//! Linux `epoll` support. //! //! # Examples //! //! ```no_run //! # #[cfg(feature = "net")] //! # fn main() -> std::io::Result<()> { //! use rustix::event::epoll; //! use rustix::fd::AsFd; //! use rustix::io::{ioctl_fionbio, read, write}; //! use rustix::net::{ //! accept, bind_v4, listen, socket, AddressFamily, Ipv4Addr, SocketAddrV4, SocketType, //! }; //! use std::collections::HashMap; //! use std::os::unix::io::AsRawFd; //! //! // Create a socket and listen on it. //! let listen_sock = socket(AddressFamily::INET, SocketType::STREAM, None)?; //! bind_v4(&listen_sock, &SocketAddrV4::new(Ipv4Addr::LOCALHOST, 0))?; //! listen(&listen_sock, 1)?; //! //! // Create an epoll object. Using `Owning` here means the epoll object will //! // take ownership of the file descriptors registered with it. //! let epoll = epoll::create(epoll::CreateFlags::CLOEXEC)?; //! //! // Register the socket with the epoll object. //! epoll::add( //! &epoll, //! &listen_sock, //! epoll::EventData::new_u64(1), //! epoll::EventFlags::IN, //! )?; //! //! // Keep track of the sockets we've opened. //! let mut next_id = epoll::EventData::new_u64(2); //! let mut sockets = HashMap::new(); //! //! // Process events. //! let mut event_list = epoll::EventVec::with_capacity(4); //! loop { //! epoll::wait(&epoll, &mut event_list, -1)?; //! for event in &event_list { //! let target = event.data; //! if target.u64() == 1 { //! // Accept a new connection, set it to non-blocking, and //! // register to be notified when it's ready to write to. //! let conn_sock = accept(&listen_sock)?; //! ioctl_fionbio(&conn_sock, true)?; //! epoll::add( //! &epoll, //! &conn_sock, //! next_id, //! epoll::EventFlags::OUT | epoll::EventFlags::ET, //! )?; //! //! // Keep track of the socket. //! sockets.insert(next_id, conn_sock); //! next_id = epoll::EventData::new_u64(next_id.u64() + 1); //! } else { //! // Write a message to the stream and then unregister it. //! let target = sockets.remove(&target).unwrap(); //! write(&target, b"hello\n")?; //! let _ = epoll::delete(&epoll, &target)?; //! } //! } //! } //! # } //! # #[cfg(not(feature = "net"))] //! # fn main() {} //! ``` #![allow(unsafe_code)] use crate::backend::c; use crate::backend::event::syscalls; use crate::fd::{AsFd, AsRawFd, OwnedFd}; use crate::io; #[cfg(feature = "alloc")] use alloc::vec::Vec; use bitflags::bitflags; use core::ffi::c_void; use core::hash::{Hash, Hasher}; use core::slice; bitflags! { /// `EPOLL_*` for use with [`new`]. #[repr(transparent)] #[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)] pub struct CreateFlags: c::c_uint { /// `EPOLL_CLOEXEC` const CLOEXEC = linux_raw_sys::general::EPOLL_CLOEXEC; /// const _ = !0; } } bitflags! { /// `EPOLL*` for use with [`add`]. #[repr(transparent)] #[derive(Default, Copy, Clone, Eq, PartialEq, Hash, Debug)] pub struct EventFlags: u32 { /// `EPOLLIN` const IN = linux_raw_sys::general::EPOLLIN as u32; /// `EPOLLOUT` const OUT = linux_raw_sys::general::EPOLLOUT as u32; /// `EPOLLPRI` const PRI = linux_raw_sys::general::EPOLLPRI as u32; /// `EPOLLERR` const ERR = linux_raw_sys::general::EPOLLERR as u32; /// `EPOLLHUP` const HUP = linux_raw_sys::general::EPOLLHUP as u32; /// `EPOLLRDNORM` const RDNORM = linux_raw_sys::general::EPOLLRDNORM as u32; /// `EPOLLRDBAND` const RDBAND = linux_raw_sys::general::EPOLLRDBAND as u32; /// `EPOLLWRNORM` const WRNORM = linux_raw_sys::general::EPOLLWRNORM as u32; /// `EPOLLWRBAND` const WRBAND = linux_raw_sys::general::EPOLLWRBAND as u32; /// `EPOLLMSG` const MSG = linux_raw_sys::general::EPOLLMSG as u32; /// `EPOLLRDHUP` const RDHUP = linux_raw_sys::general::EPOLLRDHUP as u32; /// `EPOLLET` const ET = linux_raw_sys::general::EPOLLET as u32; /// `EPOLLONESHOT` const ONESHOT = linux_raw_sys::general::EPOLLONESHOT as u32; /// `EPOLLWAKEUP` const WAKEUP = linux_raw_sys::general::EPOLLWAKEUP as u32; /// `EPOLLEXCLUSIVE` const EXCLUSIVE = linux_raw_sys::general::EPOLLEXCLUSIVE as u32; /// const _ = !0; } } /// `epoll_create1(flags)`—Creates a new epoll object. /// /// Use the [`CreateFlags::CLOEXEC`] flag to prevent the resulting file /// descriptor from being implicitly passed across `exec` boundaries. #[inline] #[doc(alias = "epoll_create1")] pub fn create(flags: CreateFlags) -> io::Result { syscalls::epoll_create(flags) } /// `epoll_ctl(self, EPOLL_CTL_ADD, data, event)`—Adds an element to an epoll /// object. /// /// This registers interest in any of the events set in `events` occurring on /// the file descriptor associated with `data`. /// /// If [`delete`] is not called on the I/O source passed into this function /// before the I/O source is `close`d, then the `epoll` will act as if the I/O /// source is still registered with it. This can lead to spurious events being /// returned from [`wait`]. If a file descriptor is an /// `Arc`, then `epoll` can be thought to maintain a /// `Weak` to the file descriptor. #[doc(alias = "epoll_ctl")] #[inline] pub fn add( epoll: impl AsFd, source: impl AsFd, data: EventData, event_flags: EventFlags, ) -> io::Result<()> { // SAFETY: We're calling `epoll_ctl` via FFI and we know how it // behaves. unsafe { syscalls::epoll_add( epoll.as_fd(), source.as_fd().as_raw_fd(), &Event { flags: event_flags, data, }, ) } } /// `epoll_ctl(self, EPOLL_CTL_MOD, target, event)`—Modifies an element in a /// given epoll object. /// /// This sets the events of interest with `target` to `events`. #[doc(alias = "epoll_ctl")] #[inline] pub fn modify( epoll: impl AsFd, source: impl AsFd, data: EventData, event_flags: EventFlags, ) -> io::Result<()> { // SAFETY: We're calling `epoll_ctl` via FFI and we know how it // behaves. unsafe { let raw_fd = source.as_fd().as_raw_fd(); syscalls::epoll_mod( epoll.as_fd(), raw_fd, &Event { flags: event_flags, data, }, ) } } /// `epoll_ctl(self, EPOLL_CTL_DEL, target, NULL)`—Removes an element in a /// given epoll object. #[doc(alias = "epoll_ctl")] #[inline] pub fn delete(epoll: impl AsFd, source: impl AsFd) -> io::Result<()> { // SAFETY: We're calling `epoll_ctl` via FFI and we know how it // behaves. unsafe { let raw_fd = source.as_fd().as_raw_fd(); syscalls::epoll_del(epoll.as_fd(), raw_fd) } } /// `epoll_wait(self, events, timeout)`—Waits for registered events of /// interest. /// /// For each event of interest, an element is written to `events`. On /// success, this returns the number of written elements. #[cfg(feature = "alloc")] #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] #[inline] pub fn wait(epoll: impl AsFd, event_list: &mut EventVec, timeout: c::c_int) -> io::Result<()> { // SAFETY: We're calling `epoll_wait` via FFI and we know how it // behaves. unsafe { event_list.events.set_len(0); let nfds = syscalls::epoll_wait( epoll.as_fd(), event_list.events[..].as_mut_ptr().cast(), event_list.events.capacity(), timeout, )?; event_list.events.set_len(nfds); } Ok(()) } /// An iterator over the `Event`s in an `EventVec`. pub struct Iter<'a> { /// Use `Copied` to copy the struct, since `Event` is `packed` on some /// platforms, and it's common for users to directly destructure it, which /// would lead to errors about forming references to packed fields. iter: core::iter::Copied>, } impl<'a> Iterator for Iter<'a> { type Item = Event; #[inline] fn next(&mut self) -> Option { self.iter.next() } } /// A record of an event that occurred. #[repr(C)] #[cfg_attr(target_arch = "x86_64", repr(packed))] #[derive(Copy, Clone, Eq, PartialEq, Hash)] pub struct Event { /// Which specific event(s) occurred. pub flags: EventFlags, /// User data. pub data: EventData, } /// Data associated with an [`Event`]. This can either be a 64-bit integer /// value or a pointer which preserves pointer provenance. #[repr(C)] #[derive(Copy, Clone)] pub union EventData { /// A 64-bit integer value. as_u64: u64, /// A `*mut c_void` which preserves pointer provenance, extended to be /// 64-bit so that if we read the value as a `u64` union field, we don't /// get uninitialized memory. sixty_four_bit_pointer: SixtyFourBitPointer, } impl EventData { /// Construct a new value containing a `u64`. #[inline] pub const fn new_u64(value: u64) -> Self { Self { as_u64: value } } /// Construct a new value containing a `*mut c_void`. #[inline] pub const fn new_ptr(value: *mut c_void) -> Self { Self { sixty_four_bit_pointer: SixtyFourBitPointer { pointer: value, #[cfg(target_pointer_width = "32")] _padding: 0, }, } } /// Return the value as a `u64`. /// /// If the stored value was a pointer, the pointer is zero-extended to a /// `u64`. #[inline] pub fn u64(self) -> u64 { unsafe { self.as_u64 } } /// Return the value as a `*mut c_void`. /// /// If the stored value was a `u64`, the least-significant bits of the /// `u64` are returned as a pointer value. #[inline] pub fn ptr(self) -> *mut c_void { unsafe { self.sixty_four_bit_pointer.pointer } } } impl PartialEq for EventData { #[inline] fn eq(&self, other: &Self) -> bool { self.u64() == other.u64() } } impl Eq for EventData {} impl Hash for EventData { #[inline] fn hash(&self, state: &mut H) { self.u64().hash(state) } } #[repr(C)] #[derive(Copy, Clone)] struct SixtyFourBitPointer { #[cfg(target_endian = "big")] #[cfg(target_pointer_width = "32")] _padding: u32, pointer: *mut c_void, #[cfg(target_endian = "little")] #[cfg(target_pointer_width = "32")] _padding: u32, } /// A vector of `Event`s, plus context for interpreting them. #[cfg(feature = "alloc")] pub struct EventVec { events: Vec, } #[cfg(feature = "alloc")] impl EventVec { /// Constructs an `EventVec` from raw pointer, length, and capacity. /// /// # Safety /// /// This function calls [`Vec::from_raw_parts`] with its arguments. /// /// [`Vec::from_raw_parts`]: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.from_raw_parts #[inline] pub unsafe fn from_raw_parts(ptr: *mut Event, len: usize, capacity: usize) -> Self { Self { events: Vec::from_raw_parts(ptr, len, capacity), } } /// Constructs an `EventVec` with memory for `capacity` `Event`s. #[inline] pub fn with_capacity(capacity: usize) -> Self { Self { events: Vec::with_capacity(capacity), } } /// Returns the current `Event` capacity of this `EventVec`. #[inline] pub fn capacity(&self) -> usize { self.events.capacity() } /// Reserves enough memory for at least `additional` more `Event`s. #[inline] pub fn reserve(&mut self, additional: usize) { self.events.reserve(additional); } /// Reserves enough memory for exactly `additional` more `Event`s. #[inline] pub fn reserve_exact(&mut self, additional: usize) { self.events.reserve_exact(additional); } /// Clears all the `Events` out of this `EventVec`. #[inline] pub fn clear(&mut self) { self.events.clear(); } /// Shrinks the capacity of this `EventVec` as much as possible. #[inline] pub fn shrink_to_fit(&mut self) { self.events.shrink_to_fit(); } /// Returns an iterator over the `Event`s in this `EventVec`. #[inline] pub fn iter(&self) -> Iter<'_> { Iter { iter: self.events.iter().copied(), } } /// Returns the number of `Event`s logically contained in this `EventVec`. #[inline] pub fn len(&mut self) -> usize { self.events.len() } /// Tests whether this `EventVec` is logically empty. #[inline] pub fn is_empty(&mut self) -> bool { self.events.is_empty() } } #[cfg(feature = "alloc")] impl<'a> IntoIterator for &'a EventVec { type IntoIter = Iter<'a>; type Item = Event; #[inline] fn into_iter(self) -> Self::IntoIter { self.iter() } } #[test] fn test_epoll_layouts() { check_renamed_type!(Event, epoll_event); check_renamed_type!(Event, epoll_event); check_renamed_struct_renamed_field!(Event, epoll_event, flags, events); check_renamed_struct_renamed_field!(Event, epoll_event, data, data); }