From e8701195e66f2d27ffe17fb514eae8173795aaf7 Mon Sep 17 00:00:00 2001
From: Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com>
Date: Thu, 4 Mar 2021 22:54:23 +0500
Subject: Initial commit
---
Marlin/src/module/stepper.cpp | 3514 +++++++++++++++++++++++++++++++++++++++++
1 file changed, 3514 insertions(+)
create mode 100644 Marlin/src/module/stepper.cpp
(limited to 'Marlin/src/module/stepper.cpp')
diff --git a/Marlin/src/module/stepper.cpp b/Marlin/src/module/stepper.cpp
new file mode 100644
index 0000000..1033774
--- /dev/null
+++ b/Marlin/src/module/stepper.cpp
@@ -0,0 +1,3514 @@
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+/**
+ * stepper.cpp - A singleton object to execute motion plans using stepper motors
+ * Marlin Firmware
+ *
+ * Derived from Grbl
+ * Copyright (c) 2009-2011 Simen Svale Skogsrud
+ *
+ * Grbl is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * Grbl is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with Grbl. If not, see .
+ */
+
+/**
+ * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
+ * and Philipp Tiefenbacher.
+ */
+
+/**
+ * __________________________
+ * /| |\ _________________ ^
+ * / | | \ /| |\ |
+ * / | | \ / | | \ s
+ * / | | | | | \ p
+ * / | | | | | \ e
+ * +-----+------------------------+---+--+---------------+----+ e
+ * | BLOCK 1 | BLOCK 2 | d
+ *
+ * time ----->
+ *
+ * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+ * first block->accelerate_until step_events_completed, then keeps going at constant speed until
+ * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+ * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
+ */
+
+/**
+ * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
+ * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
+ */
+
+/**
+ * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
+ * Equations based on Synthethos TinyG2 sources, but the fixed-point
+ * implementation is new, as we are running the ISR with a variable period.
+ * Also implemented the Bézier velocity curve evaluation in ARM assembler,
+ * to avoid impacting ISR speed.
+ */
+
+#include "stepper.h"
+
+Stepper stepper; // Singleton
+
+#define BABYSTEPPING_EXTRA_DIR_WAIT
+
+#ifdef __AVR__
+ #include "speed_lookuptable.h"
+#endif
+
+#include "endstops.h"
+#include "planner.h"
+#include "motion.h"
+
+#include "../lcd/marlinui.h"
+#include "../gcode/queue.h"
+#include "../sd/cardreader.h"
+#include "../MarlinCore.h"
+#include "../HAL/shared/Delay.h"
+
+#if ENABLED(INTEGRATED_BABYSTEPPING)
+ #include "../feature/babystep.h"
+#endif
+
+#if MB(ALLIGATOR)
+ #include "../feature/dac/dac_dac084s085.h"
+#endif
+
+#if HAS_MOTOR_CURRENT_SPI
+ #include
+#endif
+
+#if ENABLED(MIXING_EXTRUDER)
+ #include "../feature/mixing.h"
+#endif
+
+#if HAS_FILAMENT_RUNOUT_DISTANCE
+ #include "../feature/runout.h"
+#endif
+
+#if HAS_L64XX
+ #include "../libs/L64XX/L64XX_Marlin.h"
+ uint8_t L6470_buf[MAX_L64XX + 1]; // chip command sequence - element 0 not used
+ bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up
+#endif
+
+#if ENABLED(POWER_LOSS_RECOVERY)
+ #include "../feature/powerloss.h"
+#endif
+
+#if HAS_CUTTER
+ #include "../feature/spindle_laser.h"
+#endif
+
+// public:
+
+#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+ bool Stepper::separate_multi_axis = false;
+#endif
+
+#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ bool Stepper::initialized; // = false
+ uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
+ #if HAS_MOTOR_CURRENT_SPI
+ constexpr uint32_t Stepper::digipot_count[];
+ #endif
+#endif
+
+// private:
+
+block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
+
+uint8_t Stepper::last_direction_bits, // = 0
+ Stepper::axis_did_move; // = 0
+
+bool Stepper::abort_current_block;
+
+#if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
+ uint8_t Stepper::last_moved_extruder = 0xFF;
+#endif
+
+#if ENABLED(X_DUAL_ENDSTOPS)
+ bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
+#endif
+#if ENABLED(Y_DUAL_ENDSTOPS)
+ bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
+#endif
+
+#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
+ bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ , Stepper::locked_Z3_motor = false
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ , Stepper::locked_Z4_motor = false
+ #endif
+ #endif
+ ;
+#endif
+
+uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
+uint8_t Stepper::steps_per_isr;
+
+IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
+
+xyze_long_t Stepper::delta_error{0};
+
+xyze_ulong_t Stepper::advance_dividend{0};
+uint32_t Stepper::advance_divisor = 0,
+ Stepper::step_events_completed = 0, // The number of step events executed in the current block
+ Stepper::accelerate_until, // The count at which to stop accelerating
+ Stepper::decelerate_after, // The count at which to start decelerating
+ Stepper::step_event_count; // The total event count for the current block
+
+#if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
+ uint8_t Stepper::stepper_extruder;
+#else
+ constexpr uint8_t Stepper::stepper_extruder;
+#endif
+
+#if ENABLED(S_CURVE_ACCELERATION)
+ int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
+ int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
+ int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
+ uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
+ uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
+ #ifdef __AVR__
+ bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
+ #endif
+ bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
+#endif
+
+#if ENABLED(LIN_ADVANCE)
+
+ uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
+ Stepper::LA_isr_rate = LA_ADV_NEVER;
+ uint16_t Stepper::LA_current_adv_steps = 0,
+ Stepper::LA_final_adv_steps,
+ Stepper::LA_max_adv_steps;
+
+ int8_t Stepper::LA_steps = 0;
+
+ bool Stepper::LA_use_advance_lead;
+
+#endif // LIN_ADVANCE
+
+#if ENABLED(INTEGRATED_BABYSTEPPING)
+ uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
+#endif
+
+#if ENABLED(DIRECT_STEPPING)
+ page_step_state_t Stepper::page_step_state;
+#endif
+
+int32_t Stepper::ticks_nominal = -1;
+#if DISABLED(S_CURVE_ACCELERATION)
+ uint32_t Stepper::acc_step_rate; // needed for deceleration start point
+#endif
+
+xyz_long_t Stepper::endstops_trigsteps;
+xyze_long_t Stepper::count_position{0};
+xyze_int8_t Stepper::count_direction{0};
+
+#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+ Stepper::stepper_laser_t Stepper::laser_trap = {
+ .enabled = false,
+ .cur_power = 0,
+ .cruise_set = false,
+ #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ .last_step_count = 0,
+ .acc_step_count = 0
+ #else
+ .till_update = 0
+ #endif
+ };
+#endif
+
+#define DUAL_ENDSTOP_APPLY_STEP(A,V) \
+ if (separate_multi_axis) { \
+ if (A##_HOME_DIR < 0) { \
+ if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ } \
+ else { \
+ if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ } \
+ } \
+ else { \
+ A##_STEP_WRITE(V); \
+ A##2_STEP_WRITE(V); \
+ }
+
+#define DUAL_SEPARATE_APPLY_STEP(A,V) \
+ if (separate_multi_axis) { \
+ if (!locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ } \
+ else { \
+ A##_STEP_WRITE(V); \
+ A##2_STEP_WRITE(V); \
+ }
+
+#define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
+ if (separate_multi_axis) { \
+ if (A##_HOME_DIR < 0) { \
+ if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
+ } \
+ else { \
+ if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
+ } \
+ } \
+ else { \
+ A##_STEP_WRITE(V); \
+ A##2_STEP_WRITE(V); \
+ A##3_STEP_WRITE(V); \
+ }
+
+#define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
+ if (separate_multi_axis) { \
+ if (!locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
+ } \
+ else { \
+ A##_STEP_WRITE(V); \
+ A##2_STEP_WRITE(V); \
+ A##3_STEP_WRITE(V); \
+ }
+
+#define QUAD_ENDSTOP_APPLY_STEP(A,V) \
+ if (separate_multi_axis) { \
+ if (A##_HOME_DIR < 0) { \
+ if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##4_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \
+ } \
+ else { \
+ if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \
+ if (!(TEST(endstops.state(), A##4_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \
+ } \
+ } \
+ else { \
+ A##_STEP_WRITE(V); \
+ A##2_STEP_WRITE(V); \
+ A##3_STEP_WRITE(V); \
+ A##4_STEP_WRITE(V); \
+ }
+
+#define QUAD_SEPARATE_APPLY_STEP(A,V) \
+ if (separate_multi_axis) { \
+ if (!locked_##A##_motor) A##_STEP_WRITE(V); \
+ if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
+ if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
+ if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
+ } \
+ else { \
+ A##_STEP_WRITE(V); \
+ A##2_STEP_WRITE(V); \
+ A##3_STEP_WRITE(V); \
+ A##4_STEP_WRITE(V); \
+ }
+
+#if ENABLED(X_DUAL_STEPPER_DRIVERS)
+ #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
+ #if ENABLED(X_DUAL_ENDSTOPS)
+ #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
+ #else
+ #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
+ #endif
+#elif ENABLED(DUAL_X_CARRIAGE)
+ #define X_APPLY_DIR(v,ALWAYS) do{ \
+ if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
+ else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
+ }while(0)
+ #define X_APPLY_STEP(v,ALWAYS) do{ \
+ if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
+ else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
+ }while(0)
+#else
+ #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
+ #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
+#endif
+
+#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
+ #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
+ #if ENABLED(Y_DUAL_ENDSTOPS)
+ #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
+ #else
+ #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
+ #endif
+#else
+ #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
+ #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
+#endif
+
+#if NUM_Z_STEPPER_DRIVERS == 4
+ #define Z_APPLY_DIR(v,Q) do{ \
+ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
+ Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
+ }while(0)
+ #if ENABLED(Z_MULTI_ENDSTOPS)
+ #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
+ #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
+ #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
+ #else
+ #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
+ #endif
+#elif NUM_Z_STEPPER_DRIVERS == 3
+ #define Z_APPLY_DIR(v,Q) do{ \
+ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
+ }while(0)
+ #if ENABLED(Z_MULTI_ENDSTOPS)
+ #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
+ #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
+ #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
+ #else
+ #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
+ #endif
+#elif NUM_Z_STEPPER_DRIVERS == 2
+ #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
+ #if ENABLED(Z_MULTI_ENDSTOPS)
+ #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
+ #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
+ #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
+ #else
+ #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
+ #endif
+#else
+ #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
+ #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
+#endif
+
+#if DISABLED(MIXING_EXTRUDER)
+ #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
+#endif
+
+#define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
+#define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
+
+// Round up when converting from ns to timer ticks
+#define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
+
+#define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
+
+#define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
+#define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
+
+#define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
+#define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(PULSE_TIMER_NUM))
+#define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(PULSE_TIMER_NUM) - start_pulse_count) { }
+#define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
+#define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
+#define START_LOW_PULSE() START_TIMED_PULSE(LOW)
+#define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
+
+#if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
+ #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
+#else
+ #define DIR_WAIT_BEFORE()
+#endif
+
+#if MINIMUM_STEPPER_POST_DIR_DELAY > 0
+ #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
+#else
+ #define DIR_WAIT_AFTER()
+#endif
+
+/**
+ * Set the stepper direction of each axis
+ *
+ * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
+ * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
+ * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
+ */
+void Stepper::set_directions() {
+
+ DIR_WAIT_BEFORE();
+
+ #define SET_STEP_DIR(A) \
+ if (motor_direction(_AXIS(A))) { \
+ A##_APPLY_DIR(INVERT_##A##_DIR, false); \
+ count_direction[_AXIS(A)] = -1; \
+ } \
+ else { \
+ A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
+ count_direction[_AXIS(A)] = 1; \
+ }
+
+ #if HAS_X_DIR
+ SET_STEP_DIR(X); // A
+ #endif
+ #if HAS_Y_DIR
+ SET_STEP_DIR(Y); // B
+ #endif
+ #if HAS_Z_DIR
+ SET_STEP_DIR(Z); // C
+ #endif
+
+ #if DISABLED(LIN_ADVANCE)
+ #if ENABLED(MIXING_EXTRUDER)
+ // Because this is valid for the whole block we don't know
+ // what e-steppers will step. Likely all. Set all.
+ if (motor_direction(E_AXIS)) {
+ MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
+ count_direction.e = -1;
+ }
+ else {
+ MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
+ count_direction.e = 1;
+ }
+ #else
+ if (motor_direction(E_AXIS)) {
+ REV_E_DIR(stepper_extruder);
+ count_direction.e = -1;
+ }
+ else {
+ NORM_E_DIR(stepper_extruder);
+ count_direction.e = 1;
+ }
+ #endif
+ #endif // !LIN_ADVANCE
+
+ #if HAS_L64XX
+ if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)
+ if (L64xxManager.spi_active) {
+ L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully
+ for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
+ L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs
+ L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command
+ L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
+ L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
+ }
+
+ // L64xxManager.dir_commands[] is an array that holds direction command for each stepper
+
+ // Scan command array, copy matches into L64xxManager.transfer
+ for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
+ L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];
+
+ L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers
+ }
+ #endif
+
+ DIR_WAIT_AFTER();
+}
+
+#if ENABLED(S_CURVE_ACCELERATION)
+ /**
+ * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
+ * a "linear pop" velocity curve; with pop being the sixth derivative of position:
+ * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
+ *
+ * The Bézier curve takes the form:
+ *
+ * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
+ *
+ * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
+ * through B_5(t) are the Bernstein basis as follows:
+ *
+ * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
+ * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
+ * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
+ * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
+ * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
+ * B_5(t) = t^5 = t^5
+ * ^ ^ ^ ^ ^ ^
+ * | | | | | |
+ * A B C D E F
+ *
+ * Unfortunately, we cannot use forward-differencing to calculate each position through
+ * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
+ *
+ * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
+ *
+ * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
+ * through t of the Bézier form of V(t), we can determine that:
+ *
+ * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
+ * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
+ * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
+ * D = 10*P_0 - 20*P_1 + 10*P_2
+ * E = - 5*P_0 + 5*P_1
+ * F = P_0
+ *
+ * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
+ * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
+ * which, after simplification, resolves to:
+ *
+ * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
+ * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
+ * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
+ * D = 0
+ * E = 0
+ * F = P_i
+ *
+ * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
+ * the Bézier curve at each point:
+ *
+ * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
+ *
+ * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
+ * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
+ * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
+ * overflows on the evaluation of the Bézier curve, means we can use
+ *
+ * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
+ * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
+ * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
+ * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
+ * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
+ *
+ * The trapezoid generator state contains the following information, that we will use to create and evaluate
+ * the Bézier curve:
+ *
+ * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
+ * blk->initial_rate [VI] = The initial steps per second (=velocity)
+ * blk->final_rate [VF] = The ending steps per second (=velocity)
+ * and the count of events completed (step_events_completed) [CS] (=distance until now)
+ *
+ * Note the abbreviations we use in the following formulae are between []s
+ *
+ * For Any 32bit CPU:
+ *
+ * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
+ *
+ * A = 6*128*(VF - VI) = 768*(VF - VI)
+ * B = 15*128*(VI - VF) = 1920*(VI - VF)
+ * C = 10*128*(VF - VI) = 1280*(VF - VI)
+ * F = 128*VI = 128*VI
+ * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
+ *
+ * And for each point, evaluate the curve with the following sequence:
+ *
+ * void lsrs(uint32_t& d, uint32_t s, int cnt) {
+ * d = s >> cnt;
+ * }
+ * void lsls(uint32_t& d, uint32_t s, int cnt) {
+ * d = s << cnt;
+ * }
+ * void lsrs(int32_t& d, uint32_t s, int cnt) {
+ * d = uint32_t(s) >> cnt;
+ * }
+ * void lsls(int32_t& d, uint32_t s, int cnt) {
+ * d = uint32_t(s) << cnt;
+ * }
+ * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
+ * uint64_t res = uint64_t(op1) * op2;
+ * rlo = uint32_t(res & 0xFFFFFFFF);
+ * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
+ * }
+ * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
+ * int64_t mul = int64_t(op1) * op2;
+ * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
+ * mul += s;
+ * rlo = int32_t(mul & 0xFFFFFFFF);
+ * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
+ * }
+ * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
+ * uint32_t flo = 0;
+ * uint32_t fhi = bezier_AV * curr_step;
+ * uint32_t t = fhi;
+ * int32_t alo = bezier_F;
+ * int32_t ahi = 0;
+ * int32_t A = bezier_A;
+ * int32_t B = bezier_B;
+ * int32_t C = bezier_C;
+ *
+ * lsrs(ahi, alo, 1); // a = F << 31
+ * lsls(alo, alo, 31); //
+ * umull(flo, fhi, fhi, t); // f *= t
+ * umull(flo, fhi, fhi, t); // f>>=32; f*=t
+ * lsrs(flo, fhi, 1); //
+ * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
+ * umull(flo, fhi, fhi, t); // f>>=32; f*=t
+ * lsrs(flo, fhi, 1); //
+ * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
+ * umull(flo, fhi, fhi, t); // f>>=32; f*=t
+ * lsrs(flo, fhi, 1); // f>>=33;
+ * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
+ * lsrs(alo, ahi, 6); // a>>=38
+ *
+ * return alo;
+ * }
+ *
+ * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
+ *
+ * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
+ * Let's reduce precision as much as possible. After some experimentation we found that:
+ *
+ * Assume t and AV with 24 bits is enough
+ * A = 6*(VF - VI)
+ * B = 15*(VI - VF)
+ * C = 10*(VF - VI)
+ * F = VI
+ * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
+ *
+ * Instead of storing sign for each coefficient, we will store its absolute value,
+ * and flag the sign of the A coefficient, so we can save to store the sign bit.
+ * It always holds that sign(A) = - sign(B) = sign(C)
+ *
+ * So, the resulting range of the coefficients are:
+ *
+ * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
+ * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
+ * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
+ * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
+ * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
+ *
+ * And for each curve, estimate its coefficients with:
+ *
+ * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
+ * // Calculate the Bézier coefficients
+ * if (v1 < v0) {
+ * A_negative = true;
+ * bezier_A = 6 * (v0 - v1);
+ * bezier_B = 15 * (v0 - v1);
+ * bezier_C = 10 * (v0 - v1);
+ * }
+ * else {
+ * A_negative = false;
+ * bezier_A = 6 * (v1 - v0);
+ * bezier_B = 15 * (v1 - v0);
+ * bezier_C = 10 * (v1 - v0);
+ * }
+ * bezier_F = v0;
+ * }
+ *
+ * And for each point, evaluate the curve with the following sequence:
+ *
+ * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
+ * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
+ * r = (uint64_t(op1) * op2) >> 8;
+ * }
+ * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
+ * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
+ * r = (uint32_t(op1) * op2) >> 16;
+ * }
+ * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
+ * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
+ * r = uint24_t((uint64_t(op1) * op2) >> 16);
+ * }
+ *
+ * int32_t _eval_bezier_curve(uint32_t curr_step) {
+ * // To save computing, the first step is always the initial speed
+ * if (!curr_step)
+ * return bezier_F;
+ *
+ * uint16_t t;
+ * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
+ * uint16_t f = t;
+ * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
+ * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
+ * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
+ * if (A_negative) {
+ * uint24_t v;
+ * umul16x24to24hi(v, f, bezier_C); // Range 21bits
+ * acc -= v;
+ * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
+ * umul16x24to24hi(v, f, bezier_B); // Range 22bits
+ * acc += v;
+ * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
+ * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
+ * acc -= v;
+ * }
+ * else {
+ * uint24_t v;
+ * umul16x24to24hi(v, f, bezier_C); // Range 21bits
+ * acc += v;
+ * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
+ * umul16x24to24hi(v, f, bezier_B); // Range 22bits
+ * acc -= v;
+ * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
+ * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
+ * acc += v;
+ * }
+ * return acc;
+ * }
+ * These functions are translated to assembler for optimal performance.
+ * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
+ */
+
+ #ifdef __AVR__
+
+ // For AVR we use assembly to maximize speed
+ void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
+
+ // Store advance
+ bezier_AV = av;
+
+ // Calculate the rest of the coefficients
+ uint8_t r2 = v0 & 0xFF;
+ uint8_t r3 = (v0 >> 8) & 0xFF;
+ uint8_t r12 = (v0 >> 16) & 0xFF;
+ uint8_t r5 = v1 & 0xFF;
+ uint8_t r6 = (v1 >> 8) & 0xFF;
+ uint8_t r7 = (v1 >> 16) & 0xFF;
+ uint8_t r4,r8,r9,r10,r11;
+
+ __asm__ __volatile__(
+ /* Calculate the Bézier coefficients */
+ /* %10:%1:%0 = v0*/
+ /* %5:%4:%3 = v1*/
+ /* %7:%6:%10 = temporary*/
+ /* %9 = val (must be high register!)*/
+ /* %10 (must be high register!)*/
+
+ /* Store initial velocity*/
+ A("sts bezier_F, %0")
+ A("sts bezier_F+1, %1")
+ A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
+
+ /* Get delta speed */
+ A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
+ A("clr %8") /* %8 = 0 */
+ A("sub %0,%3")
+ A("sbc %1,%4")
+ A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
+ A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
+
+ /* Result was negative, get the absolute value*/
+ A("com %10")
+ A("com %1")
+ A("neg %0")
+ A("sbc %1,%2")
+ A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
+ A("clr %2") /* %2 = 0, means A_negative = false */
+
+ /* Store negative flag*/
+ L("1")
+ A("sts A_negative, %2") /* Store negative flag */
+
+ /* Compute coefficients A,B and C [20 cycles worst case]*/
+ A("ldi %9,6") /* %9 = 6 */
+ A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
+ A("sts bezier_A, r0")
+ A("mov %6,r1")
+ A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
+ A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
+ A("add %6,r0")
+ A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
+ A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
+ A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
+ A("sts bezier_A+1, %6")
+ A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
+
+ A("ldi %9,15") /* %9 = 15 */
+ A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
+ A("sts bezier_B, r0")
+ A("mov %6,r1")
+ A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
+ A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
+ A("add %6,r0")
+ A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
+ A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
+ A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
+ A("sts bezier_B+1, %6")
+ A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
+
+ A("ldi %9,10") /* %9 = 10 */
+ A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
+ A("sts bezier_C, r0")
+ A("mov %6,r1")
+ A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
+ A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
+ A("add %6,r0")
+ A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
+ A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
+ A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
+ A("sts bezier_C+1, %6")
+ " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
+ : "+r" (r2),
+ "+d" (r3),
+ "=r" (r4),
+ "+r" (r5),
+ "+r" (r6),
+ "+r" (r7),
+ "=r" (r8),
+ "=r" (r9),
+ "=r" (r10),
+ "=d" (r11),
+ "+r" (r12)
+ :
+ : "r0", "r1", "cc", "memory"
+ );
+ }
+
+ FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
+
+ // If dealing with the first step, save expensive computing and return the initial speed
+ if (!curr_step)
+ return bezier_F;
+
+ uint8_t r0 = 0; /* Zero register */
+ uint8_t r2 = (curr_step) & 0xFF;
+ uint8_t r3 = (curr_step >> 8) & 0xFF;
+ uint8_t r4 = (curr_step >> 16) & 0xFF;
+ uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
+
+ __asm__ __volatile(
+ /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
+ A("lds %9,bezier_AV") /* %9 = LO(AV)*/
+ A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
+ A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
+ A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
+ A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
+ A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
+ A("add %7,r0")
+ A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
+ A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
+ A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
+ A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
+ A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
+ A("add %7,r0")
+ A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
+ A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
+ A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
+ A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
+ A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
+ /* %8:%7 = t*/
+
+ /* uint16_t f = t;*/
+ A("mov %5,%7") /* %6:%5 = f*/
+ A("mov %6,%8")
+ /* %6:%5 = f*/
+
+ /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
+ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
+ A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
+ A("clr %10") /* %10 = 0*/
+ A("clr %11") /* %11 = 0*/
+ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
+ A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
+ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
+ A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
+ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
+ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
+ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
+ A("mov %5,%10") /* %6:%5 = */
+ A("mov %6,%11") /* f = %10:%11*/
+
+ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
+ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
+ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+ A("clr %10") /* %10 = 0*/
+ A("clr %11") /* %11 = 0*/
+ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
+ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
+ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
+ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
+ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
+ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
+ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
+ A("mov %5,%10") /* %6:%5 =*/
+ A("mov %6,%11") /* f = %10:%11*/
+ /* [15 +17*2] = [49]*/
+
+ /* %4:%3:%2 will be acc from now on*/
+
+ /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
+ A("clr %9") /* "decimal place we get for free"*/
+ A("lds %2,bezier_F")
+ A("lds %3,bezier_F+1")
+ A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
+
+ /* if (A_negative) {*/
+ A("lds r0,A_negative")
+ A("or r0,%0") /* Is flag signalling negative? */
+ A("brne 3f") /* If yes, Skip next instruction if A was negative*/
+ A("rjmp 1f") /* Otherwise, jump */
+
+ /* uint24_t v; */
+ /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
+ /* acc -= v; */
+ L("3")
+ A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
+ A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
+ A("sub %9,r1")
+ A("sbc %2,%0")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
+ A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
+ A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
+ A("sub %9,r0")
+ A("sbc %2,r1")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
+ A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
+ A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
+ A("sub %2,r0")
+ A("sbc %3,r1")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
+ A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
+ A("sub %9,r0")
+ A("sbc %2,r1")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
+ A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
+ A("sub %2,r0")
+ A("sbc %3,r1")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
+ A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
+ A("sub %3,r0")
+ A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
+
+ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
+ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
+ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+ A("clr %10") /* %10 = 0*/
+ A("clr %11") /* %11 = 0*/
+ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
+ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
+ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
+ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
+ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
+ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
+ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
+ A("mov %5,%10") /* %6:%5 =*/
+ A("mov %6,%11") /* f = %10:%11*/
+
+ /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
+ /* acc += v; */
+ A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
+ A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
+ A("add %9,r1")
+ A("adc %2,%0")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
+ A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
+ A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
+ A("add %9,r0")
+ A("adc %2,r1")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
+ A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
+ A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
+ A("add %2,r0")
+ A("adc %3,r1")
+ A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
+ A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
+ A("add %9,r0")
+ A("adc %2,r1")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
+ A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
+ A("add %2,r0")
+ A("adc %3,r1")
+ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
+ A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
+ A("add %3,r0")
+ A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
+
+ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
+ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
+ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+ A("clr %10") /* %10 = 0*/
+ A("clr %11") /* %11 = 0*/
+ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
+ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
+ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
+ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
+ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
+ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
+ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
+ A("mov %5,%10") /* %6:%5 =*/
+ A("mov %6,%11") /* f = %10:%11*/
+
+ /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
+ /* acc -= v; */
+ A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
+ A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
+ A("sub %9,r1")
+ A("sbc %2,%0")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
+ A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
+ A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
+ A("sub %9,r0")
+ A("sbc %2,r1")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
+ A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
+ A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
+ A("sub %2,r0")
+ A("sbc %3,r1")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
+ A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
+ A("sub %9,r0")
+ A("sbc %2,r1")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
+ A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
+ A("sub %2,r0")
+ A("sbc %3,r1")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
+ A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
+ A("sub %3,r0")
+ A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
+ A("jmp 2f") /* Done!*/
+
+ L("1")
+
+ /* uint24_t v; */
+ /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
+ /* acc += v; */
+ A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
+ A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
+ A("add %9,r1")
+ A("adc %2,%0")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
+ A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
+ A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
+ A("add %9,r0")
+ A("adc %2,r1")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
+ A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
+ A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
+ A("add %2,r0")
+ A("adc %3,r1")
+ A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
+ A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
+ A("add %9,r0")
+ A("adc %2,r1")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
+ A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
+ A("add %2,r0")
+ A("adc %3,r1")
+ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
+ A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
+ A("add %3,r0")
+ A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
+
+ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
+ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
+ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+ A("clr %10") /* %10 = 0*/
+ A("clr %11") /* %11 = 0*/
+ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
+ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
+ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
+ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
+ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
+ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
+ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
+ A("mov %5,%10") /* %6:%5 =*/
+ A("mov %6,%11") /* f = %10:%11*/
+
+ /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
+ /* acc -= v;*/
+ A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
+ A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
+ A("sub %9,r1")
+ A("sbc %2,%0")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
+ A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
+ A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
+ A("sub %9,r0")
+ A("sbc %2,r1")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
+ A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
+ A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
+ A("sub %2,r0")
+ A("sbc %3,r1")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
+ A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
+ A("sub %9,r0")
+ A("sbc %2,r1")
+ A("sbc %3,%0")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
+ A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
+ A("sub %2,r0")
+ A("sbc %3,r1")
+ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
+ A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
+ A("sub %3,r0")
+ A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
+
+ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
+ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
+ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+ A("clr %10") /* %10 = 0*/
+ A("clr %11") /* %11 = 0*/
+ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
+ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
+ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
+ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
+ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
+ A("adc %11,%0") /* %11 += carry*/
+ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
+ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
+ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
+ A("mov %5,%10") /* %6:%5 =*/
+ A("mov %6,%11") /* f = %10:%11*/
+
+ /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
+ /* acc += v; */
+ A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
+ A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
+ A("add %9,r1")
+ A("adc %2,%0")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
+ A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
+ A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
+ A("add %9,r0")
+ A("adc %2,r1")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
+ A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
+ A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
+ A("add %2,r0")
+ A("adc %3,r1")
+ A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
+ A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
+ A("add %9,r0")
+ A("adc %2,r1")
+ A("adc %3,%0")
+ A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
+ A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
+ A("add %2,r0")
+ A("adc %3,r1")
+ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
+ A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
+ A("add %3,r0")
+ A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
+ L("2")
+ " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
+ : "+r"(r0),
+ "+r"(r1),
+ "+r"(r2),
+ "+r"(r3),
+ "+r"(r4),
+ "+r"(r5),
+ "+r"(r6),
+ "+r"(r7),
+ "+r"(r8),
+ "+r"(r9),
+ "+r"(r10),
+ "+r"(r11)
+ :
+ :"cc","r0","r1"
+ );
+ return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
+ }
+
+ #else
+
+ // For all the other 32bit CPUs
+ FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
+ // Calculate the Bézier coefficients
+ bezier_A = 768 * (v1 - v0);
+ bezier_B = 1920 * (v0 - v1);
+ bezier_C = 1280 * (v1 - v0);
+ bezier_F = 128 * v0;
+ bezier_AV = av;
+ }
+
+ FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
+ #if defined(__arm__) || defined(__thumb__)
+
+ // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
+ uint32_t flo = 0;
+ uint32_t fhi = bezier_AV * curr_step;
+ uint32_t t = fhi;
+ int32_t alo = bezier_F;
+ int32_t ahi = 0;
+ int32_t A = bezier_A;
+ int32_t B = bezier_B;
+ int32_t C = bezier_C;
+
+ __asm__ __volatile__(
+ ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
+ A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
+ A("lsls %[alo],%[alo],#31") // 1 cycles
+ A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
+ A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
+ A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
+ A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
+ A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
+ A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
+ A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
+ A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
+ A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
+ A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
+ A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
+ : [alo]"+r"( alo ) ,
+ [flo]"+r"( flo ) ,
+ [fhi]"+r"( fhi ) ,
+ [ahi]"+r"( ahi ) ,
+ [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
+ [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
+ [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
+ [t]"+r"( t ) // we list all registers as input-outputs.
+ :
+ : "cc"
+ );
+ return alo;
+
+ #else
+
+ // For non ARM targets, we provide a fallback implementation. Really doubt it
+ // will be useful, unless the processor is fast and 32bit
+
+ uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
+ uint64_t f = t;
+ f *= t; // Range 32*2 = 64 bits (unsigned)
+ f >>= 32; // Range 32 bits (unsigned)
+ f *= t; // Range 32*2 = 64 bits (unsigned)
+ f >>= 32; // Range 32 bits : f = t^3 (unsigned)
+ int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
+ acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
+ f *= t; // Range 32*2 = 64 bits
+ f >>= 32; // Range 32 bits : f = t^3 (unsigned)
+ acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
+ f *= t; // Range 32*2 = 64 bits
+ f >>= 32; // Range 32 bits : f = t^3 (unsigned)
+ acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
+ acc >>= (31 + 7); // Range 24bits (plus sign)
+ return (int32_t) acc;
+
+ #endif
+ }
+ #endif
+#endif // S_CURVE_ACCELERATION
+
+/**
+ * Stepper Driver Interrupt
+ *
+ * Directly pulses the stepper motors at high frequency.
+ */
+
+HAL_STEP_TIMER_ISR() {
+ HAL_timer_isr_prologue(STEP_TIMER_NUM);
+
+ Stepper::isr();
+
+ HAL_timer_isr_epilogue(STEP_TIMER_NUM);
+}
+
+#ifdef CPU_32_BIT
+ #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
+#else
+ #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
+#endif
+
+#if ENABLED(MKS_TEST)
+ extern uint8_t mks_test_flag;
+#endif
+
+void Stepper::isr() {
+
+ static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
+
+ #ifndef __AVR__
+ // Disable interrupts, to avoid ISR preemption while we reprogram the period
+ // (AVR enters the ISR with global interrupts disabled, so no need to do it here)
+ DISABLE_ISRS();
+ #endif
+
+ // Program timer compare for the maximum period, so it does NOT
+ // flag an interrupt while this ISR is running - So changes from small
+ // periods to big periods are respected and the timer does not reset to 0
+ HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(HAL_TIMER_TYPE_MAX));
+
+ // Count of ticks for the next ISR
+ hal_timer_t next_isr_ticks = 0;
+
+ // Limit the amount of iterations
+ uint8_t max_loops = 10;
+
+ // We need this variable here to be able to use it in the following loop
+ hal_timer_t min_ticks;
+ do {
+ // Enable ISRs to reduce USART processing latency
+ ENABLE_ISRS();
+ #if ENABLED(MKS_TEST)
+ if(mks_test_flag == 0x1e) {
+ WRITE(X_STEP_PIN, HIGH);
+ WRITE(Y_STEP_PIN, HIGH);
+ WRITE(Z_STEP_PIN, HIGH);
+ WRITE(E0_STEP_PIN, HIGH);
+ #if !MB(MKS_ROBIN_E3P)
+ WRITE(E1_STEP_PIN, HIGH);
+ #endif
+ //WRITE(E2_STEP_PIN, HIGH);
+ }
+ #endif
+
+ if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
+
+ #if ENABLED(LIN_ADVANCE)
+ if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses
+ #endif
+
+ #if ENABLED(INTEGRATED_BABYSTEPPING)
+ const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
+ if (is_babystep) nextBabystepISR = babystepping_isr();
+ #endif
+
+ // ^== Time critical. NOTHING besides pulse generation should be above here!!!
+
+ if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
+
+ #if ENABLED(INTEGRATED_BABYSTEPPING)
+ if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
+ NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
+
+ if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
+ NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
+ #endif
+
+ // Get the interval to the next ISR call
+ const uint32_t interval = _MIN(
+ nextMainISR // Time until the next Pulse / Block phase
+ #if ENABLED(LIN_ADVANCE)
+ , nextAdvanceISR // Come back early for Linear Advance?
+ #endif
+ #if ENABLED(INTEGRATED_BABYSTEPPING)
+ , nextBabystepISR // Come back early for Babystepping?
+ #endif
+ , uint32_t(HAL_TIMER_TYPE_MAX) // Come back in a very long time
+ );
+
+ //
+ // Compute remaining time for each ISR phase
+ // NEVER : The phase is idle
+ // Zero : The phase will occur on the next ISR call
+ // Non-zero : The phase will occur on a future ISR call
+ //
+
+ nextMainISR -= interval;
+
+ #if ENABLED(LIN_ADVANCE)
+ if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
+ #endif
+
+ #if ENABLED(INTEGRATED_BABYSTEPPING)
+ if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
+ #endif
+
+ /**
+ * This needs to avoid a race-condition caused by interleaving
+ * of interrupts required by both the LA and Stepper algorithms.
+ *
+ * Assume the following tick times for stepper pulses:
+ * Stepper ISR (S): 1 1000 2000 3000 4000
+ * Linear Adv. (E): 10 1010 2010 3010 4010
+ *
+ * The current algorithm tries to interleave them, giving:
+ * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
+ *
+ * Ideal timing would yield these delta periods:
+ * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
+ *
+ * But, since each event must fire an ISR with a minimum duration, the
+ * minimum delta might be 900, so deltas under 900 get rounded up:
+ * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
+ *
+ * It works, but divides the speed of all motors by half, leading to a sudden
+ * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
+ * accounting for double/quad stepping, which makes it even worse).
+ */
+
+ // Compute the tick count for the next ISR
+ next_isr_ticks += interval;
+
+ /**
+ * The following section must be done with global interrupts disabled.
+ * We want nothing to interrupt it, as that could mess the calculations
+ * we do for the next value to program in the period register of the
+ * stepper timer and lead to skipped ISRs (if the value we happen to program
+ * is less than the current count due to something preempting between the
+ * read and the write of the new period value).
+ */
+ #if ENABLED(MKS_TEST)
+ if(mks_test_flag == 0x1e) {
+ WRITE(X_STEP_PIN, LOW);
+ WRITE(Y_STEP_PIN, LOW);
+ WRITE(Z_STEP_PIN, LOW);
+ WRITE(E0_STEP_PIN, LOW);
+ #if !MB(MKS_ROBIN_E3P)
+ WRITE(E1_STEP_PIN, LOW);
+ #endif
+ //WRITE(E2_STEP_PIN, LOW);
+ }
+ #endif
+ DISABLE_ISRS();
+
+ /**
+ * Get the current tick value + margin
+ * Assuming at least 6µs between calls to this ISR...
+ * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
+ * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
+ */
+ min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t(
+ #ifdef __AVR__
+ 8
+ #else
+ 1
+ #endif
+ * (STEPPER_TIMER_TICKS_PER_US)
+ );
+
+ /**
+ * NB: If for some reason the stepper monopolizes the MPU, eventually the
+ * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
+ * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
+ * timing, since the MCU isn't fast enough.
+ */
+ if (!--max_loops) next_isr_ticks = min_ticks;
+
+ // Advance pulses if not enough time to wait for the next ISR
+ } while (next_isr_ticks < min_ticks);
+
+ // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
+ // sure that the time has not arrived yet - Warrantied by the scheduler
+
+ // Set the next ISR to fire at the proper time
+ HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));
+
+ // Don't forget to finally reenable interrupts
+ ENABLE_ISRS();
+}
+
+#if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
+ #define ISR_PULSE_CONTROL 1
+#endif
+#if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
+ #define ISR_MULTI_STEPS 1
+#endif
+
+/**
+ * This phase of the ISR should ONLY create the pulses for the steppers.
+ * This prevents jitter caused by the interval between the start of the
+ * interrupt and the start of the pulses. DON'T add any logic ahead of the
+ * call to this method that might cause variation in the timing. The aim
+ * is to keep pulse timing as regular as possible.
+ */
+void Stepper::pulse_phase_isr() {
+
+ // If we must abort the current block, do so!
+ if (abort_current_block) {
+ abort_current_block = false;
+ if (current_block) discard_current_block();
+ }
+
+ // If there is no current block, do nothing
+ if (!current_block) return;
+
+ // Count of pending loops and events for this iteration
+ const uint32_t pending_events = step_event_count - step_events_completed;
+ uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
+
+ // Just update the value we will get at the end of the loop
+ step_events_completed += events_to_do;
+
+ // Take multiple steps per interrupt (For high speed moves)
+ #if ISR_MULTI_STEPS
+ bool firstStep = true;
+ USING_TIMED_PULSE();
+ #endif
+ xyze_bool_t step_needed{0};
+
+ do {
+ #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
+ #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
+
+ // Determine if a pulse is needed using Bresenham
+ #define PULSE_PREP(AXIS) do{ \
+ delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
+ step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
+ if (step_needed[_AXIS(AXIS)]) { \
+ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
+ delta_error[_AXIS(AXIS)] -= advance_divisor; \
+ } \
+ }while(0)
+
+ // Start an active pulse if needed
+ #define PULSE_START(AXIS) do{ \
+ if (step_needed[_AXIS(AXIS)]) { \
+ _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
+ } \
+ }while(0)
+
+ // Stop an active pulse if needed
+ #define PULSE_STOP(AXIS) do { \
+ if (step_needed[_AXIS(AXIS)]) { \
+ _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
+ } \
+ }while(0)
+
+ // Direct Stepping page?
+ const bool is_page = IS_PAGE(current_block);
+
+ #if ENABLED(DIRECT_STEPPING)
+
+ if (is_page) {
+
+ #if STEPPER_PAGE_FORMAT == SP_4x4D_128
+
+ #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
+ if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
+ else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
+ page_step_state.sd[_AXIS(AXIS)] = VALUE; \
+ page_step_state.bd[_AXIS(AXIS)] += VALUE; \
+ }while(0)
+
+ #define PAGE_PULSE_PREP(AXIS) do{ \
+ step_needed[_AXIS(AXIS)] = \
+ pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
+ }while(0)
+
+ switch (page_step_state.segment_steps) {
+ case DirectStepping::Config::SEGMENT_STEPS:
+ page_step_state.segment_idx += 2;
+ page_step_state.segment_steps = 0;
+ // fallthru
+ case 0: {
+ const uint8_t low = page_step_state.page[page_step_state.segment_idx],
+ high = page_step_state.page[page_step_state.segment_idx + 1];
+ uint8_t dm = last_direction_bits;
+
+ PAGE_SEGMENT_UPDATE(X, low >> 4);
+ PAGE_SEGMENT_UPDATE(Y, low & 0xF);
+ PAGE_SEGMENT_UPDATE(Z, high >> 4);
+ PAGE_SEGMENT_UPDATE(E, high & 0xF);
+
+ if (dm != last_direction_bits)
+ set_directions(dm);
+
+ } break;
+
+ default: break;
+ }
+
+ PAGE_PULSE_PREP(X);
+ PAGE_PULSE_PREP(Y);
+ PAGE_PULSE_PREP(Z);
+ PAGE_PULSE_PREP(E);
+
+ page_step_state.segment_steps++;
+
+ #elif STEPPER_PAGE_FORMAT == SP_4x2_256
+
+ #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
+ page_step_state.sd[_AXIS(AXIS)] = VALUE; \
+ page_step_state.bd[_AXIS(AXIS)] += VALUE;
+
+ #define PAGE_PULSE_PREP(AXIS) do{ \
+ step_needed[_AXIS(AXIS)] = \
+ pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
+ }while(0)
+
+ switch (page_step_state.segment_steps) {
+ case DirectStepping::Config::SEGMENT_STEPS:
+ page_step_state.segment_idx++;
+ page_step_state.segment_steps = 0;
+ // fallthru
+ case 0: {
+ const uint8_t b = page_step_state.page[page_step_state.segment_idx];
+ PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
+ PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
+ PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
+ PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
+ } break;
+ default: break;
+ }
+
+ PAGE_PULSE_PREP(X);
+ PAGE_PULSE_PREP(Y);
+ PAGE_PULSE_PREP(Z);
+ PAGE_PULSE_PREP(E);
+
+ page_step_state.segment_steps++;
+
+ #elif STEPPER_PAGE_FORMAT == SP_4x1_512
+
+ #define PAGE_PULSE_PREP(AXIS, BITS) do{ \
+ step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
+ if (step_needed[_AXIS(AXIS)]) \
+ page_step_state.bd[_AXIS(AXIS)]++; \
+ }while(0)
+
+ uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
+ if (page_step_state.segment_idx & 0x1) steps >>= 4;
+
+ PAGE_PULSE_PREP(X, 3);
+ PAGE_PULSE_PREP(Y, 2);
+ PAGE_PULSE_PREP(Z, 1);
+ PAGE_PULSE_PREP(E, 0);
+
+ page_step_state.segment_idx++;
+
+ #else
+ #error "Unknown direct stepping page format!"
+ #endif
+ }
+
+ #endif // DIRECT_STEPPING
+
+ if (!is_page) {
+ // Determine if pulses are needed
+ #if HAS_X_STEP
+ PULSE_PREP(X);
+ #endif
+ #if HAS_Y_STEP
+ PULSE_PREP(Y);
+ #endif
+ #if HAS_Z_STEP
+ PULSE_PREP(Z);
+ #endif
+
+ #if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)
+ delta_error.e += advance_dividend.e;
+ if (delta_error.e >= 0) {
+ count_position.e += count_direction.e;
+ #if ENABLED(LIN_ADVANCE)
+ delta_error.e -= advance_divisor;
+ // Don't step E here - But remember the number of steps to perform
+ motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
+ #else
+ step_needed.e = true;
+ #endif
+ }
+ #elif HAS_E0_STEP
+ PULSE_PREP(E);
+ #endif
+ }
+
+ #if ISR_MULTI_STEPS
+ if (firstStep)
+ firstStep = false;
+ else
+ AWAIT_LOW_PULSE();
+ #endif
+
+ // Pulse start
+ #if HAS_X_STEP
+ PULSE_START(X);
+ #endif
+ #if HAS_Y_STEP
+ PULSE_START(Y);
+ #endif
+ #if HAS_Z_STEP
+ PULSE_START(Z);
+ #endif
+
+ #if DISABLED(LIN_ADVANCE)
+ #if ENABLED(MIXING_EXTRUDER)
+ if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
+ #elif HAS_E0_STEP
+ PULSE_START(E);
+ #endif
+ #endif
+
+ #if ENABLED(I2S_STEPPER_STREAM)
+ i2s_push_sample();
+ #endif
+
+ // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
+ #if ISR_MULTI_STEPS
+ START_HIGH_PULSE();
+ AWAIT_HIGH_PULSE();
+ #endif
+
+ // Pulse stop
+ #if HAS_X_STEP
+ PULSE_STOP(X);
+ #endif
+ #if HAS_Y_STEP
+ PULSE_STOP(Y);
+ #endif
+ #if HAS_Z_STEP
+ PULSE_STOP(Z);
+ #endif
+
+ #if DISABLED(LIN_ADVANCE)
+ #if ENABLED(MIXING_EXTRUDER)
+ if (delta_error.e >= 0) {
+ delta_error.e -= advance_divisor;
+ E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
+ }
+ #elif HAS_E0_STEP
+ PULSE_STOP(E);
+ #endif
+ #endif
+
+ #if ISR_MULTI_STEPS
+ if (events_to_do) START_LOW_PULSE();
+ #endif
+
+ } while (--events_to_do);
+}
+
+// This is the last half of the stepper interrupt: This one processes and
+// properly schedules blocks from the planner. This is executed after creating
+// the step pulses, so it is not time critical, as pulses are already done.
+
+uint32_t Stepper::block_phase_isr() {
+
+ // If no queued movements, just wait 1ms for the next block
+ uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
+
+ // If there is a current block
+ if (current_block) {
+
+ // If current block is finished, reset pointer and finalize state
+ if (step_events_completed >= step_event_count) {
+ #if ENABLED(DIRECT_STEPPING)
+ #if STEPPER_PAGE_FORMAT == SP_4x4D_128
+ #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
+ count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
+ #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
+ #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
+ count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
+ #endif
+
+ if (IS_PAGE(current_block)) {
+ PAGE_SEGMENT_UPDATE_POS(X);
+ PAGE_SEGMENT_UPDATE_POS(Y);
+ PAGE_SEGMENT_UPDATE_POS(Z);
+ PAGE_SEGMENT_UPDATE_POS(E);
+ }
+ #endif
+ TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
+ discard_current_block();
+ }
+ else {
+ // Step events not completed yet...
+
+ // Are we in acceleration phase ?
+ if (step_events_completed <= accelerate_until) { // Calculate new timer value
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ // Get the next speed to use (Jerk limited!)
+ uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
+ ? _eval_bezier_curve(acceleration_time)
+ : current_block->cruise_rate;
+ #else
+ acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
+ NOMORE(acc_step_rate, current_block->nominal_rate);
+ #endif
+
+ // acc_step_rate is in steps/second
+
+ // step_rate to timer interval and steps per stepper isr
+ interval = calc_timer_interval(acc_step_rate, &steps_per_isr);
+ acceleration_time += interval;
+
+ #if ENABLED(LIN_ADVANCE)
+ if (LA_use_advance_lead) {
+ // Fire ISR if final adv_rate is reached
+ if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
+ }
+ else if (LA_steps) nextAdvanceISR = 0;
+ #endif
+
+ // Update laser - Accelerating
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+ if (laser_trap.enabled) {
+ #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ if (current_block->laser.entry_per) {
+ laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
+ laser_trap.last_step_count = step_events_completed;
+
+ // Should be faster than a divide, since this should trip just once
+ if (laser_trap.acc_step_count < 0) {
+ while (laser_trap.acc_step_count < 0) {
+ laser_trap.acc_step_count += current_block->laser.entry_per;
+ if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;
+ }
+ cutter.set_ocr_power(laser_trap.cur_power);
+ }
+ }
+ #else
+ if (laser_trap.till_update)
+ laser_trap.till_update--;
+ else {
+ laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
+ laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
+ cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
+ }
+ #endif
+ }
+ #endif
+ }
+ // Are we in Deceleration phase ?
+ else if (step_events_completed > decelerate_after) {
+ uint32_t step_rate;
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ // If this is the 1st time we process the 2nd half of the trapezoid...
+ if (!bezier_2nd_half) {
+ // Initialize the Bézier speed curve
+ _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
+ bezier_2nd_half = true;
+ // The first point starts at cruise rate. Just save evaluation of the Bézier curve
+ step_rate = current_block->cruise_rate;
+ }
+ else {
+ // Calculate the next speed to use
+ step_rate = deceleration_time < current_block->deceleration_time
+ ? _eval_bezier_curve(deceleration_time)
+ : current_block->final_rate;
+ }
+ #else
+
+ // Using the old trapezoidal control
+ step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
+ if (step_rate < acc_step_rate) { // Still decelerating?
+ step_rate = acc_step_rate - step_rate;
+ NOLESS(step_rate, current_block->final_rate);
+ }
+ else
+ step_rate = current_block->final_rate;
+ #endif
+
+ // step_rate is in steps/second
+
+ // step_rate to timer interval and steps per stepper isr
+ interval = calc_timer_interval(step_rate, &steps_per_isr);
+ deceleration_time += interval;
+
+ #if ENABLED(LIN_ADVANCE)
+ if (LA_use_advance_lead) {
+ // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
+ if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
+ initiateLA();
+ LA_isr_rate = current_block->advance_speed;
+ }
+ }
+ else if (LA_steps) nextAdvanceISR = 0;
+ #endif // LIN_ADVANCE
+
+ // Update laser - Decelerating
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+ if (laser_trap.enabled) {
+ #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ if (current_block->laser.exit_per) {
+ laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
+ laser_trap.last_step_count = step_events_completed;
+
+ // Should be faster than a divide, since this should trip just once
+ if (laser_trap.acc_step_count < 0) {
+ while (laser_trap.acc_step_count < 0) {
+ laser_trap.acc_step_count += current_block->laser.exit_per;
+ if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;
+ }
+ cutter.set_ocr_power(laser_trap.cur_power);
+ }
+ }
+ #else
+ if (laser_trap.till_update)
+ laser_trap.till_update--;
+ else {
+ laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
+ laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
+ cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
+ }
+ #endif
+ }
+ #endif
+ }
+ // Must be in cruise phase otherwise
+ else {
+
+ #if ENABLED(LIN_ADVANCE)
+ // If there are any esteps, fire the next advance_isr "now"
+ if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();
+ #endif
+
+ // Calculate the ticks_nominal for this nominal speed, if not done yet
+ if (ticks_nominal < 0) {
+ // step_rate to timer interval and loops for the nominal speed
+ ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);
+ }
+
+ // The timer interval is just the nominal value for the nominal speed
+ interval = ticks_nominal;
+
+ // Update laser - Cruising
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+ if (laser_trap.enabled) {
+ if (!laser_trap.cruise_set) {
+ laser_trap.cur_power = current_block->laser.power;
+ cutter.set_ocr_power(laser_trap.cur_power);
+ laser_trap.cruise_set = true;
+ }
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
+ #else
+ laser_trap.last_step_count = step_events_completed;
+ #endif
+ }
+ #endif
+ }
+ }
+ }
+
+ // If there is no current block at this point, attempt to pop one from the buffer
+ // and prepare its movement
+ if (!current_block) {
+
+ // Anything in the buffer?
+ if ((current_block = planner.get_current_block())) {
+
+ // Sync block? Sync the stepper counts and return
+ while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
+ _set_position(current_block->position);
+ discard_current_block();
+
+ // Try to get a new block
+ if (!(current_block = planner.get_current_block()))
+ return interval; // No more queued movements!
+ }
+
+ // For non-inline cutter, grossly apply power
+ #if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)
+ cutter.apply_power(current_block->cutter_power);
+ #endif
+
+ TERN_(POWER_LOSS_RECOVERY, recovery.info.sdpos = current_block->sdpos);
+
+ #if ENABLED(DIRECT_STEPPING)
+ if (IS_PAGE(current_block)) {
+ page_step_state.segment_steps = 0;
+ page_step_state.segment_idx = 0;
+ page_step_state.page = page_manager.get_page(current_block->page_idx);
+ page_step_state.bd.reset();
+
+ if (DirectStepping::Config::DIRECTIONAL)
+ current_block->direction_bits = last_direction_bits;
+
+ if (!page_step_state.page) {
+ discard_current_block();
+ return interval;
+ }
+ }
+ #endif
+
+ // Flag all moving axes for proper endstop handling
+
+ #if IS_CORE
+ // Define conditions for checking endstops
+ #define S_(N) current_block->steps[CORE_AXIS_##N]
+ #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
+ #endif
+
+ #if CORE_IS_XY || CORE_IS_XZ
+ /**
+ * Head direction in -X axis for CoreXY and CoreXZ bots.
+ *
+ * If steps differ, both axes are moving.
+ * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
+ * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
+ */
+ #if EITHER(COREXY, COREXZ)
+ #define X_CMP(A,B) ((A)==(B))
+ #else
+ #define X_CMP(A,B) ((A)!=(B))
+ #endif
+ #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
+ #elif ENABLED(MARKFORGED_XY)
+ #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
+ #else
+ #define X_MOVE_TEST !!current_block->steps.a
+ #endif
+
+ #if CORE_IS_XY || CORE_IS_YZ
+ /**
+ * Head direction in -Y axis for CoreXY / CoreYZ bots.
+ *
+ * If steps differ, both axes are moving
+ * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
+ * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
+ */
+ #if EITHER(COREYX, COREYZ)
+ #define Y_CMP(A,B) ((A)==(B))
+ #else
+ #define Y_CMP(A,B) ((A)!=(B))
+ #endif
+ #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
+ #else
+ #define Y_MOVE_TEST !!current_block->steps.b
+ #endif
+
+ #if CORE_IS_XZ || CORE_IS_YZ
+ /**
+ * Head direction in -Z axis for CoreXZ or CoreYZ bots.
+ *
+ * If steps differ, both axes are moving
+ * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
+ * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
+ */
+ #if EITHER(COREZX, COREZY)
+ #define Z_CMP(A,B) ((A)==(B))
+ #else
+ #define Z_CMP(A,B) ((A)!=(B))
+ #endif
+ #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
+ #else
+ #define Z_MOVE_TEST !!current_block->steps.c
+ #endif
+
+ uint8_t axis_bits = 0;
+ if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);
+ if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);
+ if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);
+ //if (!!current_block->steps.e) SBI(axis_bits, E_AXIS);
+ //if (!!current_block->steps.a) SBI(axis_bits, X_HEAD);
+ //if (!!current_block->steps.b) SBI(axis_bits, Y_HEAD);
+ //if (!!current_block->steps.c) SBI(axis_bits, Z_HEAD);
+ axis_did_move = axis_bits;
+
+ // No acceleration / deceleration time elapsed so far
+ acceleration_time = deceleration_time = 0;
+
+ #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
+ uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
+ // Decide if axis smoothing is possible
+ uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
+ while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
+ max_rate <<= 1; // Try to double the rate
+ if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
+ ++oversampling; // Increase the oversampling (used for left-shift)
+ }
+ oversampling_factor = oversampling; // For all timer interval calculations
+ #else
+ constexpr uint8_t oversampling = 0;
+ #endif
+
+ // Based on the oversampling factor, do the calculations
+ step_event_count = current_block->step_event_count << oversampling;
+
+ // Initialize Bresenham delta errors to 1/2
+ delta_error = -int32_t(step_event_count);
+
+ // Calculate Bresenham dividends and divisors
+ advance_dividend = current_block->steps << 1;
+ advance_divisor = step_event_count << 1;
+
+ // No step events completed so far
+ step_events_completed = 0;
+
+ // Compute the acceleration and deceleration points
+ accelerate_until = current_block->accelerate_until << oversampling;
+ decelerate_after = current_block->decelerate_after << oversampling;
+
+ #if ENABLED(MIXING_EXTRUDER)
+ MIXER_STEPPER_SETUP();
+ #endif
+
+ TERN_(HAS_MULTI_EXTRUDER, stepper_extruder = current_block->extruder);
+
+ // Initialize the trapezoid generator from the current block.
+ #if ENABLED(LIN_ADVANCE)
+ #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
+ // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
+ if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;
+ #endif
+
+ if ((LA_use_advance_lead = current_block->use_advance_lead)) {
+ LA_final_adv_steps = current_block->final_adv_steps;
+ LA_max_adv_steps = current_block->max_adv_steps;
+ initiateLA(); // Start the ISR
+ LA_isr_rate = current_block->advance_speed;
+ }
+ else LA_isr_rate = LA_ADV_NEVER;
+ #endif
+
+ if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips)
+ || ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
+ || current_block->direction_bits != last_direction_bits
+ || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
+ ) {
+ TERN_(HAS_MULTI_EXTRUDER, last_moved_extruder = stepper_extruder);
+ TERN_(HAS_L64XX, L64XX_OK_to_power_up = true);
+ set_directions(current_block->direction_bits);
+ }
+
+ #if ENABLED(LASER_POWER_INLINE)
+ const power_status_t stat = current_block->laser.status;
+ #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
+ laser_trap.enabled = stat.isPlanned && stat.isEnabled;
+ laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE
+ laser_trap.cruise_set = false;
+ #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
+ laser_trap.last_step_count = 0;
+ laser_trap.acc_step_count = current_block->laser.entry_per / 2;
+ #else
+ laser_trap.till_update = 0;
+ #endif
+ // Always have PWM in this case
+ if (stat.isPlanned) { // Planner controls the laser
+ cutter.set_ocr_power(
+ stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF
+ );
+ }
+ #else
+ if (stat.isPlanned) { // Planner controls the laser
+ #if ENABLED(SPINDLE_LASER_PWM)
+ cutter.set_ocr_power(
+ stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF
+ );
+ #else
+ cutter.set_enabled(stat.isEnabled);
+ #endif
+ }
+ #endif
+ #endif // LASER_POWER_INLINE
+
+ // At this point, we must ensure the movement about to execute isn't
+ // trying to force the head against a limit switch. If using interrupt-
+ // driven change detection, and already against a limit then no call to
+ // the endstop_triggered method will be done and the movement will be
+ // done against the endstop. So, check the limits here: If the movement
+ // is against the limits, the block will be marked as to be killed, and
+ // on the next call to this ISR, will be discarded.
+ endstops.update();
+
+ #if ENABLED(Z_LATE_ENABLE)
+ // If delayed Z enable, enable it now. This option will severely interfere with
+ // timing between pulses when chaining motion between blocks, and it could lead
+ // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
+ if (current_block->steps.z) ENABLE_AXIS_Z();
+ #endif
+
+ // Mark the time_nominal as not calculated yet
+ ticks_nominal = -1;
+
+ #if ENABLED(S_CURVE_ACCELERATION)
+ // Initialize the Bézier speed curve
+ _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
+ // We haven't started the 2nd half of the trapezoid
+ bezier_2nd_half = false;
+ #else
+ // Set as deceleration point the initial rate of the block
+ acc_step_rate = current_block->initial_rate;
+ #endif
+
+ // Calculate the initial timer interval
+ interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);
+ }
+ #if ENABLED(LASER_POWER_INLINE_CONTINUOUS)
+ else { // No new block found; so apply inline laser parameters
+ // This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed
+ const power_status_t stat = planner.laser_inline.status;
+ if (stat.isPlanned) { // Planner controls the laser
+ #if ENABLED(SPINDLE_LASER_PWM)
+ cutter.set_ocr_power(
+ stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF
+ );
+ #else
+ cutter.set_enabled(stat.isEnabled);
+ #endif
+ }
+ }
+ #endif
+ }
+
+ // Return the interval to wait
+ return interval;
+}
+
+#if ENABLED(LIN_ADVANCE)
+
+ // Timer interrupt for E. LA_steps is set in the main routine
+ uint32_t Stepper::advance_isr() {
+ uint32_t interval;
+
+ if (LA_use_advance_lead) {
+ if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
+ LA_steps--;
+ LA_current_adv_steps--;
+ interval = LA_isr_rate;
+ }
+ else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
+ LA_steps++;
+ LA_current_adv_steps++;
+ interval = LA_isr_rate;
+ }
+ else
+ interval = LA_isr_rate = LA_ADV_NEVER;
+ }
+ else
+ interval = LA_ADV_NEVER;
+
+ if (!LA_steps) return interval; // Leave pins alone if there are no steps!
+
+ DIR_WAIT_BEFORE();
+
+ #if ENABLED(MIXING_EXTRUDER)
+ // We don't know which steppers will be stepped because LA loop follows,
+ // with potentially multiple steps. Set all.
+ if (LA_steps > 0)
+ MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
+ else if (LA_steps < 0)
+ MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
+ #else
+ if (LA_steps > 0)
+ NORM_E_DIR(stepper_extruder);
+ else if (LA_steps < 0)
+ REV_E_DIR(stepper_extruder);
+ #endif
+
+ DIR_WAIT_AFTER();
+
+ //const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
+
+ // Step E stepper if we have steps
+ #if ISR_MULTI_STEPS
+ bool firstStep = true;
+ USING_TIMED_PULSE();
+ #endif
+
+ while (LA_steps) {
+ #if ISR_MULTI_STEPS
+ if (firstStep)
+ firstStep = false;
+ else
+ AWAIT_LOW_PULSE();
+ #endif
+
+ // Set the STEP pulse ON
+ #if ENABLED(MIXING_EXTRUDER)
+ E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
+ #else
+ E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);
+ #endif
+
+ // Enforce a minimum duration for STEP pulse ON
+ #if ISR_PULSE_CONTROL
+ START_HIGH_PULSE();
+ #endif
+
+ LA_steps < 0 ? ++LA_steps : --LA_steps;
+
+ #if ISR_PULSE_CONTROL
+ AWAIT_HIGH_PULSE();
+ #endif
+
+ // Set the STEP pulse OFF
+ #if ENABLED(MIXING_EXTRUDER)
+ E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
+ #else
+ E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);
+ #endif
+
+ // For minimum pulse time wait before looping
+ // Just wait for the requested pulse duration
+ #if ISR_PULSE_CONTROL
+ if (LA_steps) START_LOW_PULSE();
+ #endif
+ } // LA_steps
+
+ return interval;
+ }
+
+#endif // LIN_ADVANCE
+
+#if ENABLED(INTEGRATED_BABYSTEPPING)
+
+ // Timer interrupt for baby-stepping
+ uint32_t Stepper::babystepping_isr() {
+ babystep.task();
+ return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
+ }
+
+#endif
+
+// Check if the given block is busy or not - Must not be called from ISR contexts
+// The current_block could change in the middle of the read by an Stepper ISR, so
+// we must explicitly prevent that!
+bool Stepper::is_block_busy(const block_t* const block) {
+ #ifdef __AVR__
+ // A SW memory barrier, to ensure GCC does not overoptimize loops
+ #define sw_barrier() asm volatile("": : :"memory");
+
+ // Keep reading until 2 consecutive reads return the same value,
+ // meaning there was no update in-between caused by an interrupt.
+ // This works because stepper ISRs happen at a slower rate than
+ // successive reads of a variable, so 2 consecutive reads with
+ // the same value means no interrupt updated it.
+ block_t* vold, *vnew = current_block;
+ sw_barrier();
+ do {
+ vold = vnew;
+ vnew = current_block;
+ sw_barrier();
+ } while (vold != vnew);
+ #else
+ block_t *vnew = current_block;
+ #endif
+
+ // Return if the block is busy or not
+ return block == vnew;
+}
+
+void Stepper::init() {
+
+ #if MB(ALLIGATOR)
+ const float motor_current[] = MOTOR_CURRENT;
+ unsigned int digipot_motor = 0;
+ LOOP_L_N(i, 3 + EXTRUDERS) {
+ digipot_motor = 255 * (motor_current[i] / 2.5);
+ dac084s085::setValue(i, digipot_motor);
+ }
+ #endif
+
+ // Init Microstepping Pins
+ TERN_(HAS_MICROSTEPS, microstep_init());
+
+ // Init Dir Pins
+ TERN_(HAS_X_DIR, X_DIR_INIT());
+ TERN_(HAS_X2_DIR, X2_DIR_INIT());
+ #if HAS_Y_DIR
+ Y_DIR_INIT();
+ #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_DIR)
+ Y2_DIR_INIT();
+ #endif
+ #endif
+ #if HAS_Z_DIR
+ Z_DIR_INIT();
+ #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_DIR
+ Z2_DIR_INIT();
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_DIR
+ Z3_DIR_INIT();
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_DIR
+ Z4_DIR_INIT();
+ #endif
+ #endif
+ #if HAS_E0_DIR
+ E0_DIR_INIT();
+ #endif
+ #if HAS_E1_DIR
+ E1_DIR_INIT();
+ #endif
+ #if HAS_E2_DIR
+ E2_DIR_INIT();
+ #endif
+ #if HAS_E3_DIR
+ E3_DIR_INIT();
+ #endif
+ #if HAS_E4_DIR
+ E4_DIR_INIT();
+ #endif
+ #if HAS_E5_DIR
+ E5_DIR_INIT();
+ #endif
+ #if HAS_E6_DIR
+ E6_DIR_INIT();
+ #endif
+ #if HAS_E7_DIR
+ E7_DIR_INIT();
+ #endif
+
+ // Init Enable Pins - steppers default to disabled.
+ #if HAS_X_ENABLE
+ X_ENABLE_INIT();
+ if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
+ #if EITHER(DUAL_X_CARRIAGE, X_DUAL_STEPPER_DRIVERS) && HAS_X2_ENABLE
+ X2_ENABLE_INIT();
+ if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
+ #endif
+ #endif
+ #if HAS_Y_ENABLE
+ Y_ENABLE_INIT();
+ if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
+ #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_ENABLE)
+ Y2_ENABLE_INIT();
+ if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
+ #endif
+ #endif
+ #if HAS_Z_ENABLE
+ Z_ENABLE_INIT();
+ if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
+ #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_ENABLE
+ Z2_ENABLE_INIT();
+ if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_ENABLE
+ Z3_ENABLE_INIT();
+ if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_ENABLE
+ Z4_ENABLE_INIT();
+ if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
+ #endif
+ #endif
+ #if HAS_E0_ENABLE
+ E0_ENABLE_INIT();
+ if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E1_ENABLE
+ E1_ENABLE_INIT();
+ if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E2_ENABLE
+ E2_ENABLE_INIT();
+ if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E3_ENABLE
+ E3_ENABLE_INIT();
+ if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E4_ENABLE
+ E4_ENABLE_INIT();
+ if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E5_ENABLE
+ E5_ENABLE_INIT();
+ if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E6_ENABLE
+ E6_ENABLE_INIT();
+ if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
+ #endif
+ #if HAS_E7_ENABLE
+ E7_ENABLE_INIT();
+ if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
+ #endif
+
+ #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
+ #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
+ #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
+
+ #define AXIS_INIT(AXIS, PIN) \
+ _STEP_INIT(AXIS); \
+ _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
+ _DISABLE_AXIS(AXIS)
+
+ #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
+
+ // Init Step Pins
+ #if HAS_X_STEP
+ #if EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE)
+ X2_STEP_INIT();
+ X2_STEP_WRITE(INVERT_X_STEP_PIN);
+ #endif
+ AXIS_INIT(X, X);
+ #endif
+
+ #if HAS_Y_STEP
+ #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
+ Y2_STEP_INIT();
+ Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
+ #endif
+ AXIS_INIT(Y, Y);
+ #endif
+
+ #if HAS_Z_STEP
+ #if NUM_Z_STEPPER_DRIVERS >= 2
+ Z2_STEP_INIT();
+ Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 3
+ Z3_STEP_INIT();
+ Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
+ #endif
+ #if NUM_Z_STEPPER_DRIVERS >= 4
+ Z4_STEP_INIT();
+ Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
+ #endif
+ AXIS_INIT(Z, Z);
+ #endif
+
+ #if E_STEPPERS && HAS_E0_STEP
+ E_AXIS_INIT(0);
+ #endif
+ #if E_STEPPERS > 1 && HAS_E1_STEP
+ E_AXIS_INIT(1);
+ #endif
+ #if E_STEPPERS > 2 && HAS_E2_STEP
+ E_AXIS_INIT(2);
+ #endif
+ #if E_STEPPERS > 3 && HAS_E3_STEP
+ E_AXIS_INIT(3);
+ #endif
+ #if E_STEPPERS > 4 && HAS_E4_STEP
+ E_AXIS_INIT(4);
+ #endif
+ #if E_STEPPERS > 5 && HAS_E5_STEP
+ E_AXIS_INIT(5);
+ #endif
+ #if E_STEPPERS > 6 && HAS_E6_STEP
+ E_AXIS_INIT(6);
+ #endif
+ #if E_STEPPERS > 7 && HAS_E7_STEP
+ E_AXIS_INIT(7);
+ #endif
+
+ #if DISABLED(I2S_STEPPER_STREAM)
+ HAL_timer_start(STEP_TIMER_NUM, 122); // Init Stepper ISR to 122 Hz for quick starting
+ wake_up();
+ sei();
+ #endif
+
+ // Init direction bits for first moves
+ set_directions((INVERT_X_DIR ? _BV(X_AXIS) : 0)
+ | (INVERT_Y_DIR ? _BV(Y_AXIS) : 0)
+ | (INVERT_Z_DIR ? _BV(Z_AXIS) : 0));
+
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+ initialized = true;
+ digipot_init();
+ #endif
+}
+
+/**
+ * Set the stepper positions directly in steps
+ *
+ * The input is based on the typical per-axis XYZ steps.
+ * For CORE machines XYZ needs to be translated to ABC.
+ *
+ * This allows get_axis_position_mm to correctly
+ * derive the current XYZ position later on.
+ */
+void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
+ #if CORE_IS_XY
+ // corexy positioning
+ // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
+ count_position.set(a + b, CORESIGN(a - b), c);
+ #elif CORE_IS_XZ
+ // corexz planning
+ count_position.set(a + c, b, CORESIGN(a - c));
+ #elif CORE_IS_YZ
+ // coreyz planning
+ count_position.set(a, b + c, CORESIGN(b - c));
+ #elif ENABLED(MARKFORGED_XY)
+ count_position.set(a - b, b, c);
+ #else
+ // default non-h-bot planning
+ count_position.set(a, b, c);
+ #endif
+ count_position.e = e;
+}
+
+/**
+ * Get a stepper's position in steps.
+ */
+int32_t Stepper::position(const AxisEnum axis) {
+ #ifdef __AVR__
+ // Protect the access to the position. Only required for AVR, as
+ // any 32bit CPU offers atomic access to 32bit variables
+ const bool was_enabled = suspend();
+ #endif
+
+ const int32_t v = count_position[axis];
+
+ #ifdef __AVR__
+ // Reenable Stepper ISR
+ if (was_enabled) wake_up();
+ #endif
+ return v;
+}
+
+// Set the current position in steps
+void Stepper::set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
+ planner.synchronize();
+ const bool was_enabled = suspend();
+ _set_position(a, b, c, e);
+ if (was_enabled) wake_up();
+}
+
+void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
+ planner.synchronize();
+
+ #ifdef __AVR__
+ // Protect the access to the position. Only required for AVR, as
+ // any 32bit CPU offers atomic access to 32bit variables
+ const bool was_enabled = suspend();
+ #endif
+
+ count_position[a] = v;
+
+ #ifdef __AVR__
+ // Reenable Stepper ISR
+ if (was_enabled) wake_up();
+ #endif
+}
+
+// Signal endstops were triggered - This function can be called from
+// an ISR context (Temperature, Stepper or limits ISR), so we must
+// be very careful here. If the interrupt being preempted was the
+// Stepper ISR (this CAN happen with the endstop limits ISR) then
+// when the stepper ISR resumes, we must be very sure that the movement
+// is properly canceled
+void Stepper::endstop_triggered(const AxisEnum axis) {
+
+ const bool was_enabled = suspend();
+ endstops_trigsteps[axis] = (
+ #if IS_CORE
+ (axis == CORE_AXIS_2
+ ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
+ : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
+ ) * double(0.5)
+ #elif ENABLED(MARKFORGED_XY)
+ axis == CORE_AXIS_1
+ ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
+ : count_position[CORE_AXIS_2]
+ #else // !IS_CORE
+ count_position[axis]
+ #endif
+ );
+
+ // Discard the rest of the move if there is a current block
+ quick_stop();
+
+ if (was_enabled) wake_up();
+}
+
+int32_t Stepper::triggered_position(const AxisEnum axis) {
+ #ifdef __AVR__
+ // Protect the access to the position. Only required for AVR, as
+ // any 32bit CPU offers atomic access to 32bit variables
+ const bool was_enabled = suspend();
+ #endif
+
+ const int32_t v = endstops_trigsteps[axis];
+
+ #ifdef __AVR__
+ // Reenable Stepper ISR
+ if (was_enabled) wake_up();
+ #endif
+
+ return v;
+}
+
+void Stepper::report_a_position(const xyz_long_t &pos) {
+ #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, DELTA, IS_SCARA)
+ SERIAL_ECHOPAIR(STR_COUNT_A, pos.x, " B:", pos.y);
+ #else
+ SERIAL_ECHOPAIR_P(PSTR(STR_COUNT_X), pos.x, SP_Y_LBL, pos.y);
+ #endif
+ #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
+ SERIAL_ECHOLNPAIR(" C:", pos.z);
+ #else
+ SERIAL_ECHOLNPAIR_P(SP_Z_LBL, pos.z);
+ #endif
+}
+
+void Stepper::report_positions() {
+
+ #ifdef __AVR__
+ // Protect the access to the position.
+ const bool was_enabled = suspend();
+ #endif
+
+ const xyz_long_t pos = count_position;
+
+ #ifdef __AVR__
+ if (was_enabled) wake_up();
+ #endif
+
+ report_a_position(pos);
+}
+
+#if ENABLED(BABYSTEPPING)
+
+ #define _ENABLE_AXIS(AXIS) ENABLE_AXIS_## AXIS()
+ #define _READ_DIR(AXIS) AXIS ##_DIR_READ()
+ #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
+ #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
+
+ #if MINIMUM_STEPPER_PULSE
+ #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
+ #else
+ #define STEP_PULSE_CYCLES 0
+ #endif
+
+ #if ENABLED(DELTA)
+ #define CYCLES_EATEN_BABYSTEP (2 * 15)
+ #else
+ #define CYCLES_EATEN_BABYSTEP 0
+ #endif
+ #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
+
+ #if EXTRA_CYCLES_BABYSTEP > 20
+ #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)
+ #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
+ #else
+ #define _SAVE_START() NOOP
+ #if EXTRA_CYCLES_BABYSTEP > 0
+ #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
+ #elif ENABLED(DELTA)
+ #define _PULSE_WAIT() DELAY_US(2);
+ #elif STEP_PULSE_CYCLES > 0
+ #define _PULSE_WAIT() NOOP
+ #else
+ #define _PULSE_WAIT() DELAY_US(4);
+ #endif
+ #endif
+
+ #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
+ #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
+ #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
+ #else
+ #define EXTRA_DIR_WAIT_BEFORE()
+ #define EXTRA_DIR_WAIT_AFTER()
+ #endif
+
+ #if DISABLED(DELTA)
+
+ #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
+ const uint8_t old_dir = _READ_DIR(AXIS); \
+ _ENABLE_AXIS(AXIS); \
+ DIR_WAIT_BEFORE(); \
+ _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
+ DIR_WAIT_AFTER(); \
+ _SAVE_START(); \
+ _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
+ _PULSE_WAIT(); \
+ _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
+ EXTRA_DIR_WAIT_BEFORE(); \
+ _APPLY_DIR(AXIS, old_dir); \
+ EXTRA_DIR_WAIT_AFTER(); \
+ }while(0)
+
+ #endif
+
+ #if IS_CORE
+
+ #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
+ const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
+ _ENABLE_AXIS(A); _ENABLE_AXIS(B); \
+ DIR_WAIT_BEFORE(); \
+ _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
+ _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
+ DIR_WAIT_AFTER(); \
+ _SAVE_START(); \
+ _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
+ _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
+ _PULSE_WAIT(); \
+ _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
+ _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
+ EXTRA_DIR_WAIT_BEFORE(); \
+ _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
+ EXTRA_DIR_WAIT_AFTER(); \
+ }while(0)
+
+ #endif
+
+ // MUST ONLY BE CALLED BY AN ISR,
+ // No other ISR should ever interrupt this!
+ void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
+
+ #if DISABLED(INTEGRATED_BABYSTEPPING)
+ cli();
+ #endif
+
+ switch (axis) {
+
+ #if ENABLED(BABYSTEP_XY)
+
+ case X_AXIS:
+ #if CORE_IS_XY
+ BABYSTEP_CORE(X, Y, 0, direction, 0);
+ #elif CORE_IS_XZ
+ BABYSTEP_CORE(X, Z, 0, direction, 0);
+ #else
+ BABYSTEP_AXIS(X, 0, direction);
+ #endif
+ break;
+
+ case Y_AXIS:
+ #if CORE_IS_XY
+ BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
+ #elif CORE_IS_YZ
+ BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
+ #else
+ BABYSTEP_AXIS(Y, 0, direction);
+ #endif
+ break;
+
+ #endif
+
+ case Z_AXIS: {
+
+ #if CORE_IS_XZ
+ BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
+ #elif CORE_IS_YZ
+ BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
+ #elif DISABLED(DELTA)
+ BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
+
+ #else // DELTA
+
+ const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
+
+ ENABLE_AXIS_X();
+ ENABLE_AXIS_Y();
+ ENABLE_AXIS_Z();
+
+ DIR_WAIT_BEFORE();
+
+ const xyz_byte_t old_dir = { X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ() };
+
+ X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
+ Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
+ Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
+
+ DIR_WAIT_AFTER();
+
+ _SAVE_START();
+
+ X_STEP_WRITE(!INVERT_X_STEP_PIN);
+ Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
+ Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
+
+ _PULSE_WAIT();
+
+ X_STEP_WRITE(INVERT_X_STEP_PIN);
+ Y_STEP_WRITE(INVERT_Y_STEP_PIN);
+ Z_STEP_WRITE(INVERT_Z_STEP_PIN);
+
+ // Restore direction bits
+ EXTRA_DIR_WAIT_BEFORE();
+
+ X_DIR_WRITE(old_dir.x);
+ Y_DIR_WRITE(old_dir.y);
+ Z_DIR_WRITE(old_dir.z);
+
+ EXTRA_DIR_WAIT_AFTER();
+
+ #endif
+
+ } break;
+
+ default: break;
+ }
+
+ #if DISABLED(INTEGRATED_BABYSTEPPING)
+ sei();
+ #endif
+ }
+
+#endif // BABYSTEPPING
+
+/**
+ * Software-controlled Stepper Motor Current
+ */
+
+#if HAS_MOTOR_CURRENT_SPI
+
+ // From Arduino DigitalPotControl example
+ void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
+ WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
+ SPI.transfer(address); // Send the address and value via SPI
+ SPI.transfer(value);
+ WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
+ //delay(10);
+ }
+
+#endif // HAS_MOTOR_CURRENT_SPI
+
+#if HAS_MOTOR_CURRENT_PWM
+
+ void Stepper::refresh_motor_power() {
+ if (!initialized) return;
+ LOOP_L_N(i, COUNT(motor_current_setting)) {
+ switch (i) {
+ #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y)
+ case 0:
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
+ case 1:
+ #endif
+ #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
+ case 2:
+ #endif
+ set_digipot_current(i, motor_current_setting[i]);
+ default: break;
+ }
+ }
+ }
+
+#endif // HAS_MOTOR_CURRENT_PWM
+
+#if !MB(PRINTRBOARD_G2)
+
+ #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
+
+ void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
+ if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
+ motor_current_setting[driver] = current; // update motor_current_setting
+
+ if (!initialized) return;
+
+ #if HAS_MOTOR_CURRENT_SPI
+
+ //SERIAL_ECHOLNPAIR("Digipotss current ", current);
+
+ const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
+ set_digipot_value_spi(digipot_ch[driver], current);
+
+ #elif HAS_MOTOR_CURRENT_PWM
+
+ #define _WRITE_CURRENT_PWM(P) analogWrite(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
+ switch (driver) {
+ case 0:
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
+ _WRITE_CURRENT_PWM(X);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
+ _WRITE_CURRENT_PWM(Y);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
+ _WRITE_CURRENT_PWM(XY);
+ #endif
+ break;
+ case 1:
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
+ _WRITE_CURRENT_PWM(Z);
+ #endif
+ break;
+ case 2:
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
+ _WRITE_CURRENT_PWM(E);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
+ _WRITE_CURRENT_PWM(E0);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
+ _WRITE_CURRENT_PWM(E1);
+ #endif
+ break;
+ }
+ #endif
+ }
+
+ void Stepper::digipot_init() {
+
+ #if HAS_MOTOR_CURRENT_SPI
+
+ SPI.begin();
+ SET_OUTPUT(DIGIPOTSS_PIN);
+
+ LOOP_L_N(i, COUNT(motor_current_setting))
+ set_digipot_current(i, motor_current_setting[i]);
+
+ #elif HAS_MOTOR_CURRENT_PWM
+
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
+ SET_PWM(MOTOR_CURRENT_PWM_X_PIN);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
+ SET_PWM(MOTOR_CURRENT_PWM_Y_PIN);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
+ SET_PWM(MOTOR_CURRENT_PWM_XY_PIN);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
+ SET_PWM(MOTOR_CURRENT_PWM_Z_PIN);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
+ SET_PWM(MOTOR_CURRENT_PWM_E_PIN);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
+ SET_PWM(MOTOR_CURRENT_PWM_E0_PIN);
+ #endif
+ #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
+ SET_PWM(MOTOR_CURRENT_PWM_E1_PIN);
+ #endif
+
+ refresh_motor_power();
+
+ // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
+ #ifdef __AVR__
+ SET_CS5(PRESCALER_1);
+ #endif
+ #endif
+ }
+
+ #endif
+
+#else // PRINTRBOARD_G2
+
+ #include HAL_PATH(../HAL, fastio/G2_PWM.h)
+
+#endif
+
+#if HAS_MICROSTEPS
+
+ /**
+ * Software-controlled Microstepping
+ */
+
+ void Stepper::microstep_init() {
+ #if HAS_X_MS_PINS
+ SET_OUTPUT(X_MS1_PIN);
+ SET_OUTPUT(X_MS2_PIN);
+ #if PIN_EXISTS(X_MS3)
+ SET_OUTPUT(X_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_X2_MS_PINS
+ SET_OUTPUT(X2_MS1_PIN);
+ SET_OUTPUT(X2_MS2_PIN);
+ #if PIN_EXISTS(X2_MS3)
+ SET_OUTPUT(X2_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_Y_MS_PINS
+ SET_OUTPUT(Y_MS1_PIN);
+ SET_OUTPUT(Y_MS2_PIN);
+ #if PIN_EXISTS(Y_MS3)
+ SET_OUTPUT(Y_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_Y2_MS_PINS
+ SET_OUTPUT(Y2_MS1_PIN);
+ SET_OUTPUT(Y2_MS2_PIN);
+ #if PIN_EXISTS(Y2_MS3)
+ SET_OUTPUT(Y2_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_Z_MS_PINS
+ SET_OUTPUT(Z_MS1_PIN);
+ SET_OUTPUT(Z_MS2_PIN);
+ #if PIN_EXISTS(Z_MS3)
+ SET_OUTPUT(Z_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_Z2_MS_PINS
+ SET_OUTPUT(Z2_MS1_PIN);
+ SET_OUTPUT(Z2_MS2_PIN);
+ #if PIN_EXISTS(Z2_MS3)
+ SET_OUTPUT(Z2_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_Z3_MS_PINS
+ SET_OUTPUT(Z3_MS1_PIN);
+ SET_OUTPUT(Z3_MS2_PIN);
+ #if PIN_EXISTS(Z3_MS3)
+ SET_OUTPUT(Z3_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_Z4_MS_PINS
+ SET_OUTPUT(Z4_MS1_PIN);
+ SET_OUTPUT(Z4_MS2_PIN);
+ #if PIN_EXISTS(Z4_MS3)
+ SET_OUTPUT(Z4_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E0_MS_PINS
+ SET_OUTPUT(E0_MS1_PIN);
+ SET_OUTPUT(E0_MS2_PIN);
+ #if PIN_EXISTS(E0_MS3)
+ SET_OUTPUT(E0_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E1_MS_PINS
+ SET_OUTPUT(E1_MS1_PIN);
+ SET_OUTPUT(E1_MS2_PIN);
+ #if PIN_EXISTS(E1_MS3)
+ SET_OUTPUT(E1_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E2_MS_PINS
+ SET_OUTPUT(E2_MS1_PIN);
+ SET_OUTPUT(E2_MS2_PIN);
+ #if PIN_EXISTS(E2_MS3)
+ SET_OUTPUT(E2_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E3_MS_PINS
+ SET_OUTPUT(E3_MS1_PIN);
+ SET_OUTPUT(E3_MS2_PIN);
+ #if PIN_EXISTS(E3_MS3)
+ SET_OUTPUT(E3_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E4_MS_PINS
+ SET_OUTPUT(E4_MS1_PIN);
+ SET_OUTPUT(E4_MS2_PIN);
+ #if PIN_EXISTS(E4_MS3)
+ SET_OUTPUT(E4_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E5_MS_PINS
+ SET_OUTPUT(E5_MS1_PIN);
+ SET_OUTPUT(E5_MS2_PIN);
+ #if PIN_EXISTS(E5_MS3)
+ SET_OUTPUT(E5_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E6_MS_PINS
+ SET_OUTPUT(E6_MS1_PIN);
+ SET_OUTPUT(E6_MS2_PIN);
+ #if PIN_EXISTS(E6_MS3)
+ SET_OUTPUT(E6_MS3_PIN);
+ #endif
+ #endif
+ #if HAS_E7_MS_PINS
+ SET_OUTPUT(E7_MS1_PIN);
+ SET_OUTPUT(E7_MS2_PIN);
+ #if PIN_EXISTS(E7_MS3)
+ SET_OUTPUT(E7_MS3_PIN);
+ #endif
+ #endif
+
+ static const uint8_t microstep_modes[] = MICROSTEP_MODES;
+ for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
+ microstep_mode(i, microstep_modes[i]);
+ }
+
+ void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
+ if (ms1 >= 0) switch (driver) {
+ #if HAS_X_MS_PINS || HAS_X2_MS_PINS
+ case 0:
+ #if HAS_X_MS_PINS
+ WRITE(X_MS1_PIN, ms1);
+ #endif
+ #if HAS_X2_MS_PINS
+ WRITE(X2_MS1_PIN, ms1);
+ #endif
+ break;
+ #endif
+ #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
+ case 1:
+ #if HAS_Y_MS_PINS
+ WRITE(Y_MS1_PIN, ms1);
+ #endif
+ #if HAS_Y2_MS_PINS
+ WRITE(Y2_MS1_PIN, ms1);
+ #endif
+ break;
+ #endif
+ #if HAS_SOME_Z_MS_PINS
+ case 2:
+ #if HAS_Z_MS_PINS
+ WRITE(Z_MS1_PIN, ms1);
+ #endif
+ #if HAS_Z2_MS_PINS
+ WRITE(Z2_MS1_PIN, ms1);
+ #endif
+ #if HAS_Z3_MS_PINS
+ WRITE(Z3_MS1_PIN, ms1);
+ #endif
+ #if HAS_Z4_MS_PINS
+ WRITE(Z4_MS1_PIN, ms1);
+ #endif
+ break;
+ #endif
+ #if HAS_E0_MS_PINS
+ case 3: WRITE(E0_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E1_MS_PINS
+ case 4: WRITE(E1_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E2_MS_PINS
+ case 5: WRITE(E2_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E3_MS_PINS
+ case 6: WRITE(E3_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E4_MS_PINS
+ case 7: WRITE(E4_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E5_MS_PINS
+ case 8: WRITE(E5_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E6_MS_PINS
+ case 9: WRITE(E6_MS1_PIN, ms1); break;
+ #endif
+ #if HAS_E7_MS_PINS
+ case 10: WRITE(E7_MS1_PIN, ms1); break;
+ #endif
+ }
+ if (ms2 >= 0) switch (driver) {
+ #if HAS_X_MS_PINS || HAS_X2_MS_PINS
+ case 0:
+ #if HAS_X_MS_PINS
+ WRITE(X_MS2_PIN, ms2);
+ #endif
+ #if HAS_X2_MS_PINS
+ WRITE(X2_MS2_PIN, ms2);
+ #endif
+ break;
+ #endif
+ #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
+ case 1:
+ #if HAS_Y_MS_PINS
+ WRITE(Y_MS2_PIN, ms2);
+ #endif
+ #if HAS_Y2_MS_PINS
+ WRITE(Y2_MS2_PIN, ms2);
+ #endif
+ break;
+ #endif
+ #if HAS_SOME_Z_MS_PINS
+ case 2:
+ #if HAS_Z_MS_PINS
+ WRITE(Z_MS2_PIN, ms2);
+ #endif
+ #if HAS_Z2_MS_PINS
+ WRITE(Z2_MS2_PIN, ms2);
+ #endif
+ #if HAS_Z3_MS_PINS
+ WRITE(Z3_MS2_PIN, ms2);
+ #endif
+ #if HAS_Z4_MS_PINS
+ WRITE(Z4_MS2_PIN, ms2);
+ #endif
+ break;
+ #endif
+ #if HAS_E0_MS_PINS
+ case 3: WRITE(E0_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E1_MS_PINS
+ case 4: WRITE(E1_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E2_MS_PINS
+ case 5: WRITE(E2_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E3_MS_PINS
+ case 6: WRITE(E3_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E4_MS_PINS
+ case 7: WRITE(E4_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E5_MS_PINS
+ case 8: WRITE(E5_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E6_MS_PINS
+ case 9: WRITE(E6_MS2_PIN, ms2); break;
+ #endif
+ #if HAS_E7_MS_PINS
+ case 10: WRITE(E7_MS2_PIN, ms2); break;
+ #endif
+ }
+ if (ms3 >= 0) switch (driver) {
+ #if HAS_X_MS_PINS || HAS_X2_MS_PINS
+ case 0:
+ #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
+ WRITE(X_MS3_PIN, ms3);
+ #endif
+ #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
+ WRITE(X2_MS3_PIN, ms3);
+ #endif
+ break;
+ #endif
+ #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
+ case 1:
+ #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
+ WRITE(Y_MS3_PIN, ms3);
+ #endif
+ #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
+ WRITE(Y2_MS3_PIN, ms3);
+ #endif
+ break;
+ #endif
+ #if HAS_SOME_Z_MS_PINS
+ case 2:
+ #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
+ WRITE(Z_MS3_PIN, ms3);
+ #endif
+ #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
+ WRITE(Z2_MS3_PIN, ms3);
+ #endif
+ #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
+ WRITE(Z3_MS3_PIN, ms3);
+ #endif
+ #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
+ WRITE(Z4_MS3_PIN, ms3);
+ #endif
+ break;
+ #endif
+ #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
+ case 3: WRITE(E0_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
+ case 4: WRITE(E1_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
+ case 5: WRITE(E2_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
+ case 6: WRITE(E3_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
+ case 7: WRITE(E4_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
+ case 8: WRITE(E5_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
+ case 9: WRITE(E6_MS3_PIN, ms3); break;
+ #endif
+ #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
+ case 10: WRITE(E7_MS3_PIN, ms3); break;
+ #endif
+ }
+ }
+
+ void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
+ switch (stepping_mode) {
+ #if HAS_MICROSTEP1
+ case 1: microstep_ms(driver, MICROSTEP1); break;
+ #endif
+ #if HAS_MICROSTEP2
+ case 2: microstep_ms(driver, MICROSTEP2); break;
+ #endif
+ #if HAS_MICROSTEP4
+ case 4: microstep_ms(driver, MICROSTEP4); break;
+ #endif
+ #if HAS_MICROSTEP8
+ case 8: microstep_ms(driver, MICROSTEP8); break;
+ #endif
+ #if HAS_MICROSTEP16
+ case 16: microstep_ms(driver, MICROSTEP16); break;
+ #endif
+ #if HAS_MICROSTEP32
+ case 32: microstep_ms(driver, MICROSTEP32); break;
+ #endif
+ #if HAS_MICROSTEP64
+ case 64: microstep_ms(driver, MICROSTEP64); break;
+ #endif
+ #if HAS_MICROSTEP128
+ case 128: microstep_ms(driver, MICROSTEP128); break;
+ #endif
+
+ default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
+ }
+ }
+
+ void Stepper::microstep_readings() {
+ #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
+ #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
+ SERIAL_ECHOPGM("MS1|2|3 Pins");
+ #if HAS_X_MS_PINS
+ MS_LINE(X);
+ #if PIN_EXISTS(X_MS3)
+ PIN_CHAR(X_MS3);
+ #endif
+ #endif
+ #if HAS_Y_MS_PINS
+ MS_LINE(Y);
+ #if PIN_EXISTS(Y_MS3)
+ PIN_CHAR(Y_MS3);
+ #endif
+ #endif
+ #if HAS_Z_MS_PINS
+ MS_LINE(Z);
+ #if PIN_EXISTS(Z_MS3)
+ PIN_CHAR(Z_MS3);
+ #endif
+ #endif
+ #if HAS_E0_MS_PINS
+ MS_LINE(E0);
+ #if PIN_EXISTS(E0_MS3)
+ PIN_CHAR(E0_MS3);
+ #endif
+ #endif
+ #if HAS_E1_MS_PINS
+ MS_LINE(E1);
+ #if PIN_EXISTS(E1_MS3)
+ PIN_CHAR(E1_MS3);
+ #endif
+ #endif
+ #if HAS_E2_MS_PINS
+ MS_LINE(E2);
+ #if PIN_EXISTS(E2_MS3)
+ PIN_CHAR(E2_MS3);
+ #endif
+ #endif
+ #if HAS_E3_MS_PINS
+ MS_LINE(E3);
+ #if PIN_EXISTS(E3_MS3)
+ PIN_CHAR(E3_MS3);
+ #endif
+ #endif
+ #if HAS_E4_MS_PINS
+ MS_LINE(E4);
+ #if PIN_EXISTS(E4_MS3)
+ PIN_CHAR(E4_MS3);
+ #endif
+ #endif
+ #if HAS_E5_MS_PINS
+ MS_LINE(E5);
+ #if PIN_EXISTS(E5_MS3)
+ PIN_CHAR(E5_MS3);
+ #endif
+ #endif
+ #if HAS_E6_MS_PINS
+ MS_LINE(E6);
+ #if PIN_EXISTS(E6_MS3)
+ PIN_CHAR(E6_MS3);
+ #endif
+ #endif
+ #if HAS_E7_MS_PINS
+ MS_LINE(E7);
+ #if PIN_EXISTS(E7_MS3)
+ PIN_CHAR(E7_MS3);
+ #endif
+ #endif
+ SERIAL_EOL();
+ }
+
+#endif // HAS_MICROSTEPS
--
cgit v1.2.3