use super::Adler32Imp; /// Resolves update implementation if CPU supports avx2 instructions. pub fn get_imp() -> Option { get_imp_inner() } #[inline] #[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))] fn get_imp_inner() -> Option { if std::is_x86_feature_detected!("avx2") { Some(imp::update) } else { None } } #[inline] #[cfg(all( target_feature = "avx2", not(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64"))) ))] fn get_imp_inner() -> Option { Some(imp::update) } #[inline] #[cfg(all( not(target_feature = "avx2"), not(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64"))) ))] fn get_imp_inner() -> Option { None } #[cfg(all( any(target_arch = "x86", target_arch = "x86_64"), any(feature = "std", target_feature = "avx2") ))] mod imp { const MOD: u32 = 65521; const NMAX: usize = 5552; const BLOCK_SIZE: usize = 32; const CHUNK_SIZE: usize = NMAX / BLOCK_SIZE * BLOCK_SIZE; #[cfg(target_arch = "x86")] use core::arch::x86::*; #[cfg(target_arch = "x86_64")] use core::arch::x86_64::*; pub fn update(a: u16, b: u16, data: &[u8]) -> (u16, u16) { unsafe { update_imp(a, b, data) } } #[inline] #[target_feature(enable = "avx2")] unsafe fn update_imp(a: u16, b: u16, data: &[u8]) -> (u16, u16) { let mut a = a as u32; let mut b = b as u32; let chunks = data.chunks_exact(CHUNK_SIZE); let remainder = chunks.remainder(); for chunk in chunks { update_chunk_block(&mut a, &mut b, chunk); } update_block(&mut a, &mut b, remainder); (a as u16, b as u16) } #[inline] unsafe fn update_chunk_block(a: &mut u32, b: &mut u32, chunk: &[u8]) { debug_assert_eq!( chunk.len(), CHUNK_SIZE, "Unexpected chunk size (expected {}, got {})", CHUNK_SIZE, chunk.len() ); reduce_add_blocks(a, b, chunk); *a %= MOD; *b %= MOD; } #[inline] unsafe fn update_block(a: &mut u32, b: &mut u32, chunk: &[u8]) { debug_assert!( chunk.len() <= CHUNK_SIZE, "Unexpected chunk size (expected <= {}, got {})", CHUNK_SIZE, chunk.len() ); for byte in reduce_add_blocks(a, b, chunk) { *a += *byte as u32; *b += *a; } *a %= MOD; *b %= MOD; } #[inline(always)] unsafe fn reduce_add_blocks<'a>(a: &mut u32, b: &mut u32, chunk: &'a [u8]) -> &'a [u8] { if chunk.len() < BLOCK_SIZE { return chunk; } let blocks = chunk.chunks_exact(BLOCK_SIZE); let blocks_remainder = blocks.remainder(); let one_v = _mm256_set1_epi16(1); let zero_v = _mm256_setzero_si256(); let weights = get_weights(); let mut p_v = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (*a * blocks.len() as u32) as _); let mut a_v = _mm256_setzero_si256(); let mut b_v = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, *b as _); for block in blocks { let block_ptr = block.as_ptr() as *const _; let block = _mm256_loadu_si256(block_ptr); p_v = _mm256_add_epi32(p_v, a_v); a_v = _mm256_add_epi32(a_v, _mm256_sad_epu8(block, zero_v)); let mad = _mm256_maddubs_epi16(block, weights); b_v = _mm256_add_epi32(b_v, _mm256_madd_epi16(mad, one_v)); } b_v = _mm256_add_epi32(b_v, _mm256_slli_epi32(p_v, 5)); *a += reduce_add(a_v); *b = reduce_add(b_v); blocks_remainder } #[inline(always)] unsafe fn reduce_add(v: __m256i) -> u32 { let sum = _mm_add_epi32(_mm256_castsi256_si128(v), _mm256_extracti128_si256(v, 1)); let hi = _mm_unpackhi_epi64(sum, sum); let sum = _mm_add_epi32(hi, sum); let hi = _mm_shuffle_epi32(sum, crate::imp::_MM_SHUFFLE(2, 3, 0, 1)); let sum = _mm_add_epi32(sum, hi); _mm_cvtsi128_si32(sum) as _ } #[inline(always)] unsafe fn get_weights() -> __m256i { _mm256_set_epi8( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ) } } #[cfg(test)] mod tests { use rand::Rng; #[test] fn zeroes() { assert_sum_eq(&[]); assert_sum_eq(&[0]); assert_sum_eq(&[0, 0]); assert_sum_eq(&[0; 100]); assert_sum_eq(&[0; 1024]); assert_sum_eq(&[0; 1024 * 1024]); } #[test] fn ones() { assert_sum_eq(&[]); assert_sum_eq(&[1]); assert_sum_eq(&[1, 1]); assert_sum_eq(&[1; 100]); assert_sum_eq(&[1; 1024]); assert_sum_eq(&[1; 1024 * 1024]); } #[test] fn random() { let mut random = [0; 1024 * 1024]; rand::thread_rng().fill(&mut random[..]); assert_sum_eq(&random[..1]); assert_sum_eq(&random[..100]); assert_sum_eq(&random[..1024]); assert_sum_eq(&random[..1024 * 1024]); } /// Example calculation from https://en.wikipedia.org/wiki/Adler-32. #[test] fn wiki() { assert_sum_eq(b"Wikipedia"); } fn assert_sum_eq(data: &[u8]) { if let Some(update) = super::get_imp() { let (a, b) = update(1, 0, data); let left = u32::from(b) << 16 | u32::from(a); let right = adler::adler32_slice(data); assert_eq!(left, right, "len({})", data.len()); } } }