//! A naïve spinning mutex. //! //! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case //! latency is theoretically infinite. use crate::{ atomic::{AtomicBool, Ordering}, RelaxStrategy, Spin, }; use core::{ cell::UnsafeCell, fmt, marker::PhantomData, mem::ManuallyDrop, ops::{Deref, DerefMut}, }; /// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data. /// /// # Example /// /// ``` /// use spin; /// /// let lock = spin::mutex::SpinMutex::<_>::new(0); /// /// // Modify the data /// *lock.lock() = 2; /// /// // Read the data /// let answer = *lock.lock(); /// assert_eq!(answer, 2); /// ``` /// /// # Thread safety example /// /// ``` /// use spin; /// use std::sync::{Arc, Barrier}; /// /// let thread_count = 1000; /// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0)); /// /// // We use a barrier to ensure the readout happens after all writing /// let barrier = Arc::new(Barrier::new(thread_count + 1)); /// /// # let mut ts = Vec::new(); /// for _ in (0..thread_count) { /// let my_barrier = barrier.clone(); /// let my_lock = spin_mutex.clone(); /// # let t = /// std::thread::spawn(move || { /// let mut guard = my_lock.lock(); /// *guard += 1; /// /// // Release the lock to prevent a deadlock /// drop(guard); /// my_barrier.wait(); /// }); /// # ts.push(t); /// } /// /// barrier.wait(); /// /// let answer = { *spin_mutex.lock() }; /// assert_eq!(answer, thread_count); /// /// # for t in ts { /// # t.join().unwrap(); /// # } /// ``` pub struct SpinMutex { phantom: PhantomData, pub(crate) lock: AtomicBool, data: UnsafeCell, } /// A guard that provides mutable data access. /// /// When the guard falls out of scope it will release the lock. pub struct SpinMutexGuard<'a, T: ?Sized + 'a> { lock: &'a AtomicBool, data: *mut T, } // Same unsafe impls as `std::sync::Mutex` unsafe impl Sync for SpinMutex {} unsafe impl Send for SpinMutex {} unsafe impl Sync for SpinMutexGuard<'_, T> {} unsafe impl Send for SpinMutexGuard<'_, T> {} impl SpinMutex { /// Creates a new [`SpinMutex`] wrapping the supplied data. /// /// # Example /// /// ``` /// use spin::mutex::SpinMutex; /// /// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(()); /// /// fn demo() { /// let lock = MUTEX.lock(); /// // do something with lock /// drop(lock); /// } /// ``` #[inline(always)] pub const fn new(data: T) -> Self { SpinMutex { lock: AtomicBool::new(false), data: UnsafeCell::new(data), phantom: PhantomData, } } /// Consumes this [`SpinMutex`] and unwraps the underlying data. /// /// # Example /// /// ``` /// let lock = spin::mutex::SpinMutex::<_>::new(42); /// assert_eq!(42, lock.into_inner()); /// ``` #[inline(always)] pub fn into_inner(self) -> T { // We know statically that there are no outstanding references to // `self` so there's no need to lock. let SpinMutex { data, .. } = self; data.into_inner() } /// Returns a mutable pointer to the underlying data. /// /// This is mostly meant to be used for applications which require manual unlocking, but where /// storing both the lock and the pointer to the inner data gets inefficient. /// /// # Example /// ``` /// let lock = spin::mutex::SpinMutex::<_>::new(42); /// /// unsafe { /// core::mem::forget(lock.lock()); /// /// assert_eq!(lock.as_mut_ptr().read(), 42); /// lock.as_mut_ptr().write(58); /// /// lock.force_unlock(); /// } /// /// assert_eq!(*lock.lock(), 58); /// /// ``` #[inline(always)] pub fn as_mut_ptr(&self) -> *mut T { self.data.get() } } impl SpinMutex { /// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data. /// /// The returned value may be dereferenced for data access /// and the lock will be dropped when the guard falls out of scope. /// /// ``` /// let lock = spin::mutex::SpinMutex::<_>::new(0); /// { /// let mut data = lock.lock(); /// // The lock is now locked and the data can be accessed /// *data += 1; /// // The lock is implicitly dropped at the end of the scope /// } /// ``` #[inline(always)] pub fn lock(&self) -> SpinMutexGuard { // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock` // when called in a loop. while self .lock .compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed) .is_err() { // Wait until the lock looks unlocked before retrying while self.is_locked() { R::relax(); } } SpinMutexGuard { lock: &self.lock, data: unsafe { &mut *self.data.get() }, } } } impl SpinMutex { /// Returns `true` if the lock is currently held. /// /// # Safety /// /// This function provides no synchronization guarantees and so its result should be considered 'out of date' /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic. #[inline(always)] pub fn is_locked(&self) -> bool { self.lock.load(Ordering::Relaxed) } /// Force unlock this [`SpinMutex`]. /// /// # Safety /// /// This is *extremely* unsafe if the lock is not held by the current /// thread. However, this can be useful in some instances for exposing the /// lock to FFI that doesn't know how to deal with RAII. #[inline(always)] pub unsafe fn force_unlock(&self) { self.lock.store(false, Ordering::Release); } /// Try to lock this [`SpinMutex`], returning a lock guard if successful. /// /// # Example /// /// ``` /// let lock = spin::mutex::SpinMutex::<_>::new(42); /// /// let maybe_guard = lock.try_lock(); /// assert!(maybe_guard.is_some()); /// /// // `maybe_guard` is still held, so the second call fails /// let maybe_guard2 = lock.try_lock(); /// assert!(maybe_guard2.is_none()); /// ``` #[inline(always)] pub fn try_lock(&self) -> Option> { // The reason for using a strong compare_exchange is explained here: // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107 if self .lock .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed) .is_ok() { Some(SpinMutexGuard { lock: &self.lock, data: unsafe { &mut *self.data.get() }, }) } else { None } } /// Returns a mutable reference to the underlying data. /// /// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As /// such, this is a 'zero-cost' operation. /// /// # Example /// /// ``` /// let mut lock = spin::mutex::SpinMutex::<_>::new(0); /// *lock.get_mut() = 10; /// assert_eq!(*lock.lock(), 10); /// ``` #[inline(always)] pub fn get_mut(&mut self) -> &mut T { // We know statically that there are no other references to `self`, so // there's no need to lock the inner mutex. unsafe { &mut *self.data.get() } } } impl fmt::Debug for SpinMutex { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.try_lock() { Some(guard) => write!(f, "Mutex {{ data: ") .and_then(|()| (&*guard).fmt(f)) .and_then(|()| write!(f, "}}")), None => write!(f, "Mutex {{ }}"), } } } impl Default for SpinMutex { fn default() -> Self { Self::new(Default::default()) } } impl From for SpinMutex { fn from(data: T) -> Self { Self::new(data) } } impl<'a, T: ?Sized> SpinMutexGuard<'a, T> { /// Leak the lock guard, yielding a mutable reference to the underlying data. /// /// Note that this function will permanently lock the original [`SpinMutex`]. /// /// ``` /// let mylock = spin::mutex::SpinMutex::<_>::new(0); /// /// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock()); /// /// *data = 1; /// assert_eq!(*data, 1); /// ``` #[inline(always)] pub fn leak(this: Self) -> &'a mut T { // Use ManuallyDrop to avoid stacked-borrow invalidation let mut this = ManuallyDrop::new(this); // We know statically that only we are referencing data unsafe { &mut *this.data } } } impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&**self, f) } } impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> { type Target = T; fn deref(&self) -> &T { // We know statically that only we are referencing data unsafe { &*self.data } } } impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> { fn deref_mut(&mut self) -> &mut T { // We know statically that only we are referencing data unsafe { &mut *self.data } } } impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> { /// The dropping of the MutexGuard will release the lock it was created from. fn drop(&mut self) { self.lock.store(false, Ordering::Release); } } #[cfg(feature = "lock_api")] unsafe impl lock_api_crate::RawMutex for SpinMutex<(), R> { type GuardMarker = lock_api_crate::GuardSend; const INIT: Self = Self::new(()); fn lock(&self) { // Prevent guard destructor running core::mem::forget(Self::lock(self)); } fn try_lock(&self) -> bool { // Prevent guard destructor running Self::try_lock(self).map(core::mem::forget).is_some() } unsafe fn unlock(&self) { self.force_unlock(); } fn is_locked(&self) -> bool { Self::is_locked(self) } } #[cfg(test)] mod tests { use std::prelude::v1::*; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::mpsc::channel; use std::sync::Arc; use std::thread; type SpinMutex = super::SpinMutex; #[derive(Eq, PartialEq, Debug)] struct NonCopy(i32); #[test] fn smoke() { let m = SpinMutex::<_>::new(()); drop(m.lock()); drop(m.lock()); } #[test] fn lots_and_lots() { static M: SpinMutex<()> = SpinMutex::<_>::new(()); static mut CNT: u32 = 0; const J: u32 = 1000; const K: u32 = 3; fn inc() { for _ in 0..J { unsafe { let _g = M.lock(); CNT += 1; } } } let (tx, rx) = channel(); let mut ts = Vec::new(); for _ in 0..K { let tx2 = tx.clone(); ts.push(thread::spawn(move || { inc(); tx2.send(()).unwrap(); })); let tx2 = tx.clone(); ts.push(thread::spawn(move || { inc(); tx2.send(()).unwrap(); })); } drop(tx); for _ in 0..2 * K { rx.recv().unwrap(); } assert_eq!(unsafe { CNT }, J * K * 2); for t in ts { t.join().unwrap(); } } #[test] fn try_lock() { let mutex = SpinMutex::<_>::new(42); // First lock succeeds let a = mutex.try_lock(); assert_eq!(a.as_ref().map(|r| **r), Some(42)); // Additional lock fails let b = mutex.try_lock(); assert!(b.is_none()); // After dropping lock, it succeeds again ::core::mem::drop(a); let c = mutex.try_lock(); assert_eq!(c.as_ref().map(|r| **r), Some(42)); } #[test] fn test_into_inner() { let m = SpinMutex::<_>::new(NonCopy(10)); assert_eq!(m.into_inner(), NonCopy(10)); } #[test] fn test_into_inner_drop() { struct Foo(Arc); impl Drop for Foo { fn drop(&mut self) { self.0.fetch_add(1, Ordering::SeqCst); } } let num_drops = Arc::new(AtomicUsize::new(0)); let m = SpinMutex::<_>::new(Foo(num_drops.clone())); assert_eq!(num_drops.load(Ordering::SeqCst), 0); { let _inner = m.into_inner(); assert_eq!(num_drops.load(Ordering::SeqCst), 0); } assert_eq!(num_drops.load(Ordering::SeqCst), 1); } #[test] fn test_mutex_arc_nested() { // Tests nested mutexes and access // to underlying data. let arc = Arc::new(SpinMutex::<_>::new(1)); let arc2 = Arc::new(SpinMutex::<_>::new(arc)); let (tx, rx) = channel(); let t = thread::spawn(move || { let lock = arc2.lock(); let lock2 = lock.lock(); assert_eq!(*lock2, 1); tx.send(()).unwrap(); }); rx.recv().unwrap(); t.join().unwrap(); } #[test] fn test_mutex_arc_access_in_unwind() { let arc = Arc::new(SpinMutex::<_>::new(1)); let arc2 = arc.clone(); let _ = thread::spawn(move || -> () { struct Unwinder { i: Arc>, } impl Drop for Unwinder { fn drop(&mut self) { *self.i.lock() += 1; } } let _u = Unwinder { i: arc2 }; panic!(); }) .join(); let lock = arc.lock(); assert_eq!(*lock, 2); } #[test] fn test_mutex_unsized() { let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]); { let b = &mut *mutex.lock(); b[0] = 4; b[2] = 5; } let comp: &[i32] = &[4, 2, 5]; assert_eq!(&*mutex.lock(), comp); } #[test] fn test_mutex_force_lock() { let lock = SpinMutex::<_>::new(()); ::std::mem::forget(lock.lock()); unsafe { lock.force_unlock(); } assert!(lock.try_lock().is_some()); } }