// SPDX-License-Identifier: Apache-2.0 OR MIT // Atomic load/store implementation on RISC-V. // // This is for RISC-V targets without atomic CAS. (rustc doesn't provide atomics // at all on such targets. https://github.com/rust-lang/rust/pull/114499) // // Also, optionally provides RMW implementation when force-amo is enabled. // // Refs: // - RISC-V Instruction Set Manual Volume I: Unprivileged ISA // https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf // - RISC-V Atomics ABI Specification // https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/HEAD/riscv-atomic.adoc // - "Mappings from C/C++ primitives to RISC-V primitives." table in RISC-V Instruction Set Manual: // https://five-embeddev.com/riscv-isa-manual/latest/memory.html#sec:memory:porting // - atomic-maybe-uninit https://github.com/taiki-e/atomic-maybe-uninit // // Generated asm: // - riscv64gc https://godbolt.org/z/EETebx7TE // - riscv32imac https://godbolt.org/z/8zzv73bKh #[cfg(not(portable_atomic_no_asm))] use core::arch::asm; use core::{cell::UnsafeCell, sync::atomic::Ordering}; #[cfg(any(test, portable_atomic_force_amo))] macro_rules! atomic_rmw_amo_order { ($op:ident, $order:ident) => { match $order { Ordering::Relaxed => $op!(""), Ordering::Acquire => $op!(".aq"), Ordering::Release => $op!(".rl"), // AcqRel and SeqCst RMWs are equivalent. Ordering::AcqRel | Ordering::SeqCst => $op!(".aqrl"), _ => unreachable!("{:?}", $order), } }; } #[cfg(any(test, portable_atomic_force_amo))] macro_rules! atomic_rmw_amo { ($op:ident, $dst:ident, $val:ident, $order:ident, $asm_suffix:tt) => {{ let out; macro_rules! op { ($asm_order:tt) => { // SAFETY: The user guaranteed that the AMO instruction is available in this // system by setting the portable_atomic_force_amo and // portable_atomic_unsafe_assume_single_core. // The caller of this macro must guarantee the validity of the pointer. asm!( ".option push", // https://github.com/riscv-non-isa/riscv-asm-manual/blob/HEAD/riscv-asm.md#arch ".option arch, +a", concat!("amo", stringify!($op), ".", $asm_suffix, $asm_order, " {out}, {val}, 0({dst})"), ".option pop", dst = in(reg) ptr_reg!($dst), val = in(reg) $val, out = lateout(reg) out, options(nostack, preserves_flags), ) }; } atomic_rmw_amo_order!(op, $order); out }}; } // 32-bit val.wrapping_shl(shift) but no extra `& (u32::BITS - 1)` #[cfg(any(test, portable_atomic_force_amo))] #[inline] fn sllw(val: u32, shift: u32) -> u32 { // SAFETY: Calling sll{,w} is safe. unsafe { let out; #[cfg(target_arch = "riscv32")] asm!("sll {out}, {val}, {shift}", out = lateout(reg) out, val = in(reg) val, shift = in(reg) shift, options(pure, nomem, nostack, preserves_flags)); #[cfg(target_arch = "riscv64")] asm!("sllw {out}, {val}, {shift}", out = lateout(reg) out, val = in(reg) val, shift = in(reg) shift, options(pure, nomem, nostack, preserves_flags)); out } } // 32-bit val.wrapping_shr(shift) but no extra `& (u32::BITS - 1)` #[cfg(any(test, portable_atomic_force_amo))] #[inline] fn srlw(val: u32, shift: u32) -> u32 { // SAFETY: Calling srl{,w} is safe. unsafe { let out; #[cfg(target_arch = "riscv32")] asm!("srl {out}, {val}, {shift}", out = lateout(reg) out, val = in(reg) val, shift = in(reg) shift, options(pure, nomem, nostack, preserves_flags)); #[cfg(target_arch = "riscv64")] asm!("srlw {out}, {val}, {shift}", out = lateout(reg) out, val = in(reg) val, shift = in(reg) shift, options(pure, nomem, nostack, preserves_flags)); out } } macro_rules! atomic_load_store { ($([$($generics:tt)*])? $atomic_type:ident, $value_type:ty, $asm_suffix:tt) => { #[repr(transparent)] pub(crate) struct $atomic_type $(<$($generics)*>)? { v: UnsafeCell<$value_type>, } // Send is implicitly implemented for atomic integers, but not for atomic pointers. // SAFETY: any data races are prevented by atomic operations. unsafe impl $(<$($generics)*>)? Send for $atomic_type $(<$($generics)*>)? {} // SAFETY: any data races are prevented by atomic operations. unsafe impl $(<$($generics)*>)? Sync for $atomic_type $(<$($generics)*>)? {} #[cfg(any(test, not(portable_atomic_unsafe_assume_single_core)))] impl $(<$($generics)*>)? $atomic_type $(<$($generics)*>)? { #[inline] pub(crate) const fn new(v: $value_type) -> Self { Self { v: UnsafeCell::new(v) } } #[inline] pub(crate) fn is_lock_free() -> bool { Self::is_always_lock_free() } #[inline] pub(crate) const fn is_always_lock_free() -> bool { true } #[inline] pub(crate) fn get_mut(&mut self) -> &mut $value_type { // SAFETY: the mutable reference guarantees unique ownership. // (UnsafeCell::get_mut requires Rust 1.50) unsafe { &mut *self.v.get() } } #[inline] pub(crate) fn into_inner(self) -> $value_type { self.v.into_inner() } #[inline] pub(crate) const fn as_ptr(&self) -> *mut $value_type { self.v.get() } } impl $(<$($generics)*>)? $atomic_type $(<$($generics)*>)? { #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn load(&self, order: Ordering) -> $value_type { crate::utils::assert_load_ordering(order); let src = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { let out; match order { Ordering::Relaxed => { asm!( concat!("l", $asm_suffix, " {out}, 0({src})"), src = in(reg) ptr_reg!(src), out = lateout(reg) out, options(nostack, preserves_flags, readonly), ); } Ordering::Acquire => { asm!( concat!("l", $asm_suffix, " {out}, 0({src})"), "fence r, rw", src = in(reg) ptr_reg!(src), out = lateout(reg) out, options(nostack, preserves_flags), ); } Ordering::SeqCst => { asm!( "fence rw, rw", concat!("l", $asm_suffix, " {out}, 0({src})"), "fence r, rw", src = in(reg) ptr_reg!(src), out = lateout(reg) out, options(nostack, preserves_flags), ); } _ => unreachable!("{:?}", order), } out } } #[inline] #[cfg_attr(all(debug_assertions, not(portable_atomic_no_track_caller)), track_caller)] pub(crate) fn store(&self, val: $value_type, order: Ordering) { crate::utils::assert_store_ordering(order); let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { match order { Ordering::Relaxed => { asm!( concat!("s", $asm_suffix, " {val}, 0({dst})"), dst = in(reg) ptr_reg!(dst), val = in(reg) val, options(nostack, preserves_flags), ); } // Release and SeqCst stores are equivalent. Ordering::Release | Ordering::SeqCst => { asm!( "fence rw, w", concat!("s", $asm_suffix, " {val}, 0({dst})"), dst = in(reg) ptr_reg!(dst), val = in(reg) val, options(nostack, preserves_flags), ); } _ => unreachable!("{:?}", order), } } } } }; } macro_rules! atomic_ptr { ($([$($generics:tt)*])? $atomic_type:ident, $value_type:ty, $asm_suffix:tt) => { atomic_load_store!($([$($generics)*])? $atomic_type, $value_type, $asm_suffix); #[cfg(portable_atomic_force_amo)] impl $(<$($generics)*>)? $atomic_type $(<$($generics)*>)? { #[inline] pub(crate) fn swap(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!(swap, dst, val, order, $asm_suffix) } } } }; } macro_rules! atomic { ($atomic_type:ident, $value_type:ty, $asm_suffix:tt, $max:tt, $min:tt) => { atomic_load_store!($atomic_type, $value_type, $asm_suffix); // There is no amo{sub,nand,neg}. #[cfg(any(test, portable_atomic_force_amo))] impl $atomic_type { #[inline] pub(crate) fn swap(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!(swap, dst, val, order, $asm_suffix) } } #[inline] pub(crate) fn fetch_add(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!(add, dst, val, order, $asm_suffix) } } #[inline] pub(crate) fn fetch_sub(&self, val: $value_type, order: Ordering) -> $value_type { self.fetch_add(val.wrapping_neg(), order) } #[inline] pub(crate) fn fetch_and(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!(and, dst, val, order, $asm_suffix) } } #[inline] pub(crate) fn fetch_or(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!(or, dst, val, order, $asm_suffix) } } #[inline] pub(crate) fn fetch_xor(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!(xor, dst, val, order, $asm_suffix) } } #[inline] pub(crate) fn fetch_not(&self, order: Ordering) -> $value_type { self.fetch_xor(!0, order) } #[inline] pub(crate) fn fetch_max(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!($max, dst, val, order, $asm_suffix) } } #[inline] pub(crate) fn fetch_min(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. unsafe { atomic_rmw_amo!($min, dst, val, order, $asm_suffix) } } } }; } macro_rules! atomic_sub_word { ($atomic_type:ident, $value_type:ty, $unsigned_type:ty, $asm_suffix:tt) => { atomic_load_store!($atomic_type, $value_type, $asm_suffix); #[cfg(any(test, portable_atomic_force_amo))] impl $atomic_type { #[inline] pub(crate) fn fetch_and(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); let (dst, shift, mask) = crate::utils::create_sub_word_mask_values(dst); let mask = !sllw(mask as u32, shift as u32); // TODO: use zero_extend helper instead of cast for val. let val = sllw(val as $unsigned_type as u32, shift as u32); let val = val | mask; // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. let out: u32 = unsafe { atomic_rmw_amo!(and, dst, val, order, "w") }; srlw(out, shift as u32) as $unsigned_type as $value_type } #[inline] pub(crate) fn fetch_or(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); let (dst, shift, _mask) = crate::utils::create_sub_word_mask_values(dst); // TODO: use zero_extend helper instead of cast for val. let val = sllw(val as $unsigned_type as u32, shift as u32); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. let out: u32 = unsafe { atomic_rmw_amo!(or, dst, val, order, "w") }; srlw(out, shift as u32) as $unsigned_type as $value_type } #[inline] pub(crate) fn fetch_xor(&self, val: $value_type, order: Ordering) -> $value_type { let dst = self.v.get(); let (dst, shift, _mask) = crate::utils::create_sub_word_mask_values(dst); // TODO: use zero_extend helper instead of cast for val. let val = sllw(val as $unsigned_type as u32, shift as u32); // SAFETY: any data races are prevented by atomic intrinsics and the raw // pointer passed in is valid because we got it from a reference. let out: u32 = unsafe { atomic_rmw_amo!(xor, dst, val, order, "w") }; srlw(out, shift as u32) as $unsigned_type as $value_type } #[inline] pub(crate) fn fetch_not(&self, order: Ordering) -> $value_type { self.fetch_xor(!0, order) } } }; } atomic_sub_word!(AtomicI8, i8, u8, "b"); atomic_sub_word!(AtomicU8, u8, u8, "b"); atomic_sub_word!(AtomicI16, i16, u16, "h"); atomic_sub_word!(AtomicU16, u16, u16, "h"); atomic!(AtomicI32, i32, "w", max, min); atomic!(AtomicU32, u32, "w", maxu, minu); #[cfg(target_arch = "riscv64")] atomic!(AtomicI64, i64, "d", max, min); #[cfg(target_arch = "riscv64")] atomic!(AtomicU64, u64, "d", maxu, minu); #[cfg(target_pointer_width = "32")] atomic!(AtomicIsize, isize, "w", max, min); #[cfg(target_pointer_width = "32")] atomic!(AtomicUsize, usize, "w", maxu, minu); #[cfg(target_pointer_width = "32")] atomic_ptr!([T] AtomicPtr, *mut T, "w"); #[cfg(target_pointer_width = "64")] atomic!(AtomicIsize, isize, "d", max, min); #[cfg(target_pointer_width = "64")] atomic!(AtomicUsize, usize, "d", maxu, minu); #[cfg(target_pointer_width = "64")] atomic_ptr!([T] AtomicPtr, *mut T, "d"); #[cfg(test)] mod tests { use super::*; test_atomic_ptr_load_store!(); test_atomic_int_load_store!(i8); test_atomic_int_load_store!(u8); test_atomic_int_load_store!(i16); test_atomic_int_load_store!(u16); test_atomic_int_load_store!(i32); test_atomic_int_load_store!(u32); #[cfg(target_arch = "riscv64")] test_atomic_int_load_store!(i64); #[cfg(target_arch = "riscv64")] test_atomic_int_load_store!(u64); test_atomic_int_load_store!(isize); test_atomic_int_load_store!(usize); macro_rules! test_atomic_int_amo { ($int_type:ident) => { paste::paste! { #[allow( clippy::alloc_instead_of_core, clippy::std_instead_of_alloc, clippy::std_instead_of_core, clippy::undocumented_unsafe_blocks )] mod [] { use super::*; test_atomic_int_amo!([], $int_type); } } }; ($atomic_type:ty, $int_type:ident) => { ::quickcheck::quickcheck! { fn quickcheck_swap(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.swap(y, order), x); assert_eq!(a.swap(x, order), y); } true } fn quickcheck_fetch_add(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_add(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x.wrapping_add(y)); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_add(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y.wrapping_add(x)); } true } fn quickcheck_fetch_sub(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_sub(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x.wrapping_sub(y)); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_sub(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y.wrapping_sub(x)); } true } fn quickcheck_fetch_and(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_and(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x & y); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_and(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y & x); } true } fn quickcheck_fetch_or(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_or(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x | y); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_or(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y | x); } true } fn quickcheck_fetch_xor(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_xor(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x ^ y); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_xor(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y ^ x); } true } fn quickcheck_fetch_max(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_max(y, order), x); assert_eq!(a.load(Ordering::Relaxed), core::cmp::max(x, y)); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_max(x, order), y); assert_eq!(a.load(Ordering::Relaxed), core::cmp::max(y, x)); } true } fn quickcheck_fetch_min(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_min(y, order), x); assert_eq!(a.load(Ordering::Relaxed), core::cmp::min(x, y)); let a = <$atomic_type>::new(y); assert_eq!(a.fetch_min(x, order), y); assert_eq!(a.load(Ordering::Relaxed), core::cmp::min(y, x)); } true } fn quickcheck_fetch_not(x: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { let a = <$atomic_type>::new(x); assert_eq!(a.fetch_not(order), x); assert_eq!(a.load(Ordering::Relaxed), !x); assert_eq!(a.fetch_not(order), !x); assert_eq!(a.load(Ordering::Relaxed), x); } true } } }; } macro_rules! test_atomic_int_amo_sub_word { ($int_type:ident) => { paste::paste! { #[allow( clippy::alloc_instead_of_core, clippy::std_instead_of_alloc, clippy::std_instead_of_core, clippy::undocumented_unsafe_blocks )] mod [] { use super::*; test_atomic_int_amo_sub_word!([], $int_type); } } }; ($atomic_type:ty, $int_type:ident) => { use crate::tests::helper::*; ::quickcheck::quickcheck! { fn quickcheck_fetch_and(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { for base in [0, !0] { let mut arr = Align16([ <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), ]); let a_idx = fastrand::usize(3..=6); arr.0[a_idx] = <$atomic_type>::new(x); let a = &arr.0[a_idx]; assert_eq!(a.fetch_and(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x & y); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } arr.0[a_idx] = <$atomic_type>::new(y); let a = &arr.0[a_idx]; assert_eq!(a.fetch_and(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y & x); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } } } true } fn quickcheck_fetch_or(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { for base in [0, !0] { let mut arr = Align16([ <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), ]); let a_idx = fastrand::usize(3..=6); arr.0[a_idx] = <$atomic_type>::new(x); let a = &arr.0[a_idx]; assert_eq!(a.fetch_or(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x | y); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } arr.0[a_idx] = <$atomic_type>::new(y); let a = &arr.0[a_idx]; assert_eq!(a.fetch_or(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y | x); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } } } true } fn quickcheck_fetch_xor(x: $int_type, y: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { for base in [0, !0] { let mut arr = Align16([ <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), ]); let a_idx = fastrand::usize(3..=6); arr.0[a_idx] = <$atomic_type>::new(x); let a = &arr.0[a_idx]; assert_eq!(a.fetch_xor(y, order), x); assert_eq!(a.load(Ordering::Relaxed), x ^ y); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } arr.0[a_idx] = <$atomic_type>::new(y); let a = &arr.0[a_idx]; assert_eq!(a.fetch_xor(x, order), y); assert_eq!(a.load(Ordering::Relaxed), y ^ x); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } } } true } fn quickcheck_fetch_not(x: $int_type) -> bool { for &order in &test_helper::SWAP_ORDERINGS { for base in [0, !0] { let mut arr = Align16([ <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), <$atomic_type>::new(base), ]); let a_idx = fastrand::usize(3..=6); arr.0[a_idx] = <$atomic_type>::new(x); let a = &arr.0[a_idx]; assert_eq!(a.fetch_not(order), x); assert_eq!(a.load(Ordering::Relaxed), !x); assert_eq!(a.fetch_not(order), !x); assert_eq!(a.load(Ordering::Relaxed), x); for i in 0..a_idx { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } for i in a_idx + 1..arr.0.len() { assert_eq!(arr.0[i].load(Ordering::Relaxed), base, "invalid value written"); } } } true } } }; } test_atomic_int_amo_sub_word!(i8); test_atomic_int_amo_sub_word!(u8); test_atomic_int_amo_sub_word!(i16); test_atomic_int_amo_sub_word!(u16); test_atomic_int_amo!(i32); test_atomic_int_amo!(u32); #[cfg(target_arch = "riscv64")] test_atomic_int_amo!(i64); #[cfg(target_arch = "riscv64")] test_atomic_int_amo!(u64); test_atomic_int_amo!(isize); test_atomic_int_amo!(usize); }