// Translated from C to Rust. The original C code can be found at // https://github.com/ulfjack/ryu and carries the following license: // // Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. #![allow( clippy::approx_constant, clippy::cast_lossless, clippy::float_cmp, clippy::int_plus_one, clippy::non_ascii_literal, clippy::unreadable_literal, clippy::unseparated_literal_suffix )] #[macro_use] mod macros; use std::f64; fn pretty(f: f64) -> String { ryu::Buffer::new().format(f).to_owned() } fn ieee_parts_to_double(sign: bool, ieee_exponent: u32, ieee_mantissa: u64) -> f64 { assert!(ieee_exponent <= 2047); assert!(ieee_mantissa <= (1u64 << 53) - 1); f64::from_bits(((sign as u64) << 63) | ((ieee_exponent as u64) << 52) | ieee_mantissa) } #[test] fn test_ryu() { check!(0.3); check!(1234000000000000.0); check!(1.234e16); check!(2.71828); check!(1.1e128); check!(1.1e-64); check!(2.718281828459045); check!(5e-324); check!(1.7976931348623157e308); } #[test] fn test_random() { let n = if cfg!(miri) { 100 } else { 1000000 }; let mut buffer = ryu::Buffer::new(); for _ in 0..n { let f: f64 = rand::random(); assert_eq!(f, buffer.format_finite(f).parse().unwrap()); } } #[test] #[cfg_attr(miri, ignore)] fn test_non_finite() { for i in 0u64..1 << 23 { let f = f64::from_bits((((1 << 11) - 1) << 52) + (i << 29)); assert!(!f.is_finite(), "f={}", f); ryu::Buffer::new().format_finite(f); } } #[test] fn test_basic() { check!(0.0); check!(-0.0); check!(1.0); check!(-1.0); assert_eq!(pretty(f64::NAN.copysign(1.0)), "NaN"); assert_eq!(pretty(f64::NAN.copysign(-1.0)), "NaN"); assert_eq!(pretty(f64::INFINITY), "inf"); assert_eq!(pretty(f64::NEG_INFINITY), "-inf"); } #[test] fn test_switch_to_subnormal() { check!(2.2250738585072014e-308); } #[test] fn test_min_and_max() { assert_eq!(f64::from_bits(0x7fefffffffffffff), 1.7976931348623157e308); check!(1.7976931348623157e308); assert_eq!(f64::from_bits(1), 5e-324); check!(5e-324); } #[test] fn test_lots_of_trailing_zeros() { check!(2.9802322387695312e-8); } #[test] fn test_regression() { check!(-2.109808898695963e16); check!(4.940656e-318); check!(1.18575755e-316); check!(2.989102097996e-312); check!(9060801153433600.0); check!(4.708356024711512e18); check!(9.409340012568248e18); check!(1.2345678); } #[test] fn test_looks_like_pow5() { // These numbers have a mantissa that is a multiple of the largest power of // 5 that fits, and an exponent that causes the computation for q to result // in 22, which is a corner case for Ryƫ. assert_eq!(f64::from_bits(0x4830F0CF064DD592), 5.764607523034235e39); check!(5.764607523034235e39); assert_eq!(f64::from_bits(0x4840F0CF064DD592), 1.152921504606847e40); check!(1.152921504606847e40); assert_eq!(f64::from_bits(0x4850F0CF064DD592), 2.305843009213694e40); check!(2.305843009213694e40); } #[test] fn test_output_length() { check!(1.0); // already tested in Basic check!(1.2); check!(1.23); check!(1.234); check!(1.2345); check!(1.23456); check!(1.234567); check!(1.2345678); // already tested in Regression check!(1.23456789); check!(1.234567895); // 1.234567890 would be trimmed check!(1.2345678901); check!(1.23456789012); check!(1.234567890123); check!(1.2345678901234); check!(1.23456789012345); check!(1.234567890123456); check!(1.2345678901234567); // Test 32-bit chunking check!(4.294967294); // 2^32 - 2 check!(4.294967295); // 2^32 - 1 check!(4.294967296); // 2^32 check!(4.294967297); // 2^32 + 1 check!(4.294967298); // 2^32 + 2 } // Test min, max shift values in shiftright128 #[test] fn test_min_max_shift() { let max_mantissa = (1u64 << 53) - 1; // 32-bit opt-size=0: 49 <= dist <= 50 // 32-bit opt-size=1: 30 <= dist <= 50 // 64-bit opt-size=0: 50 <= dist <= 50 // 64-bit opt-size=1: 30 <= dist <= 50 assert_eq!(1.7800590868057611E-307, ieee_parts_to_double(false, 4, 0)); check!(1.7800590868057611e-307); // 32-bit opt-size=0: 49 <= dist <= 49 // 32-bit opt-size=1: 28 <= dist <= 49 // 64-bit opt-size=0: 50 <= dist <= 50 // 64-bit opt-size=1: 28 <= dist <= 50 assert_eq!( 2.8480945388892175E-306, ieee_parts_to_double(false, 6, max_mantissa) ); check!(2.8480945388892175e-306); // 32-bit opt-size=0: 52 <= dist <= 53 // 32-bit opt-size=1: 2 <= dist <= 53 // 64-bit opt-size=0: 53 <= dist <= 53 // 64-bit opt-size=1: 2 <= dist <= 53 assert_eq!(2.446494580089078E-296, ieee_parts_to_double(false, 41, 0)); check!(2.446494580089078e-296); // 32-bit opt-size=0: 52 <= dist <= 52 // 32-bit opt-size=1: 2 <= dist <= 52 // 64-bit opt-size=0: 53 <= dist <= 53 // 64-bit opt-size=1: 2 <= dist <= 53 assert_eq!( 4.8929891601781557E-296, ieee_parts_to_double(false, 40, max_mantissa) ); check!(4.8929891601781557e-296); // 32-bit opt-size=0: 57 <= dist <= 58 // 32-bit opt-size=1: 57 <= dist <= 58 // 64-bit opt-size=0: 58 <= dist <= 58 // 64-bit opt-size=1: 58 <= dist <= 58 assert_eq!(1.8014398509481984E16, ieee_parts_to_double(false, 1077, 0)); check!(1.8014398509481984e16); // 32-bit opt-size=0: 57 <= dist <= 57 // 32-bit opt-size=1: 57 <= dist <= 57 // 64-bit opt-size=0: 58 <= dist <= 58 // 64-bit opt-size=1: 58 <= dist <= 58 assert_eq!( 3.6028797018963964E16, ieee_parts_to_double(false, 1076, max_mantissa) ); check!(3.6028797018963964e16); // 32-bit opt-size=0: 51 <= dist <= 52 // 32-bit opt-size=1: 51 <= dist <= 59 // 64-bit opt-size=0: 52 <= dist <= 52 // 64-bit opt-size=1: 52 <= dist <= 59 assert_eq!(2.900835519859558E-216, ieee_parts_to_double(false, 307, 0)); check!(2.900835519859558e-216); // 32-bit opt-size=0: 51 <= dist <= 51 // 32-bit opt-size=1: 51 <= dist <= 59 // 64-bit opt-size=0: 52 <= dist <= 52 // 64-bit opt-size=1: 52 <= dist <= 59 assert_eq!( 5.801671039719115E-216, ieee_parts_to_double(false, 306, max_mantissa) ); check!(5.801671039719115e-216); // https://github.com/ulfjack/ryu/commit/19e44d16d80236f5de25800f56d82606d1be00b9#commitcomment-30146483 // 32-bit opt-size=0: 49 <= dist <= 49 // 32-bit opt-size=1: 44 <= dist <= 49 // 64-bit opt-size=0: 50 <= dist <= 50 // 64-bit opt-size=1: 44 <= dist <= 50 assert_eq!( 3.196104012172126E-27, ieee_parts_to_double(false, 934, 0x000FA7161A4D6E0C) ); check!(3.196104012172126e-27); } #[test] fn test_small_integers() { check!(9007199254740991.0); // 2^53-1 check!(9007199254740992.0); // 2^53 check!(1.0); check!(12.0); check!(123.0); check!(1234.0); check!(12345.0); check!(123456.0); check!(1234567.0); check!(12345678.0); check!(123456789.0); check!(1234567890.0); check!(1234567895.0); check!(12345678901.0); check!(123456789012.0); check!(1234567890123.0); check!(12345678901234.0); check!(123456789012345.0); check!(1234567890123456.0); // 10^i check!(1.0); check!(10.0); check!(100.0); check!(1000.0); check!(10000.0); check!(100000.0); check!(1000000.0); check!(10000000.0); check!(100000000.0); check!(1000000000.0); check!(10000000000.0); check!(100000000000.0); check!(1000000000000.0); check!(10000000000000.0); check!(100000000000000.0); check!(1000000000000000.0); // 10^15 + 10^i check!(1000000000000001.0); check!(1000000000000010.0); check!(1000000000000100.0); check!(1000000000001000.0); check!(1000000000010000.0); check!(1000000000100000.0); check!(1000000001000000.0); check!(1000000010000000.0); check!(1000000100000000.0); check!(1000001000000000.0); check!(1000010000000000.0); check!(1000100000000000.0); check!(1001000000000000.0); check!(1010000000000000.0); check!(1100000000000000.0); // Largest power of 2 <= 10^(i+1) check!(8.0); check!(64.0); check!(512.0); check!(8192.0); check!(65536.0); check!(524288.0); check!(8388608.0); check!(67108864.0); check!(536870912.0); check!(8589934592.0); check!(68719476736.0); check!(549755813888.0); check!(8796093022208.0); check!(70368744177664.0); check!(562949953421312.0); check!(9007199254740992.0); // 1000 * (Largest power of 2 <= 10^(i+1)) check!(8000.0); check!(64000.0); check!(512000.0); check!(8192000.0); check!(65536000.0); check!(524288000.0); check!(8388608000.0); check!(67108864000.0); check!(536870912000.0); check!(8589934592000.0); check!(68719476736000.0); check!(549755813888000.0); check!(8796093022208000.0); }