1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
#!/usr/bin/env python3
"""
Software 3D renderer for terrain Land.msh + Land.map overlay.
Output format: binary PPM (P6), dependency-free.
"""
from __future__ import annotations
import argparse
import math
import struct
from pathlib import Path
from typing import Any
import archive_roundtrip_validator as arv
MAGIC_NRES = b"NRes"
def _entry_payload(blob: bytes, entry: dict[str, Any]) -> bytes:
start = int(entry["data_offset"])
end = start + int(entry["size"])
return blob[start:end]
def _parse_nres(blob: bytes, source: str) -> dict[str, Any]:
if blob[:4] != MAGIC_NRES:
raise RuntimeError(f"{source}: not an NRes payload")
return arv.parse_nres(blob, source=source)
def _by_type(entries: list[dict[str, Any]]) -> dict[int, list[dict[str, Any]]]:
out: dict[int, list[dict[str, Any]]] = {}
for row in entries:
out.setdefault(int(row["type_id"]), []).append(row)
return out
def _get_single(by_type: dict[int, list[dict[str, Any]]], type_id: int, label: str) -> dict[str, Any]:
rows = by_type.get(type_id, [])
if not rows:
raise RuntimeError(f"missing resource type {type_id} ({label})")
return rows[0]
def _downsample_faces(
faces: list[tuple[int, int, int]],
max_faces: int,
) -> list[tuple[int, int, int]]:
if max_faces <= 0 or len(faces) <= max_faces:
return faces
step = len(faces) / max_faces
out: list[tuple[int, int, int]] = []
pos = 0.0
while len(out) < max_faces and int(pos) < len(faces):
out.append(faces[int(pos)])
pos += step
return out
def load_terrain_msh(
path: Path,
*,
max_faces: int,
) -> tuple[list[tuple[float, float, float]], list[tuple[int, int, int]], dict[str, int]]:
blob = path.read_bytes()
parsed = _parse_nres(blob, str(path))
by_type = _by_type(parsed["entries"])
res3 = _get_single(by_type, 3, "positions")
res21 = _get_single(by_type, 21, "terrain faces")
pos_blob = _entry_payload(blob, res3)
if len(pos_blob) % 12 != 0:
raise RuntimeError(f"{path}: type 3 payload size is not divisible by 12")
vertex_count = len(pos_blob) // 12
positions = [struct.unpack_from("<3f", pos_blob, i * 12) for i in range(vertex_count)]
face_blob = _entry_payload(blob, res21)
if len(face_blob) % 28 != 0:
raise RuntimeError(f"{path}: type 21 payload size is not divisible by 28")
all_faces: list[tuple[int, int, int]] = []
raw_face_count = len(face_blob) // 28
dropped = 0
for i in range(raw_face_count):
off = i * 28
i0, i1, i2 = struct.unpack_from("<HHH", face_blob, off + 8)
if i0 >= vertex_count or i1 >= vertex_count or i2 >= vertex_count:
dropped += 1
continue
all_faces.append((i0, i1, i2))
faces = _downsample_faces(all_faces, max_faces)
meta = {
"vertex_count": vertex_count,
"face_count_raw": raw_face_count,
"face_count_valid": len(all_faces),
"face_count_rendered": len(faces),
"face_dropped_invalid": dropped,
}
return positions, faces, meta
def load_areal_map(path: Path) -> tuple[list[dict[str, Any]], dict[str, int]]:
blob = path.read_bytes()
parsed = _parse_nres(blob, str(path))
by_type = _by_type(parsed["entries"])
chunk = _get_single(by_type, 12, "ArealMapGeometry")
payload = _entry_payload(blob, chunk)
areal_count = int(chunk["attr1"])
ptr = 0
areals: list[dict[str, Any]] = []
for idx in range(areal_count):
if ptr + 56 > len(payload):
raise RuntimeError(f"{path}: truncated areal header at index={idx}")
class_id = struct.unpack_from("<I", payload, ptr + 40)[0]
vertex_count, poly_count = struct.unpack_from("<II", payload, ptr + 48)
verts_off = ptr + 56
verts_size = 12 * vertex_count
if verts_off + verts_size > len(payload):
raise RuntimeError(f"{path}: areal[{idx}] vertices out of bounds")
verts = [struct.unpack_from("<3f", payload, verts_off + 12 * i) for i in range(vertex_count)]
links_off = verts_off + verts_size
links_size = 8 * (vertex_count + 3 * poly_count)
p = links_off + links_size
for _ in range(poly_count):
if p + 4 > len(payload):
raise RuntimeError(f"{path}: areal[{idx}] poly header out of bounds")
n = struct.unpack_from("<I", payload, p)[0]
p += 4 * (3 * n + 1)
if p > len(payload):
raise RuntimeError(f"{path}: areal[{idx}] poly data out of bounds")
areals.append(
{
"index": idx,
"class_id": class_id,
"vertices": verts,
}
)
ptr = p
if ptr + 8 > len(payload):
raise RuntimeError(f"{path}: missing cells section")
cells_x, cells_y = struct.unpack_from("<II", payload, ptr)
ptr += 8
for _x in range(cells_x):
for _y in range(cells_y):
if ptr + 2 > len(payload):
raise RuntimeError(f"{path}: cells section truncated")
hit_count = struct.unpack_from("<H", payload, ptr)[0]
ptr += 2 + 2 * hit_count
if ptr > len(payload):
raise RuntimeError(f"{path}: cells section out of bounds")
if ptr != len(payload):
raise RuntimeError(f"{path}: trailing bytes in chunk12 parse ({len(payload) - ptr})")
meta = {
"areal_count": areal_count,
"cells_x": cells_x,
"cells_y": cells_y,
}
return areals, meta
def _color_for_class(class_id: int) -> tuple[int, int, int]:
x = (class_id * 1103515245 + 12345) & 0x7FFFFFFF
r = 60 + (x & 0x7F)
g = 60 + ((x >> 7) & 0x7F)
b = 60 + ((x >> 14) & 0x7F)
return r, g, b
def _write_ppm(path: Path, width: int, height: int, rgb: bytearray) -> None:
path.parent.mkdir(parents=True, exist_ok=True)
with path.open("wb") as handle:
handle.write(f"P6\n{width} {height}\n255\n".encode("ascii"))
handle.write(rgb)
def _write_obj(
path: Path,
terrain_positions: list[tuple[float, float, float]],
terrain_faces: list[tuple[int, int, int]],
areals: list[dict[str, Any]],
*,
include_areals: bool,
) -> None:
path.parent.mkdir(parents=True, exist_ok=True)
with path.open("w", encoding="utf-8", newline="\n") as out:
out.write("# Exported by terrain_map_preview_renderer.py\n")
out.write("o terrain\n")
for x, y, z in terrain_positions:
out.write(f"v {x:.9g} {y:.9g} {z:.9g}\n")
for i0, i1, i2 in terrain_faces:
# OBJ indices are 1-based.
out.write(f"f {i0 + 1} {i1 + 1} {i2 + 1}\n")
if include_areals and areals:
base = len(terrain_positions)
area_vertex_counts: list[int] = []
out.write("o areal_edges\n")
for area in areals:
verts = area["vertices"]
area_vertex_counts.append(len(verts))
for x, y, z in verts:
out.write(f"v {x:.9g} {y:.9g} {z:.9g}\n")
ptr = base
for area_idx, area in enumerate(areals):
cnt = area_vertex_counts[area_idx]
if cnt < 2:
ptr += cnt
continue
# closed polyline.
line = [str(ptr + i + 1) for i in range(cnt)]
line.append(str(ptr + 1))
out.write("l " + " ".join(line) + "\n")
ptr += cnt
def _render_scene(
terrain_positions: list[tuple[float, float, float]],
terrain_faces: list[tuple[int, int, int]],
areals: list[dict[str, Any]],
*,
width: int,
height: int,
yaw_deg: float,
pitch_deg: float,
wireframe: bool,
areal_overlay: bool,
) -> bytearray:
all_positions = list(terrain_positions)
if areal_overlay:
for area in areals:
all_positions.extend(area["vertices"])
if not all_positions:
raise RuntimeError("scene is empty")
xs = [p[0] for p in all_positions]
ys = [p[1] for p in all_positions]
zs = [p[2] for p in all_positions]
cx = (min(xs) + max(xs)) * 0.5
cy = (min(ys) + max(ys)) * 0.5
cz = (min(zs) + max(zs)) * 0.5
span = max(max(xs) - min(xs), max(ys) - min(ys), max(zs) - min(zs))
radius = max(span * 0.5, 1e-3)
yaw = math.radians(yaw_deg)
pitch = math.radians(pitch_deg)
cyaw = math.cos(yaw)
syaw = math.sin(yaw)
cpitch = math.cos(pitch)
spitch = math.sin(pitch)
camera_dist = radius * 3.2
scale = min(width, height) * 0.96
# Terrain transform cache.
vx: list[float] = []
vy: list[float] = []
vz: list[float] = []
sx: list[float] = []
sy: list[float] = []
for x, y, z in terrain_positions:
x0 = x - cx
y0 = y - cy
z0 = z - cz
x1 = cyaw * x0 + syaw * z0
z1 = -syaw * x0 + cyaw * z0
y2 = cpitch * y0 - spitch * z1
z2 = spitch * y0 + cpitch * z1 + camera_dist
if z2 < 1e-3:
z2 = 1e-3
vx.append(x1)
vy.append(y2)
vz.append(z2)
sx.append(width * 0.5 + (x1 / z2) * scale)
sy.append(height * 0.5 - (y2 / z2) * scale)
def project_point(x: float, y: float, z: float) -> tuple[float, float, float]:
x0 = x - cx
y0 = y - cy
z0 = z - cz
x1 = cyaw * x0 + syaw * z0
z1 = -syaw * x0 + cyaw * z0
y2 = cpitch * y0 - spitch * z1
z2 = spitch * y0 + cpitch * z1 + camera_dist
if z2 < 1e-3:
z2 = 1e-3
px = width * 0.5 + (x1 / z2) * scale
py = height * 0.5 - (y2 / z2) * scale
return px, py, z2
rgb = bytearray([14, 16, 20] * (width * height))
zbuf = [float("inf")] * (width * height)
light_dir = (0.35, 0.45, 1.0)
l_len = math.sqrt(light_dir[0] ** 2 + light_dir[1] ** 2 + light_dir[2] ** 2)
light = (light_dir[0] / l_len, light_dir[1] / l_len, light_dir[2] / l_len)
def edge(ax: float, ay: float, bx: float, by: float, px: float, py: float) -> float:
return (px - ax) * (by - ay) - (py - ay) * (bx - ax)
for i0, i1, i2 in terrain_faces:
x0 = sx[i0]
y0 = sy[i0]
x1 = sx[i1]
y1 = sy[i1]
x2 = sx[i2]
y2 = sy[i2]
area = edge(x0, y0, x1, y1, x2, y2)
if area == 0.0:
continue
ux = vx[i1] - vx[i0]
uy = vy[i1] - vy[i0]
uz = vz[i1] - vz[i0]
wx = vx[i2] - vx[i0]
wy = vy[i2] - vy[i0]
wz = vz[i2] - vz[i0]
nx = uy * wz - uz * wy
ny = uz * wx - ux * wz
nz = ux * wy - uy * wx
n_len = math.sqrt(nx * nx + ny * ny + nz * nz)
if n_len > 0.0:
nx /= n_len
ny /= n_len
nz /= n_len
intensity = nx * light[0] + ny * light[1] + nz * light[2]
if intensity < 0.0:
intensity = 0.0
shade = int(45 + 185 * intensity)
color = (min(255, shade + 6), min(255, shade + 14), min(255, shade + 28))
minx = int(max(0, math.floor(min(x0, x1, x2))))
maxx = int(min(width - 1, math.ceil(max(x0, x1, x2))))
miny = int(max(0, math.floor(min(y0, y1, y2))))
maxy = int(min(height - 1, math.ceil(max(y0, y1, y2))))
if minx > maxx or miny > maxy:
continue
z0 = vz[i0]
z1 = vz[i1]
z2 = vz[i2]
inv_area = 1.0 / area
for py in range(miny, maxy + 1):
fy = py + 0.5
row = py * width
for px in range(minx, maxx + 1):
fx = px + 0.5
w0 = edge(x1, y1, x2, y2, fx, fy)
w1 = edge(x2, y2, x0, y0, fx, fy)
w2 = edge(x0, y0, x1, y1, fx, fy)
if area > 0:
if w0 < 0 or w1 < 0 or w2 < 0:
continue
else:
if w0 > 0 or w1 > 0 or w2 > 0:
continue
bz0 = w0 * inv_area
bz1 = w1 * inv_area
bz2 = w2 * inv_area
depth = bz0 * z0 + bz1 * z1 + bz2 * z2
idx = row + px
if depth >= zbuf[idx]:
continue
zbuf[idx] = depth
p = idx * 3
rgb[p + 0] = color[0]
rgb[p + 1] = color[1]
rgb[p + 2] = color[2]
def draw_line(
xa: float,
ya: float,
xb: float,
yb: float,
color: tuple[int, int, int],
) -> None:
x0i = int(round(xa))
y0i = int(round(ya))
x1i = int(round(xb))
y1i = int(round(yb))
dx = abs(x1i - x0i)
sx_step = 1 if x0i < x1i else -1
dy = -abs(y1i - y0i)
sy_step = 1 if y0i < y1i else -1
err = dx + dy
x = x0i
y = y0i
while True:
if 0 <= x < width and 0 <= y < height:
p = (y * width + x) * 3
rgb[p + 0] = color[0]
rgb[p + 1] = color[1]
rgb[p + 2] = color[2]
if x == x1i and y == y1i:
break
e2 = 2 * err
if e2 >= dy:
err += dy
x += sx_step
if e2 <= dx:
err += dx
y += sy_step
if wireframe:
wf = (225, 232, 246)
for i0, i1, i2 in terrain_faces:
draw_line(sx[i0], sy[i0], sx[i1], sy[i1], wf)
draw_line(sx[i1], sy[i1], sx[i2], sy[i2], wf)
draw_line(sx[i2], sy[i2], sx[i0], sy[i0], wf)
if areal_overlay:
for area in areals:
verts = area["vertices"]
if len(verts) < 2:
continue
color = _color_for_class(int(area["class_id"]))
projected = [project_point(x, y, z + 0.35) for x, y, z in verts]
for i in range(len(projected)):
x0, y0, _ = projected[i]
x1, y1, _ = projected[(i + 1) % len(projected)]
draw_line(x0, y0, x1, y1, color)
return rgb
def cmd_render(args: argparse.Namespace) -> int:
msh_path = Path(args.land_msh).resolve()
map_path = Path(args.land_map).resolve() if args.land_map else None
output_path = Path(args.output).resolve()
positions, faces, terrain_meta = load_terrain_msh(msh_path, max_faces=int(args.max_faces))
areals: list[dict[str, Any]] = []
map_meta: dict[str, int] = {"areal_count": 0, "cells_x": 0, "cells_y": 0}
if map_path:
areals, map_meta = load_areal_map(map_path)
rgb = _render_scene(
positions,
faces,
areals,
width=int(args.width),
height=int(args.height),
yaw_deg=float(args.yaw),
pitch_deg=float(args.pitch),
wireframe=bool(args.wireframe),
areal_overlay=bool(args.overlay_areals),
)
_write_ppm(output_path, int(args.width), int(args.height), rgb)
print(f"Rendered terrain : {msh_path}")
if map_path:
print(f"Areal overlay : {map_path}")
print(f"Output : {output_path}")
print(
"Terrain geometry : "
f"vertices={terrain_meta['vertex_count']}, "
f"faces={terrain_meta['face_count_rendered']}/{terrain_meta['face_count_valid']} "
f"(raw={terrain_meta['face_count_raw']}, dropped={terrain_meta['face_dropped_invalid']})"
)
if map_path:
print(
"Areal map : "
f"areals={map_meta['areal_count']}, cells={map_meta['cells_x']}x{map_meta['cells_y']}"
)
return 0
def cmd_export_obj(args: argparse.Namespace) -> int:
msh_path = Path(args.land_msh).resolve()
map_path = Path(args.land_map).resolve() if args.land_map else None
output_path = Path(args.output).resolve()
positions, faces, terrain_meta = load_terrain_msh(msh_path, max_faces=int(args.max_faces))
areals: list[dict[str, Any]] = []
if map_path and bool(args.include_areals):
areals, _ = load_areal_map(map_path)
_write_obj(
output_path,
positions,
faces,
areals,
include_areals=bool(args.include_areals),
)
areal_vertices = sum(len(a["vertices"]) for a in areals)
print(f"Terrain source : {msh_path}")
if map_path:
print(f"Areal source : {map_path}")
print(f"OBJ output : {output_path}")
print(
"Terrain geometry : "
f"vertices={terrain_meta['vertex_count']}, "
f"faces={terrain_meta['face_count_rendered']}/{terrain_meta['face_count_valid']}"
)
if bool(args.include_areals):
print(f"Areal edges : areals={len(areals)}, extra_vertices={areal_vertices}")
return 0
def cmd_render_turntable(args: argparse.Namespace) -> int:
msh_path = Path(args.land_msh).resolve()
map_path = Path(args.land_map).resolve() if args.land_map else None
output_dir = Path(args.output_dir).resolve()
output_dir.mkdir(parents=True, exist_ok=True)
frames = int(args.frames)
if frames <= 0:
raise RuntimeError("--frames must be > 0")
positions, faces, terrain_meta = load_terrain_msh(msh_path, max_faces=int(args.max_faces))
areals: list[dict[str, Any]] = []
if map_path:
areals, _ = load_areal_map(map_path)
yaw_start = float(args.yaw_start)
yaw_end = float(args.yaw_end)
if frames == 1:
yaws = [yaw_start]
else:
step = (yaw_end - yaw_start) / (frames - 1)
yaws = [yaw_start + i * step for i in range(frames)]
prefix = str(args.prefix)
for i, yaw in enumerate(yaws):
rgb = _render_scene(
positions,
faces,
areals,
width=int(args.width),
height=int(args.height),
yaw_deg=yaw,
pitch_deg=float(args.pitch),
wireframe=bool(args.wireframe),
areal_overlay=bool(args.overlay_areals),
)
out = output_dir / f"{prefix}_{i:03d}.ppm"
_write_ppm(out, int(args.width), int(args.height), rgb)
print(f"Turntable source : {msh_path}")
if map_path:
print(f"Areal source : {map_path}")
print(f"Output dir : {output_dir}")
print(f"Frames : {frames} ({yaws[0]:.3f} -> {yaws[-1]:.3f} yaw)")
print(
"Terrain geometry : "
f"vertices={terrain_meta['vertex_count']}, faces={terrain_meta['face_count_rendered']}"
)
return 0
def cmd_render_batch(args: argparse.Namespace) -> int:
maps_root = Path(args.maps_root).resolve()
output_dir = Path(args.output_dir).resolve()
msh_paths = sorted(maps_root.rglob("Land.msh"))
if not msh_paths:
raise RuntimeError(f"no Land.msh files under {maps_root}")
rendered = 0
skipped = 0
for msh_path in msh_paths:
map_path = msh_path.with_name("Land.map")
if not map_path.exists():
skipped += 1
continue
rel = msh_path.parent.relative_to(maps_root)
out = output_dir / f"{rel.as_posix().replace('/', '__')}.ppm"
cmd_render(
argparse.Namespace(
land_msh=str(msh_path),
land_map=str(map_path),
output=str(out),
max_faces=args.max_faces,
width=args.width,
height=args.height,
yaw=args.yaw,
pitch=args.pitch,
wireframe=args.wireframe,
overlay_areals=args.overlay_areals,
)
)
rendered += 1
print(f"Batch summary: rendered={rendered}, skipped_no_map={skipped}, output_dir={output_dir}")
return 0
def build_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
description="Software 3D terrain renderer (Land.msh + optional Land.map overlay)."
)
sub = parser.add_subparsers(dest="command", required=True)
render = sub.add_parser("render", help="Render one terrain map to PPM.")
render.add_argument("--land-msh", required=True, help="Path to Land.msh")
render.add_argument("--land-map", help="Path to Land.map (optional)")
render.add_argument("--output", required=True, help="Output .ppm path")
render.add_argument("--max-faces", type=int, default=220000, help="Face limit (default: 220000)")
render.add_argument("--width", type=int, default=1280, help="Image width (default: 1280)")
render.add_argument("--height", type=int, default=720, help="Image height (default: 720)")
render.add_argument("--yaw", type=float, default=38.0, help="Yaw angle in degrees (default: 38)")
render.add_argument("--pitch", type=float, default=26.0, help="Pitch angle in degrees (default: 26)")
render.add_argument("--wireframe", action="store_true", help="Draw terrain wireframe overlay")
render.add_argument(
"--overlay-areals",
action="store_true",
help="Draw ArealMap polygon overlay",
)
render.set_defaults(func=cmd_render)
export_obj = sub.add_parser("export-obj", help="Export terrain (and optional areal edges) to OBJ.")
export_obj.add_argument("--land-msh", required=True, help="Path to Land.msh")
export_obj.add_argument("--land-map", help="Path to Land.map (optional)")
export_obj.add_argument("--output", required=True, help="Output .obj path")
export_obj.add_argument("--max-faces", type=int, default=0, help="Face limit (0 = all)")
export_obj.add_argument(
"--include-areals",
action="store_true",
help="Export areal polygons as OBJ polyline object",
)
export_obj.set_defaults(func=cmd_export_obj)
turn = sub.add_parser("render-turntable", help="Render turntable frame sequence to PPM.")
turn.add_argument("--land-msh", required=True, help="Path to Land.msh")
turn.add_argument("--land-map", help="Path to Land.map (optional)")
turn.add_argument("--output-dir", required=True, help="Output directory for frames")
turn.add_argument("--prefix", default="frame", help="Frame filename prefix (default: frame)")
turn.add_argument("--frames", type=int, default=36, help="Frame count (default: 36)")
turn.add_argument("--yaw-start", type=float, default=0.0, help="Start yaw in degrees (default: 0)")
turn.add_argument("--yaw-end", type=float, default=360.0, help="End yaw in degrees (default: 360)")
turn.add_argument("--pitch", type=float, default=26.0, help="Pitch angle in degrees (default: 26)")
turn.add_argument("--max-faces", type=int, default=160000, help="Face limit (default: 160000)")
turn.add_argument("--width", type=int, default=960, help="Image width (default: 960)")
turn.add_argument("--height", type=int, default=540, help="Image height (default: 540)")
turn.add_argument("--wireframe", action="store_true", help="Draw terrain wireframe overlay")
turn.add_argument(
"--overlay-areals",
action="store_true",
help="Draw ArealMap polygon overlay",
)
turn.set_defaults(func=cmd_render_turntable)
batch = sub.add_parser("render-batch", help="Render all MAPS/**/Land.msh under root.")
batch.add_argument(
"--maps-root",
default="tmp/gamedata/DATA/MAPS",
help="Root directory with MAPS subfolders (default: tmp/gamedata/DATA/MAPS)",
)
batch.add_argument("--output-dir", required=True, help="Directory for output PPM files")
batch.add_argument("--max-faces", type=int, default=90000, help="Face limit per map (default: 90000)")
batch.add_argument("--width", type=int, default=960, help="Image width (default: 960)")
batch.add_argument("--height", type=int, default=540, help="Image height (default: 540)")
batch.add_argument("--yaw", type=float, default=38.0, help="Yaw angle in degrees (default: 38)")
batch.add_argument("--pitch", type=float, default=26.0, help="Pitch angle in degrees (default: 26)")
batch.add_argument("--wireframe", action="store_true", help="Draw terrain wireframe overlay")
batch.add_argument(
"--overlay-areals",
action="store_true",
help="Draw ArealMap polygon overlay",
)
batch.set_defaults(func=cmd_render_batch)
return parser
def main() -> int:
parser = build_parser()
args = parser.parse_args()
return int(args.func(args))
if __name__ == "__main__":
raise SystemExit(main())
|