 8); #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))] atomic_int!(load_store_atomic, AtomicU64, u64, 8); #[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))] #[cfg(any(test, feature = "fallback"))] atomic_int!(load_store_critical_session, AtomicI64, i64, 8); #[cfg(any(target_pointer_width = "16", target_pointer_width = "32"))] #[cfg(any(test, feature = "fallback"))] atomic_int!(load_store_critical_session, AtomicU64, u64, 8); #[cfg(any(test, feature = "fallback"))] atomic_int!(load_store_critical_session, AtomicI128, i128, 16); #[cfg(any(test, feature = "fallback"))] atomic_int!(load_store_critical_session, AtomicU128, u128, 16); #[cfg(test)] mod tests { use super::*; test_atomic_ptr_single_thread!(); test_atomic_int_single_thread!(i8); test_atomic_int_single_thread!(u8); test_atomic_int_single_thread!(i16); test_atomic_int_single_thread!(u16); test_atomic_int_single_thread!(i32); test_atomic_int_single_thread!(u32); test_atomic_int_single_thread!(i64); test_atomic_int_single_thread!(u64); test_atomic_int_single_thread!(i128); test_atomic_int_single_thread!(u128); test_atomic_int_single_thread!(isize); test_atomic_int_single_thread!(usize); }