//! This library implements string similarity metrics. #![forbid(unsafe_code)] #![allow( // these casts are sometimes needed. They restrict the length of input iterators // but there isn't really any way around this except for always working with // 128 bit types clippy::cast_possible_wrap, clippy::cast_sign_loss, clippy::cast_precision_loss, // not practical clippy::needless_pass_by_value, clippy::similar_names, // noisy clippy::missing_errors_doc, clippy::missing_panics_doc, clippy::must_use_candidate, // todo https://github.com/rapidfuzz/strsim-rs/issues/59 clippy::range_plus_one )] use std::char; use std::cmp::{max, min}; use std::collections::HashMap; use std::convert::TryFrom; use std::error::Error; use std::fmt::{self, Display, Formatter}; use std::hash::Hash; use std::mem; use std::str::Chars; #[derive(Debug, PartialEq)] pub enum StrSimError { DifferentLengthArgs, } impl Display for StrSimError { fn fmt(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> { let text = match self { StrSimError::DifferentLengthArgs => "Differing length arguments provided", }; write!(fmt, "{text}") } } impl Error for StrSimError {} pub type HammingResult = Result; /// Calculates the number of positions in the two sequences where the elements /// differ. Returns an error if the sequences have different lengths. pub fn generic_hamming(a: Iter1, b: Iter2) -> HammingResult where Iter1: IntoIterator, Iter2: IntoIterator, Elem1: PartialEq, { let (mut ita, mut itb) = (a.into_iter(), b.into_iter()); let mut count = 0; loop { match (ita.next(), itb.next()) { (Some(x), Some(y)) => { if x != y { count += 1; } } (None, None) => return Ok(count), _ => return Err(StrSimError::DifferentLengthArgs), } } } /// Calculates the number of positions in the two strings where the characters /// differ. Returns an error if the strings have different lengths. /// /// ``` /// use strsim::{hamming, StrSimError::DifferentLengthArgs}; /// /// assert_eq!(Ok(3), hamming("hamming", "hammers")); /// /// assert_eq!(Err(DifferentLengthArgs), hamming("hamming", "ham")); /// ``` pub fn hamming(a: &str, b: &str) -> HammingResult { generic_hamming(a.chars(), b.chars()) } /// Calculates the Jaro similarity between two sequences. The returned value /// is between 0.0 and 1.0 (higher value means more similar). pub fn generic_jaro<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> f64 where &'a Iter1: IntoIterator, &'b Iter2: IntoIterator, Elem1: PartialEq, { let a_len = a.into_iter().count(); let b_len = b.into_iter().count(); if a_len == 0 && b_len == 0 { return 1.0; } else if a_len == 0 || b_len == 0 { return 0.0; } let mut search_range = max(a_len, b_len) / 2; search_range = search_range.saturating_sub(1); // combine memory allocations to reduce runtime let mut flags_memory = vec![false; a_len + b_len]; let (a_flags, b_flags) = flags_memory.split_at_mut(a_len); let mut matches = 0_usize; for (i, a_elem) in a.into_iter().enumerate() { // prevent integer wrapping let min_bound = if i > search_range { i - search_range } else { 0 }; let max_bound = min(b_len, i + search_range + 1); for (j, b_elem) in b.into_iter().enumerate().take(max_bound) { if min_bound <= j && a_elem == b_elem && !b_flags[j] { a_flags[i] = true; b_flags[j] = true; matches += 1; break; } } } let mut transpositions = 0_usize; if matches != 0 { let mut b_iter = b_flags.iter().zip(b); for (a_flag, ch1) in a_flags.iter().zip(a) { if *a_flag { loop { if let Some((b_flag, ch2)) = b_iter.next() { if !*b_flag { continue; } if ch1 != ch2 { transpositions += 1; } break; } } } } } transpositions /= 2; if matches == 0 { 0.0 } else { ((matches as f64 / a_len as f64) + (matches as f64 / b_len as f64) + ((matches - transpositions) as f64 / matches as f64)) / 3.0 } } struct StringWrapper<'a>(&'a str); impl<'a, 'b> IntoIterator for &'a StringWrapper<'b> { type Item = char; type IntoIter = Chars<'b>; fn into_iter(self) -> Self::IntoIter { self.0.chars() } } /// Calculates the Jaro similarity between two strings. The returned value /// is between 0.0 and 1.0 (higher value means more similar). /// /// ``` /// use strsim::jaro; /// /// assert!((0.392 - jaro("Friedrich Nietzsche", "Jean-Paul Sartre")).abs() < /// 0.001); /// ``` pub fn jaro(a: &str, b: &str) -> f64 { generic_jaro(&StringWrapper(a), &StringWrapper(b)) } /// Like Jaro but gives a boost to sequences that have a common prefix. pub fn generic_jaro_winkler<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> f64 where &'a Iter1: IntoIterator, &'b Iter2: IntoIterator, Elem1: PartialEq, { let sim = generic_jaro(a, b); if sim > 0.7 { let prefix_length = a .into_iter() .take(4) .zip(b) .take_while(|(a_elem, b_elem)| a_elem == b_elem) .count(); sim + 0.1 * prefix_length as f64 * (1.0 - sim) } else { sim } } /// Like Jaro but gives a boost to strings that have a common prefix. /// /// ``` /// use strsim::jaro_winkler; /// /// assert!((0.866 - jaro_winkler("cheeseburger", "cheese fries")).abs() < /// 0.001); /// ``` pub fn jaro_winkler(a: &str, b: &str) -> f64 { generic_jaro_winkler(&StringWrapper(a), &StringWrapper(b)) } /// Calculates the minimum number of insertions, deletions, and substitutions /// required to change one sequence into the other. /// /// ``` /// use strsim::generic_levenshtein; /// /// assert_eq!(3, generic_levenshtein(&[1,2,3], &[1,2,3,4,5,6])); /// ``` pub fn generic_levenshtein<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> usize where &'a Iter1: IntoIterator, &'b Iter2: IntoIterator, Elem1: PartialEq, { let b_len = b.into_iter().count(); let mut cache: Vec = (1..b_len + 1).collect(); let mut result = b_len; for (i, a_elem) in a.into_iter().enumerate() { result = i + 1; let mut distance_b = i; for (j, b_elem) in b.into_iter().enumerate() { let cost = usize::from(a_elem != b_elem); let distance_a = distance_b + cost; distance_b = cache[j]; result = min(result + 1, min(distance_a, distance_b + 1)); cache[j] = result; } } result } /// Calculates the minimum number of insertions, deletions, and substitutions /// required to change one string into the other. /// /// ``` /// use strsim::levenshtein; /// /// assert_eq!(3, levenshtein("kitten", "sitting")); /// ``` pub fn levenshtein(a: &str, b: &str) -> usize { generic_levenshtein(&StringWrapper(a), &StringWrapper(b)) } /// Calculates a normalized score of the Levenshtein algorithm between 0.0 and /// 1.0 (inclusive), where 1.0 means the strings are the same. /// /// ``` /// use strsim::normalized_levenshtein; /// /// assert!((normalized_levenshtein("kitten", "sitting") - 0.57142).abs() < 0.00001); /// assert!((normalized_levenshtein("", "") - 1.0).abs() < 0.00001); /// assert!(normalized_levenshtein("", "second").abs() < 0.00001); /// assert!(normalized_levenshtein("first", "").abs() < 0.00001); /// assert!((normalized_levenshtein("string", "string") - 1.0).abs() < 0.00001); /// ``` pub fn normalized_levenshtein(a: &str, b: &str) -> f64 { if a.is_empty() && b.is_empty() { return 1.0; } 1.0 - (levenshtein(a, b) as f64) / (a.chars().count().max(b.chars().count()) as f64) } /// Like Levenshtein but allows for adjacent transpositions. Each substring can /// only be edited once. /// /// ``` /// use strsim::osa_distance; /// /// assert_eq!(3, osa_distance("ab", "bca")); /// ``` pub fn osa_distance(a: &str, b: &str) -> usize { let b_len = b.chars().count(); // 0..=b_len behaves like 0..b_len.saturating_add(1) which could be a different size // this leads to significantly worse code gen when swapping the vectors below let mut prev_two_distances: Vec = (0..b_len + 1).collect(); let mut prev_distances: Vec = (0..b_len + 1).collect(); let mut curr_distances: Vec = vec![0; b_len + 1]; let mut prev_a_char = char::MAX; let mut prev_b_char = char::MAX; for (i, a_char) in a.chars().enumerate() { curr_distances[0] = i + 1; for (j, b_char) in b.chars().enumerate() { let cost = usize::from(a_char != b_char); curr_distances[j + 1] = min( curr_distances[j] + 1, min(prev_distances[j + 1] + 1, prev_distances[j] + cost), ); if i > 0 && j > 0 && a_char != b_char && a_char == prev_b_char && b_char == prev_a_char { curr_distances[j + 1] = min(curr_distances[j + 1], prev_two_distances[j - 1] + 1); } prev_b_char = b_char; } mem::swap(&mut prev_two_distances, &mut prev_distances); mem::swap(&mut prev_distances, &mut curr_distances); prev_a_char = a_char; } // access prev_distances instead of curr_distances since we swapped // them above. In case a is empty this would still contain the correct value // from initializing the last element to b_len prev_distances[b_len] } /* Returns the final index for a value in a single vector that represents a fixed 2d grid */ fn flat_index(i: usize, j: usize, width: usize) -> usize { j * width + i } /// Like optimal string alignment, but substrings can be edited an unlimited /// number of times, and the triangle inequality holds. /// /// ``` /// use strsim::generic_damerau_levenshtein; /// /// assert_eq!(2, generic_damerau_levenshtein(&[1,2], &[2,3,1])); /// ``` pub fn generic_damerau_levenshtein(a_elems: &[Elem], b_elems: &[Elem]) -> usize where Elem: Eq + Hash + Clone, { let a_len = a_elems.len(); let b_len = b_elems.len(); if a_len == 0 { return b_len; } if b_len == 0 { return a_len; } let width = a_len + 2; let mut distances = vec![0; (a_len + 2) * (b_len + 2)]; let max_distance = a_len + b_len; distances[0] = max_distance; for i in 0..(a_len + 1) { distances[flat_index(i + 1, 0, width)] = max_distance; distances[flat_index(i + 1, 1, width)] = i; } for j in 0..(b_len + 1) { distances[flat_index(0, j + 1, width)] = max_distance; distances[flat_index(1, j + 1, width)] = j; } let mut elems: HashMap = HashMap::with_capacity(64); for i in 1..(a_len + 1) { let mut db = 0; for j in 1..(b_len + 1) { let k = match elems.get(&b_elems[j - 1]) { Some(&value) => value, None => 0, }; let insertion_cost = distances[flat_index(i, j + 1, width)] + 1; let deletion_cost = distances[flat_index(i + 1, j, width)] + 1; let transposition_cost = distances[flat_index(k, db, width)] + (i - k - 1) + 1 + (j - db - 1); let mut substitution_cost = distances[flat_index(i, j, width)] + 1; if a_elems[i - 1] == b_elems[j - 1] { db = j; substitution_cost -= 1; } distances[flat_index(i + 1, j + 1, width)] = min( substitution_cost, min(insertion_cost, min(deletion_cost, transposition_cost)), ); } elems.insert(a_elems[i - 1].clone(), i); } distances[flat_index(a_len + 1, b_len + 1, width)] } #[derive(Clone, Copy, PartialEq, Eq)] struct RowId { val: isize, } impl Default for RowId { fn default() -> Self { Self { val: -1 } } } #[derive(Default, Clone)] struct GrowingHashmapMapElemChar { key: u32, value: ValueType, } /// specialized hashmap to store user provided types /// this implementation relies on a couple of base assumptions in order to simplify the implementation /// - the hashmap does not have an upper limit of included items /// - the default value for the `ValueType` can be used as a dummy value to indicate an empty cell /// - elements can't be removed /// - only allocates memory on first write access. /// This improves performance for hashmaps that are never written to struct GrowingHashmapChar { used: i32, fill: i32, mask: i32, map: Option>>, } impl Default for GrowingHashmapChar where ValueType: Default + Clone + Eq, { fn default() -> Self { Self { used: 0, fill: 0, mask: -1, map: None, } } } impl GrowingHashmapChar where ValueType: Default + Clone + Eq + Copy, { fn get(&self, key: u32) -> ValueType { self.map .as_ref() .map_or_else(|| Default::default(), |map| map[self.lookup(key)].value) } fn get_mut(&mut self, key: u32) -> &mut ValueType { if self.map.is_none() { self.allocate(); } let mut i = self.lookup(key); if self .map .as_ref() .expect("map should have been created above")[i] .value == Default::default() { self.fill += 1; // resize when 2/3 full if self.fill * 3 >= (self.mask + 1) * 2 { self.grow((self.used + 1) * 2); i = self.lookup(key); } self.used += 1; } let elem = &mut self .map .as_mut() .expect("map should have been created above")[i]; elem.key = key; &mut elem.value } fn allocate(&mut self) { self.mask = 8 - 1; self.map = Some(vec![GrowingHashmapMapElemChar::default(); 8]); } /// lookup key inside the hashmap using a similar collision resolution /// strategy to `CPython` and `Ruby` fn lookup(&self, key: u32) -> usize { let hash = key; let mut i = hash as usize & self.mask as usize; let map = self .map .as_ref() .expect("callers have to ensure map is allocated"); if map[i].value == Default::default() || map[i].key == key { return i; } let mut perturb = key; loop { i = (i * 5 + perturb as usize + 1) & self.mask as usize; if map[i].value == Default::default() || map[i].key == key { return i; } perturb >>= 5; } } fn grow(&mut self, min_used: i32) { let mut new_size = self.mask + 1; while new_size <= min_used { new_size <<= 1; } self.fill = self.used; self.mask = new_size - 1; let old_map = std::mem::replace( self.map .as_mut() .expect("callers have to ensure map is allocated"), vec![GrowingHashmapMapElemChar::::default(); new_size as usize], ); for elem in old_map { if elem.value != Default::default() { let j = self.lookup(elem.key); let new_elem = &mut self.map.as_mut().expect("map created above")[j]; new_elem.key = elem.key; new_elem.value = elem.value; self.used -= 1; if self.used == 0 { break; } } } self.used = self.fill; } } struct HybridGrowingHashmapChar { map: GrowingHashmapChar, extended_ascii: [ValueType; 256], } impl HybridGrowingHashmapChar where ValueType: Default + Clone + Copy + Eq, { fn get(&self, key: char) -> ValueType { let value = key as u32; if value <= 255 { let val_u8 = u8::try_from(value).expect("we check the bounds above"); self.extended_ascii[usize::from(val_u8)] } else { self.map.get(value) } } fn get_mut(&mut self, key: char) -> &mut ValueType { let value = key as u32; if value <= 255 { let val_u8 = u8::try_from(value).expect("we check the bounds above"); &mut self.extended_ascii[usize::from(val_u8)] } else { self.map.get_mut(value) } } } impl Default for HybridGrowingHashmapChar where ValueType: Default + Clone + Copy + Eq, { fn default() -> Self { HybridGrowingHashmapChar { map: GrowingHashmapChar::default(), extended_ascii: [Default::default(); 256], } } } fn damerau_levenshtein_impl(s1: Iter1, len1: usize, s2: Iter2, len2: usize) -> usize where Iter1: Iterator + Clone, Iter2: Iterator + Clone, { // The implementations is based on the paper // `Linear space string correction algorithm using the Damerau-Levenshtein distance` // from Chunchun Zhao and Sartaj Sahni // // It has a runtime complexity of `O(N*M)` and a memory usage of `O(N+M)`. let max_val = max(len1, len2) as isize + 1; let mut last_row_id = HybridGrowingHashmapChar::::default(); let size = len2 + 2; let mut fr = vec![max_val; size]; let mut r1 = vec![max_val; size]; let mut r: Vec = (max_val..max_val + 1) .chain(0..(size - 1) as isize) .collect(); for (i, ch1) in s1.enumerate().map(|(i, ch1)| (i + 1, ch1)) { mem::swap(&mut r, &mut r1); let mut last_col_id: isize = -1; let mut last_i2l1 = r[1]; r[1] = i as isize; let mut t = max_val; for (j, ch2) in s2.clone().enumerate().map(|(j, ch2)| (j + 1, ch2)) { let diag = r1[j] + isize::from(ch1 != ch2); let left = r[j] + 1; let up = r1[j + 1] + 1; let mut temp = min(diag, min(left, up)); if ch1 == ch2 { last_col_id = j as isize; // last occurence of s1_i fr[j + 1] = r1[j - 1]; // save H_k-1,j-2 t = last_i2l1; // save H_i-2,l-1 } else { let k = last_row_id.get(ch2).val; let l = last_col_id; if j as isize - l == 1 { let transpose = fr[j + 1] + (i as isize - k); temp = min(temp, transpose); } else if i as isize - k == 1 { let transpose = t + (j as isize - l); temp = min(temp, transpose); } } last_i2l1 = r[j + 1]; r[j + 1] = temp; } last_row_id.get_mut(ch1).val = i as isize; } r[len2 + 1] as usize } /// Like optimal string alignment, but substrings can be edited an unlimited /// number of times, and the triangle inequality holds. /// /// ``` /// use strsim::damerau_levenshtein; /// /// assert_eq!(2, damerau_levenshtein("ab", "bca")); /// ``` pub fn damerau_levenshtein(a: &str, b: &str) -> usize { damerau_levenshtein_impl(a.chars(), a.chars().count(), b.chars(), b.chars().count()) } /// Calculates a normalized score of the Damerau–Levenshtein algorithm between /// 0.0 and 1.0 (inclusive), where 1.0 means the strings are the same. /// /// ``` /// use strsim::normalized_damerau_levenshtein; /// /// assert!((normalized_damerau_levenshtein("levenshtein", "löwenbräu") - 0.27272).abs() < 0.00001); /// assert!((normalized_damerau_levenshtein("", "") - 1.0).abs() < 0.00001); /// assert!(normalized_damerau_levenshtein("", "flower").abs() < 0.00001); /// assert!(normalized_damerau_levenshtein("tree", "").abs() < 0.00001); /// assert!((normalized_damerau_levenshtein("sunglasses", "sunglasses") - 1.0).abs() < 0.00001); /// ``` pub fn normalized_damerau_levenshtein(a: &str, b: &str) -> f64 { if a.is_empty() && b.is_empty() { return 1.0; } let len1 = a.chars().count(); let len2 = b.chars().count(); let dist = damerau_levenshtein_impl(a.chars(), len1, b.chars(), len2); 1.0 - (dist as f64) / (max(len1, len2) as f64) } /// Returns an Iterator of char tuples. fn bigrams(s: &str) -> impl Iterator + '_ { s.chars().zip(s.chars().skip(1)) } /// Calculates a Sørensen-Dice similarity distance using bigrams. /// See . /// /// ``` /// use strsim::sorensen_dice; /// /// assert_eq!(1.0, sorensen_dice("", "")); /// assert_eq!(0.0, sorensen_dice("", "a")); /// assert_eq!(0.0, sorensen_dice("french", "quebec")); /// assert_eq!(1.0, sorensen_dice("ferris", "ferris")); /// assert_eq!(0.8888888888888888, sorensen_dice("feris", "ferris")); /// ``` pub fn sorensen_dice(a: &str, b: &str) -> f64 { // implementation guided by // https://github.com/aceakash/string-similarity/blob/f83ba3cd7bae874c20c429774e911ae8cff8bced/src/index.js#L6 let a: String = a.chars().filter(|&x| !char::is_whitespace(x)).collect(); let b: String = b.chars().filter(|&x| !char::is_whitespace(x)).collect(); if a == b { return 1.0; } if a.len() < 2 || b.len() < 2 { return 0.0; } let mut a_bigrams: HashMap<(char, char), usize> = HashMap::new(); for bigram in bigrams(&a) { *a_bigrams.entry(bigram).or_insert(0) += 1; } let mut intersection_size = 0_usize; for bigram in bigrams(&b) { a_bigrams.entry(bigram).and_modify(|bi| { if *bi > 0 { *bi -= 1; intersection_size += 1; } }); } (2 * intersection_size) as f64 / (a.len() + b.len() - 2) as f64 } #[cfg(test)] mod tests { use super::*; macro_rules! assert_delta { ($x:expr, $y:expr) => { assert_delta!($x, $y, 1e-5); }; ($x:expr, $y:expr, $d:expr) => { if ($x - $y).abs() > $d { panic!( "assertion failed: actual: `{}`, expected: `{}`: \ actual not within < {} of expected", $x, $y, $d ); } }; } #[test] fn bigrams_iterator() { let mut bi = bigrams("abcde"); assert_eq!(Some(('a', 'b')), bi.next()); assert_eq!(Some(('b', 'c')), bi.next()); assert_eq!(Some(('c', 'd')), bi.next()); assert_eq!(Some(('d', 'e')), bi.next()); assert_eq!(None, bi.next()); } fn assert_hamming_dist(dist: usize, str1: &str, str2: &str) { assert_eq!(Ok(dist), hamming(str1, str2)); } #[test] fn hamming_empty() { assert_hamming_dist(0, "", "") } #[test] fn hamming_same() { assert_hamming_dist(0, "hamming", "hamming") } #[test] fn hamming_numbers() { assert_eq!(Ok(1), generic_hamming(&[1, 2, 4], &[1, 2, 3])); } #[test] fn hamming_diff() { assert_hamming_dist(3, "hamming", "hammers") } #[test] fn hamming_diff_multibyte() { assert_hamming_dist(2, "hamming", "h香mmüng"); } #[test] fn hamming_unequal_length() { assert_eq!( Err(StrSimError::DifferentLengthArgs), generic_hamming("ham".chars(), "hamming".chars()) ); } #[test] fn hamming_names() { assert_hamming_dist(14, "Friedrich Nietzs", "Jean-Paul Sartre") } #[test] fn jaro_both_empty() { assert_eq!(1.0, jaro("", "")); } #[test] fn jaro_first_empty() { assert_eq!(0.0, jaro("", "jaro")); } #[test] fn jaro_second_empty() { assert_eq!(0.0, jaro("distance", "")); } #[test] fn jaro_same() { assert_eq!(1.0, jaro("jaro", "jaro")); } #[test] fn jaro_multibyte() { assert_delta!(0.818, jaro("testabctest", "testöঙ香test"), 0.001); assert_delta!(0.818, jaro("testöঙ香test", "testabctest"), 0.001); } #[test] fn jaro_diff_short() { assert_delta!(0.767, jaro("dixon", "dicksonx"), 0.001); } #[test] fn jaro_diff_one_character() { assert_eq!(0.0, jaro("a", "b")); } #[test] fn jaro_same_one_character() { assert_eq!(1.0, jaro("a", "a")); } #[test] fn generic_jaro_diff() { assert_eq!(0.0, generic_jaro(&[1, 2], &[3, 4])); } #[test] fn jaro_diff_one_and_two() { assert_delta!(0.83, jaro("a", "ab"), 0.01); } #[test] fn jaro_diff_two_and_one() { assert_delta!(0.83, jaro("ab", "a"), 0.01); } #[test] fn jaro_diff_no_transposition() { assert_delta!(0.822, jaro("dwayne", "duane"), 0.001); } #[test] fn jaro_diff_with_transposition() { assert_delta!(0.944, jaro("martha", "marhta"), 0.001); assert_delta!(0.6, jaro("a jke", "jane a k"), 0.001); } #[test] fn jaro_names() { assert_delta!( 0.392, jaro("Friedrich Nietzsche", "Jean-Paul Sartre"), 0.001 ); } #[test] fn jaro_winkler_both_empty() { assert_eq!(1.0, jaro_winkler("", "")); } #[test] fn jaro_winkler_first_empty() { assert_eq!(0.0, jaro_winkler("", "jaro-winkler")); } #[test] fn jaro_winkler_second_empty() { assert_eq!(0.0, jaro_winkler("distance", "")); } #[test] fn jaro_winkler_same() { assert_eq!(1.0, jaro_winkler("Jaro-Winkler", "Jaro-Winkler")); } #[test] fn jaro_winkler_multibyte() { assert_delta!(0.89, jaro_winkler("testabctest", "testöঙ香test"), 0.001); assert_delta!(0.89, jaro_winkler("testöঙ香test", "testabctest"), 0.001); } #[test] fn jaro_winkler_diff_short() { assert_delta!(0.813, jaro_winkler("dixon", "dicksonx"), 0.001); assert_delta!(0.813, jaro_winkler("dicksonx", "dixon"), 0.001); } #[test] fn jaro_winkler_diff_one_character() { assert_eq!(0.0, jaro_winkler("a", "b")); } #[test] fn jaro_winkler_same_one_character() { assert_eq!(1.0, jaro_winkler("a", "a")); } #[test] fn jaro_winkler_diff_no_transposition() { assert_delta!(0.84, jaro_winkler("dwayne", "duane"), 0.001); } #[test] fn jaro_winkler_diff_with_transposition() { assert_delta!(0.961, jaro_winkler("martha", "marhta"), 0.001); assert_delta!(0.6, jaro_winkler("a jke", "jane a k"), 0.001); } #[test] fn jaro_winkler_names() { assert_delta!( 0.452, jaro_winkler("Friedrich Nietzsche", "Fran-Paul Sartre"), 0.001 ); } #[test] fn jaro_winkler_long_prefix() { assert_delta!(0.866, jaro_winkler("cheeseburger", "cheese fries"), 0.001); } #[test] fn jaro_winkler_more_names() { assert_delta!(0.868, jaro_winkler("Thorkel", "Thorgier"), 0.001); } #[test] fn jaro_winkler_length_of_one() { assert_delta!(0.738, jaro_winkler("Dinsdale", "D"), 0.001); } #[test] fn jaro_winkler_very_long_prefix() { assert_delta!( 0.98519, jaro_winkler("thequickbrownfoxjumpedoverx", "thequickbrownfoxjumpedovery") ); } #[test] fn levenshtein_empty() { assert_eq!(0, levenshtein("", "")); } #[test] fn levenshtein_same() { assert_eq!(0, levenshtein("levenshtein", "levenshtein")); } #[test] fn levenshtein_diff_short() { assert_eq!(3, levenshtein("kitten", "sitting")); } #[test] fn levenshtein_diff_with_space() { assert_eq!(5, levenshtein("hello, world", "bye, world")); } #[test] fn levenshtein_diff_multibyte() { assert_eq!(3, levenshtein("öঙ香", "abc")); assert_eq!(3, levenshtein("abc", "öঙ香")); } #[test] fn levenshtein_diff_longer() { let a = "The quick brown fox jumped over the angry dog."; let b = "Lorem ipsum dolor sit amet, dicta latine an eam."; assert_eq!(37, levenshtein(a, b)); } #[test] fn levenshtein_first_empty() { assert_eq!(7, levenshtein("", "sitting")); } #[test] fn levenshtein_second_empty() { assert_eq!(6, levenshtein("kitten", "")); } #[test] fn normalized_levenshtein_diff_short() { assert_delta!(0.57142, normalized_levenshtein("kitten", "sitting")); } #[test] fn normalized_levenshtein_for_empty_strings() { assert_delta!(1.0, normalized_levenshtein("", "")); } #[test] fn normalized_levenshtein_first_empty() { assert_delta!(0.0, normalized_levenshtein("", "second")); } #[test] fn normalized_levenshtein_second_empty() { assert_delta!(0.0, normalized_levenshtein("first", "")); } #[test] fn normalized_levenshtein_identical_strings() { assert_delta!(1.0, normalized_levenshtein("identical", "identical")); } #[test] fn osa_distance_empty() { assert_eq!(0, osa_distance("", "")); } #[test] fn osa_distance_same() { assert_eq!(0, osa_distance("damerau", "damerau")); } #[test] fn osa_distance_first_empty() { assert_eq!(7, osa_distance("", "damerau")); } #[test] fn osa_distance_second_empty() { assert_eq!(7, osa_distance("damerau", "")); } #[test] fn osa_distance_diff() { assert_eq!(3, osa_distance("ca", "abc")); } #[test] fn osa_distance_diff_short() { assert_eq!(3, osa_distance("damerau", "aderua")); } #[test] fn osa_distance_diff_reversed() { assert_eq!(3, osa_distance("aderua", "damerau")); } #[test] fn osa_distance_diff_multibyte() { assert_eq!(3, osa_distance("öঙ香", "abc")); assert_eq!(3, osa_distance("abc", "öঙ香")); } #[test] fn osa_distance_diff_unequal_length() { assert_eq!(6, osa_distance("damerau", "aderuaxyz")); } #[test] fn osa_distance_diff_unequal_length_reversed() { assert_eq!(6, osa_distance("aderuaxyz", "damerau")); } #[test] fn osa_distance_diff_comedians() { assert_eq!(5, osa_distance("Stewart", "Colbert")); } #[test] fn osa_distance_many_transpositions() { assert_eq!(4, osa_distance("abcdefghijkl", "bacedfgihjlk")); } #[test] fn osa_distance_diff_longer() { let a = "The quick brown fox jumped over the angry dog."; let b = "Lehem ipsum dolor sit amet, dicta latine an eam."; assert_eq!(36, osa_distance(a, b)); } #[test] fn osa_distance_beginning_transposition() { assert_eq!(1, osa_distance("foobar", "ofobar")); } #[test] fn osa_distance_end_transposition() { assert_eq!(1, osa_distance("specter", "spectre")); } #[test] fn osa_distance_restricted_edit() { assert_eq!(4, osa_distance("a cat", "an abct")); } #[test] fn damerau_levenshtein_empty() { assert_eq!(0, damerau_levenshtein("", "")); } #[test] fn damerau_levenshtein_same() { assert_eq!(0, damerau_levenshtein("damerau", "damerau")); } #[test] fn damerau_levenshtein_first_empty() { assert_eq!(7, damerau_levenshtein("", "damerau")); } #[test] fn damerau_levenshtein_second_empty() { assert_eq!(7, damerau_levenshtein("damerau", "")); } #[test] fn damerau_levenshtein_diff() { assert_eq!(2, damerau_levenshtein("ca", "abc")); } #[test] fn damerau_levenshtein_diff_short() { assert_eq!(3, damerau_levenshtein("damerau", "aderua")); } #[test] fn damerau_levenshtein_diff_reversed() { assert_eq!(3, damerau_levenshtein("aderua", "damerau")); } #[test] fn damerau_levenshtein_diff_multibyte() { assert_eq!(3, damerau_levenshtein("öঙ香", "abc")); assert_eq!(3, damerau_levenshtein("abc", "öঙ香")); } #[test] fn damerau_levenshtein_diff_unequal_length() { assert_eq!(6, damerau_levenshtein("damerau", "aderuaxyz")); } #[test] fn damerau_levenshtein_diff_unequal_length_reversed() { assert_eq!(6, damerau_levenshtein("aderuaxyz", "damerau")); } #[test] fn damerau_levenshtein_diff_comedians() { assert_eq!(5, damerau_levenshtein("Stewart", "Colbert")); } #[test] fn damerau_levenshtein_many_transpositions() { assert_eq!(4, damerau_levenshtein("abcdefghijkl", "bacedfgihjlk")); } #[test] fn damerau_levenshtein_diff_longer() { let a = "The quick brown fox jumped over the angry dog."; let b = "Lehem ipsum dolor sit amet, dicta latine an eam."; assert_eq!(36, damerau_levenshtein(a, b)); } #[test] fn damerau_levenshtein_beginning_transposition() { assert_eq!(1, damerau_levenshtein("foobar", "ofobar")); } #[test] fn damerau_levenshtein_end_transposition() { assert_eq!(1, damerau_levenshtein("specter", "spectre")); } #[test] fn damerau_levenshtein_unrestricted_edit() { assert_eq!(3, damerau_levenshtein("a cat", "an abct")); } #[test] fn normalized_damerau_levenshtein_diff_short() { assert_delta!( 0.27272, normalized_damerau_levenshtein("levenshtein", "löwenbräu") ); } #[test] fn normalized_damerau_levenshtein_for_empty_strings() { assert_delta!(1.0, normalized_damerau_levenshtein("", "")); } #[test] fn normalized_damerau_levenshtein_first_empty() { assert_delta!(0.0, normalized_damerau_levenshtein("", "flower")); } #[test] fn normalized_damerau_levenshtein_second_empty() { assert_delta!(0.0, normalized_damerau_levenshtein("tree", "")); } #[test] fn normalized_damerau_levenshtein_identical_strings() { assert_delta!( 1.0, normalized_damerau_levenshtein("sunglasses", "sunglasses") ); } #[test] fn sorensen_dice_all() { // test cases taken from // https://github.com/aceakash/string-similarity/blob/f83ba3cd7bae874c20c429774e911ae8cff8bced/src/spec/index.spec.js#L11 assert_delta!(1.0, sorensen_dice("a", "a")); assert_delta!(0.0, sorensen_dice("a", "b")); assert_delta!(1.0, sorensen_dice("", "")); assert_delta!(0.0, sorensen_dice("a", "")); assert_delta!(0.0, sorensen_dice("", "a")); assert_delta!(1.0, sorensen_dice("apple event", "apple event")); assert_delta!(0.90909, sorensen_dice("iphone", "iphone x")); assert_delta!(0.0, sorensen_dice("french", "quebec")); assert_delta!(1.0, sorensen_dice("france", "france")); assert_delta!(0.2, sorensen_dice("fRaNce", "france")); assert_delta!(0.8, sorensen_dice("healed", "sealed")); assert_delta!( 0.78788, sorensen_dice("web applications", "applications of the web") ); assert_delta!( 0.92, sorensen_dice( "this will have a typo somewhere", "this will huve a typo somewhere" ) ); assert_delta!( 0.60606, sorensen_dice( "Olive-green table for sale, in extremely good condition.", "For sale: table in very good condition, olive green in colour." ) ); assert_delta!( 0.25581, sorensen_dice( "Olive-green table for sale, in extremely good condition.", "For sale: green Subaru Impreza, 210,000 miles" ) ); assert_delta!( 0.14118, sorensen_dice( "Olive-green table for sale, in extremely good condition.", "Wanted: mountain bike with at least 21 gears." ) ); assert_delta!( 0.77419, sorensen_dice("this has one extra word", "this has one word") ); } }