From e8701195e66f2d27ffe17fb514eae8173795aaf7 Mon Sep 17 00:00:00 2001 From: Georgiy Bondarenko <69736697+nehilo@users.noreply.github.com> Date: Thu, 4 Mar 2021 22:54:23 +0500 Subject: Initial commit --- Marlin/src/module/stepper.cpp | 3514 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3514 insertions(+) create mode 100644 Marlin/src/module/stepper.cpp (limited to 'Marlin/src/module/stepper.cpp') diff --git a/Marlin/src/module/stepper.cpp b/Marlin/src/module/stepper.cpp new file mode 100644 index 0000000..1033774 --- /dev/null +++ b/Marlin/src/module/stepper.cpp @@ -0,0 +1,3514 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +/** + * stepper.cpp - A singleton object to execute motion plans using stepper motors + * Marlin Firmware + * + * Derived from Grbl + * Copyright (c) 2009-2011 Simen Svale Skogsrud + * + * Grbl is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * Grbl is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with Grbl. If not, see . + */ + +/** + * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith + * and Philipp Tiefenbacher. + */ + +/** + * __________________________ + * /| |\ _________________ ^ + * / | | \ /| |\ | + * / | | \ / | | \ s + * / | | | | | \ p + * / | | | | | \ e + * +-----+------------------------+---+--+---------------+----+ e + * | BLOCK 1 | BLOCK 2 | d + * + * time -----> + * + * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates + * first block->accelerate_until step_events_completed, then keeps going at constant speed until + * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. + * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. + */ + +/** + * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and + * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html + */ + +/** + * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle. + * Equations based on Synthethos TinyG2 sources, but the fixed-point + * implementation is new, as we are running the ISR with a variable period. + * Also implemented the Bézier velocity curve evaluation in ARM assembler, + * to avoid impacting ISR speed. + */ + +#include "stepper.h" + +Stepper stepper; // Singleton + +#define BABYSTEPPING_EXTRA_DIR_WAIT + +#ifdef __AVR__ + #include "speed_lookuptable.h" +#endif + +#include "endstops.h" +#include "planner.h" +#include "motion.h" + +#include "../lcd/marlinui.h" +#include "../gcode/queue.h" +#include "../sd/cardreader.h" +#include "../MarlinCore.h" +#include "../HAL/shared/Delay.h" + +#if ENABLED(INTEGRATED_BABYSTEPPING) + #include "../feature/babystep.h" +#endif + +#if MB(ALLIGATOR) + #include "../feature/dac/dac_dac084s085.h" +#endif + +#if HAS_MOTOR_CURRENT_SPI + #include +#endif + +#if ENABLED(MIXING_EXTRUDER) + #include "../feature/mixing.h" +#endif + +#if HAS_FILAMENT_RUNOUT_DISTANCE + #include "../feature/runout.h" +#endif + +#if HAS_L64XX + #include "../libs/L64XX/L64XX_Marlin.h" + uint8_t L6470_buf[MAX_L64XX + 1]; // chip command sequence - element 0 not used + bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up +#endif + +#if ENABLED(POWER_LOSS_RECOVERY) + #include "../feature/powerloss.h" +#endif + +#if HAS_CUTTER + #include "../feature/spindle_laser.h" +#endif + +// public: + +#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN) + bool Stepper::separate_multi_axis = false; +#endif + +#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM + bool Stepper::initialized; // = false + uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load() + #if HAS_MOTOR_CURRENT_SPI + constexpr uint32_t Stepper::digipot_count[]; + #endif +#endif + +// private: + +block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced + +uint8_t Stepper::last_direction_bits, // = 0 + Stepper::axis_did_move; // = 0 + +bool Stepper::abort_current_block; + +#if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER + uint8_t Stepper::last_moved_extruder = 0xFF; +#endif + +#if ENABLED(X_DUAL_ENDSTOPS) + bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false; +#endif +#if ENABLED(Y_DUAL_ENDSTOPS) + bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false; +#endif + +#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN) + bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false + #if NUM_Z_STEPPER_DRIVERS >= 3 + , Stepper::locked_Z3_motor = false + #if NUM_Z_STEPPER_DRIVERS >= 4 + , Stepper::locked_Z4_motor = false + #endif + #endif + ; +#endif + +uint32_t Stepper::acceleration_time, Stepper::deceleration_time; +uint8_t Stepper::steps_per_isr; + +IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor; + +xyze_long_t Stepper::delta_error{0}; + +xyze_ulong_t Stepper::advance_dividend{0}; +uint32_t Stepper::advance_divisor = 0, + Stepper::step_events_completed = 0, // The number of step events executed in the current block + Stepper::accelerate_until, // The count at which to stop accelerating + Stepper::decelerate_after, // The count at which to start decelerating + Stepper::step_event_count; // The total event count for the current block + +#if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER) + uint8_t Stepper::stepper_extruder; +#else + constexpr uint8_t Stepper::stepper_extruder; +#endif + +#if ENABLED(S_CURVE_ACCELERATION) + int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler + int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler + int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler + uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler + uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler + #ifdef __AVR__ + bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative + #endif + bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not +#endif + +#if ENABLED(LIN_ADVANCE) + + uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER, + Stepper::LA_isr_rate = LA_ADV_NEVER; + uint16_t Stepper::LA_current_adv_steps = 0, + Stepper::LA_final_adv_steps, + Stepper::LA_max_adv_steps; + + int8_t Stepper::LA_steps = 0; + + bool Stepper::LA_use_advance_lead; + +#endif // LIN_ADVANCE + +#if ENABLED(INTEGRATED_BABYSTEPPING) + uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER; +#endif + +#if ENABLED(DIRECT_STEPPING) + page_step_state_t Stepper::page_step_state; +#endif + +int32_t Stepper::ticks_nominal = -1; +#if DISABLED(S_CURVE_ACCELERATION) + uint32_t Stepper::acc_step_rate; // needed for deceleration start point +#endif + +xyz_long_t Stepper::endstops_trigsteps; +xyze_long_t Stepper::count_position{0}; +xyze_int8_t Stepper::count_direction{0}; + +#if ENABLED(LASER_POWER_INLINE_TRAPEZOID) + Stepper::stepper_laser_t Stepper::laser_trap = { + .enabled = false, + .cur_power = 0, + .cruise_set = false, + #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT) + .last_step_count = 0, + .acc_step_count = 0 + #else + .till_update = 0 + #endif + }; +#endif + +#define DUAL_ENDSTOP_APPLY_STEP(A,V) \ + if (separate_multi_axis) { \ + if (A##_HOME_DIR < 0) { \ + if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ + } \ + else { \ + if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ + } \ + } \ + else { \ + A##_STEP_WRITE(V); \ + A##2_STEP_WRITE(V); \ + } + +#define DUAL_SEPARATE_APPLY_STEP(A,V) \ + if (separate_multi_axis) { \ + if (!locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \ + } \ + else { \ + A##_STEP_WRITE(V); \ + A##2_STEP_WRITE(V); \ + } + +#define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \ + if (separate_multi_axis) { \ + if (A##_HOME_DIR < 0) { \ + if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \ + } \ + else { \ + if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \ + } \ + } \ + else { \ + A##_STEP_WRITE(V); \ + A##2_STEP_WRITE(V); \ + A##3_STEP_WRITE(V); \ + } + +#define TRIPLE_SEPARATE_APPLY_STEP(A,V) \ + if (separate_multi_axis) { \ + if (!locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \ + if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \ + } \ + else { \ + A##_STEP_WRITE(V); \ + A##2_STEP_WRITE(V); \ + A##3_STEP_WRITE(V); \ + } + +#define QUAD_ENDSTOP_APPLY_STEP(A,V) \ + if (separate_multi_axis) { \ + if (A##_HOME_DIR < 0) { \ + if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##3_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##4_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \ + } \ + else { \ + if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##3_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##3_motor) A##3_STEP_WRITE(V); \ + if (!(TEST(endstops.state(), A##4_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##4_motor) A##4_STEP_WRITE(V); \ + } \ + } \ + else { \ + A##_STEP_WRITE(V); \ + A##2_STEP_WRITE(V); \ + A##3_STEP_WRITE(V); \ + A##4_STEP_WRITE(V); \ + } + +#define QUAD_SEPARATE_APPLY_STEP(A,V) \ + if (separate_multi_axis) { \ + if (!locked_##A##_motor) A##_STEP_WRITE(V); \ + if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \ + if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \ + if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \ + } \ + else { \ + A##_STEP_WRITE(V); \ + A##2_STEP_WRITE(V); \ + A##3_STEP_WRITE(V); \ + A##4_STEP_WRITE(V); \ + } + +#if ENABLED(X_DUAL_STEPPER_DRIVERS) + #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0) + #if ENABLED(X_DUAL_ENDSTOPS) + #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v) + #else + #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0) + #endif +#elif ENABLED(DUAL_X_CARRIAGE) + #define X_APPLY_DIR(v,ALWAYS) do{ \ + if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \ + else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \ + }while(0) + #define X_APPLY_STEP(v,ALWAYS) do{ \ + if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \ + else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \ + }while(0) +#else + #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v) + #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v) +#endif + +#if ENABLED(Y_DUAL_STEPPER_DRIVERS) + #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0) + #if ENABLED(Y_DUAL_ENDSTOPS) + #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v) + #else + #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0) + #endif +#else + #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v) + #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v) +#endif + +#if NUM_Z_STEPPER_DRIVERS == 4 + #define Z_APPLY_DIR(v,Q) do{ \ + Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \ + Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \ + }while(0) + #if ENABLED(Z_MULTI_ENDSTOPS) + #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v) + #elif ENABLED(Z_STEPPER_AUTO_ALIGN) + #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v) + #else + #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0) + #endif +#elif NUM_Z_STEPPER_DRIVERS == 3 + #define Z_APPLY_DIR(v,Q) do{ \ + Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \ + }while(0) + #if ENABLED(Z_MULTI_ENDSTOPS) + #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v) + #elif ENABLED(Z_STEPPER_AUTO_ALIGN) + #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v) + #else + #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0) + #endif +#elif NUM_Z_STEPPER_DRIVERS == 2 + #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0) + #if ENABLED(Z_MULTI_ENDSTOPS) + #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v) + #elif ENABLED(Z_STEPPER_AUTO_ALIGN) + #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v) + #else + #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0) + #endif +#else + #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v) + #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v) +#endif + +#if DISABLED(MIXING_EXTRUDER) + #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v) +#endif + +#define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000)) +#define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE)) + +// Round up when converting from ns to timer ticks +#define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK)) + +#define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES)) + +#define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS))) +#define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS))) + +#define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0 +#define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(PULSE_TIMER_NUM)) +#define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(PULSE_TIMER_NUM) - start_pulse_count) { } +#define START_HIGH_PULSE() START_TIMED_PULSE(HIGH) +#define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH) +#define START_LOW_PULSE() START_TIMED_PULSE(LOW) +#define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW) + +#if MINIMUM_STEPPER_PRE_DIR_DELAY > 0 + #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY) +#else + #define DIR_WAIT_BEFORE() +#endif + +#if MINIMUM_STEPPER_POST_DIR_DELAY > 0 + #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY) +#else + #define DIR_WAIT_AFTER() +#endif + +/** + * Set the stepper direction of each axis + * + * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS + * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS + * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS + */ +void Stepper::set_directions() { + + DIR_WAIT_BEFORE(); + + #define SET_STEP_DIR(A) \ + if (motor_direction(_AXIS(A))) { \ + A##_APPLY_DIR(INVERT_##A##_DIR, false); \ + count_direction[_AXIS(A)] = -1; \ + } \ + else { \ + A##_APPLY_DIR(!INVERT_##A##_DIR, false); \ + count_direction[_AXIS(A)] = 1; \ + } + + #if HAS_X_DIR + SET_STEP_DIR(X); // A + #endif + #if HAS_Y_DIR + SET_STEP_DIR(Y); // B + #endif + #if HAS_Z_DIR + SET_STEP_DIR(Z); // C + #endif + + #if DISABLED(LIN_ADVANCE) + #if ENABLED(MIXING_EXTRUDER) + // Because this is valid for the whole block we don't know + // what e-steppers will step. Likely all. Set all. + if (motor_direction(E_AXIS)) { + MIXER_STEPPER_LOOP(j) REV_E_DIR(j); + count_direction.e = -1; + } + else { + MIXER_STEPPER_LOOP(j) NORM_E_DIR(j); + count_direction.e = 1; + } + #else + if (motor_direction(E_AXIS)) { + REV_E_DIR(stepper_extruder); + count_direction.e = -1; + } + else { + NORM_E_DIR(stepper_extruder); + count_direction.e = 1; + } + #endif + #endif // !LIN_ADVANCE + + #if HAS_L64XX + if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers) + if (L64xxManager.spi_active) { + L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully + for (uint8_t j = 1; j <= L64XX::chain[0]; j++) + L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs + L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command + L64xxManager.transfer(L6470_buf, L64XX::chain[0]); + L64xxManager.transfer(L6470_buf, L64XX::chain[0]); + } + + // L64xxManager.dir_commands[] is an array that holds direction command for each stepper + + // Scan command array, copy matches into L64xxManager.transfer + for (uint8_t j = 1; j <= L64XX::chain[0]; j++) + L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]]; + + L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers + } + #endif + + DIR_WAIT_AFTER(); +} + +#if ENABLED(S_CURVE_ACCELERATION) + /** + * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving + * a "linear pop" velocity curve; with pop being the sixth derivative of position: + * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th + * + * The Bézier curve takes the form: + * + * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t) + * + * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t) + * through B_5(t) are the Bernstein basis as follows: + * + * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1 + * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t + * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2 + * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3 + * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4 + * B_5(t) = t^5 = t^5 + * ^ ^ ^ ^ ^ ^ + * | | | | | | + * A B C D E F + * + * Unfortunately, we cannot use forward-differencing to calculate each position through + * the curve, as Marlin uses variable timer periods. So, we require a formula of the form: + * + * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F + * + * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5 + * through t of the Bézier form of V(t), we can determine that: + * + * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5 + * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4 + * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3 + * D = 10*P_0 - 20*P_1 + 10*P_2 + * E = - 5*P_0 + 5*P_1 + * F = P_0 + * + * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0, + * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity), + * which, after simplification, resolves to: + * + * A = - 6*P_i + 6*P_t = 6*(P_t - P_i) + * B = 15*P_i - 15*P_t = 15*(P_i - P_t) + * C = -10*P_i + 10*P_t = 10*(P_t - P_i) + * D = 0 + * E = 0 + * F = P_i + * + * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating + * the Bézier curve at each point: + * + * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1] + * + * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to + * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps + * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid + * overflows on the evaluation of the Bézier curve, means we can use + * + * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned + * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign + * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign + * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign + * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign + * + * The trapezoid generator state contains the following information, that we will use to create and evaluate + * the Bézier curve: + * + * blk->step_event_count [TS] = The total count of steps for this movement. (=distance) + * blk->initial_rate [VI] = The initial steps per second (=velocity) + * blk->final_rate [VF] = The ending steps per second (=velocity) + * and the count of events completed (step_events_completed) [CS] (=distance until now) + * + * Note the abbreviations we use in the following formulae are between []s + * + * For Any 32bit CPU: + * + * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows: + * + * A = 6*128*(VF - VI) = 768*(VF - VI) + * B = 15*128*(VI - VF) = 1920*(VI - VF) + * C = 10*128*(VF - VI) = 1280*(VF - VI) + * F = 128*VI = 128*VI + * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR) + * + * And for each point, evaluate the curve with the following sequence: + * + * void lsrs(uint32_t& d, uint32_t s, int cnt) { + * d = s >> cnt; + * } + * void lsls(uint32_t& d, uint32_t s, int cnt) { + * d = s << cnt; + * } + * void lsrs(int32_t& d, uint32_t s, int cnt) { + * d = uint32_t(s) >> cnt; + * } + * void lsls(int32_t& d, uint32_t s, int cnt) { + * d = uint32_t(s) << cnt; + * } + * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) { + * uint64_t res = uint64_t(op1) * op2; + * rlo = uint32_t(res & 0xFFFFFFFF); + * rhi = uint32_t((res >> 32) & 0xFFFFFFFF); + * } + * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) { + * int64_t mul = int64_t(op1) * op2; + * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U))); + * mul += s; + * rlo = int32_t(mul & 0xFFFFFFFF); + * rhi = int32_t((mul >> 32) & 0xFFFFFFFF); + * } + * int32_t _eval_bezier_curve_arm(uint32_t curr_step) { + * uint32_t flo = 0; + * uint32_t fhi = bezier_AV * curr_step; + * uint32_t t = fhi; + * int32_t alo = bezier_F; + * int32_t ahi = 0; + * int32_t A = bezier_A; + * int32_t B = bezier_B; + * int32_t C = bezier_C; + * + * lsrs(ahi, alo, 1); // a = F << 31 + * lsls(alo, alo, 31); // + * umull(flo, fhi, fhi, t); // f *= t + * umull(flo, fhi, fhi, t); // f>>=32; f*=t + * lsrs(flo, fhi, 1); // + * smlal(alo, ahi, flo, C); // a+=(f>>33)*C + * umull(flo, fhi, fhi, t); // f>>=32; f*=t + * lsrs(flo, fhi, 1); // + * smlal(alo, ahi, flo, B); // a+=(f>>33)*B + * umull(flo, fhi, fhi, t); // f>>=32; f*=t + * lsrs(flo, fhi, 1); // f>>=33; + * smlal(alo, ahi, flo, A); // a+=(f>>33)*A; + * lsrs(alo, ahi, 6); // a>>=38 + * + * return alo; + * } + * + * This is rewritten in ARM assembly for optimal performance (43 cycles to execute). + * + * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time: + * Let's reduce precision as much as possible. After some experimentation we found that: + * + * Assume t and AV with 24 bits is enough + * A = 6*(VF - VI) + * B = 15*(VI - VF) + * C = 10*(VF - VI) + * F = VI + * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR) + * + * Instead of storing sign for each coefficient, we will store its absolute value, + * and flag the sign of the A coefficient, so we can save to store the sign bit. + * It always holds that sign(A) = - sign(B) = sign(C) + * + * So, the resulting range of the coefficients are: + * + * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned + * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits + * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits + * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits + * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits + * + * And for each curve, estimate its coefficients with: + * + * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) { + * // Calculate the Bézier coefficients + * if (v1 < v0) { + * A_negative = true; + * bezier_A = 6 * (v0 - v1); + * bezier_B = 15 * (v0 - v1); + * bezier_C = 10 * (v0 - v1); + * } + * else { + * A_negative = false; + * bezier_A = 6 * (v1 - v0); + * bezier_B = 15 * (v1 - v0); + * bezier_C = 10 * (v1 - v0); + * } + * bezier_F = v0; + * } + * + * And for each point, evaluate the curve with the following sequence: + * + * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits + * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) { + * r = (uint64_t(op1) * op2) >> 8; + * } + * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits + * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) { + * r = (uint32_t(op1) * op2) >> 16; + * } + * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits + * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) { + * r = uint24_t((uint64_t(op1) * op2) >> 16); + * } + * + * int32_t _eval_bezier_curve(uint32_t curr_step) { + * // To save computing, the first step is always the initial speed + * if (!curr_step) + * return bezier_F; + * + * uint16_t t; + * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits + * uint16_t f = t; + * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned) + * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned) + * uint24_t acc = bezier_F; // Range 20 bits (unsigned) + * if (A_negative) { + * uint24_t v; + * umul16x24to24hi(v, f, bezier_C); // Range 21bits + * acc -= v; + * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned) + * umul16x24to24hi(v, f, bezier_B); // Range 22bits + * acc += v; + * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned) + * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign) + * acc -= v; + * } + * else { + * uint24_t v; + * umul16x24to24hi(v, f, bezier_C); // Range 21bits + * acc += v; + * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned) + * umul16x24to24hi(v, f, bezier_B); // Range 22bits + * acc -= v; + * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned) + * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign) + * acc += v; + * } + * return acc; + * } + * These functions are translated to assembler for optimal performance. + * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles. + */ + + #ifdef __AVR__ + + // For AVR we use assembly to maximize speed + void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) { + + // Store advance + bezier_AV = av; + + // Calculate the rest of the coefficients + uint8_t r2 = v0 & 0xFF; + uint8_t r3 = (v0 >> 8) & 0xFF; + uint8_t r12 = (v0 >> 16) & 0xFF; + uint8_t r5 = v1 & 0xFF; + uint8_t r6 = (v1 >> 8) & 0xFF; + uint8_t r7 = (v1 >> 16) & 0xFF; + uint8_t r4,r8,r9,r10,r11; + + __asm__ __volatile__( + /* Calculate the Bézier coefficients */ + /* %10:%1:%0 = v0*/ + /* %5:%4:%3 = v1*/ + /* %7:%6:%10 = temporary*/ + /* %9 = val (must be high register!)*/ + /* %10 (must be high register!)*/ + + /* Store initial velocity*/ + A("sts bezier_F, %0") + A("sts bezier_F+1, %1") + A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */ + + /* Get delta speed */ + A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */ + A("clr %8") /* %8 = 0 */ + A("sub %0,%3") + A("sbc %1,%4") + A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */ + A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */ + + /* Result was negative, get the absolute value*/ + A("com %10") + A("com %1") + A("neg %0") + A("sbc %1,%2") + A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */ + A("clr %2") /* %2 = 0, means A_negative = false */ + + /* Store negative flag*/ + L("1") + A("sts A_negative, %2") /* Store negative flag */ + + /* Compute coefficients A,B and C [20 cycles worst case]*/ + A("ldi %9,6") /* %9 = 6 */ + A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */ + A("sts bezier_A, r0") + A("mov %6,r1") + A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */ + A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */ + A("add %6,r0") + A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */ + A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */ + A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */ + A("sts bezier_A+1, %6") + A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */ + + A("ldi %9,15") /* %9 = 15 */ + A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */ + A("sts bezier_B, r0") + A("mov %6,r1") + A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */ + A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */ + A("add %6,r0") + A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */ + A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */ + A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */ + A("sts bezier_B+1, %6") + A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */ + + A("ldi %9,10") /* %9 = 10 */ + A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */ + A("sts bezier_C, r0") + A("mov %6,r1") + A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */ + A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */ + A("add %6,r0") + A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */ + A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */ + A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */ + A("sts bezier_C+1, %6") + " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */ + : "+r" (r2), + "+d" (r3), + "=r" (r4), + "+r" (r5), + "+r" (r6), + "+r" (r7), + "=r" (r8), + "=r" (r9), + "=r" (r10), + "=d" (r11), + "+r" (r12) + : + : "r0", "r1", "cc", "memory" + ); + } + + FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) { + + // If dealing with the first step, save expensive computing and return the initial speed + if (!curr_step) + return bezier_F; + + uint8_t r0 = 0; /* Zero register */ + uint8_t r2 = (curr_step) & 0xFF; + uint8_t r3 = (curr_step >> 8) & 0xFF; + uint8_t r4 = (curr_step >> 16) & 0xFF; + uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */ + + __asm__ __volatile( + /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/ + A("lds %9,bezier_AV") /* %9 = LO(AV)*/ + A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/ + A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/ + A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/ + A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/ + A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/ + A("add %7,r0") + A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/ + A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/ + A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/ + A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/ + A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/ + A("add %7,r0") + A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/ + A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/ + A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/ + A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/ + A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/ + /* %8:%7 = t*/ + + /* uint16_t f = t;*/ + A("mov %5,%7") /* %6:%5 = f*/ + A("mov %6,%8") + /* %6:%5 = f*/ + + /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */ + A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ + A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/ + A("clr %10") /* %10 = 0*/ + A("clr %11") /* %11 = 0*/ + A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ + A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/ + A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ + A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/ + A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ + A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ + A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ + A("mov %5,%10") /* %6:%5 = */ + A("mov %6,%11") /* f = %10:%11*/ + + /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ + A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ + A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ + A("clr %10") /* %10 = 0*/ + A("clr %11") /* %11 = 0*/ + A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ + A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ + A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ + A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ + A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ + A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ + A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ + A("mov %5,%10") /* %6:%5 =*/ + A("mov %6,%11") /* f = %10:%11*/ + /* [15 +17*2] = [49]*/ + + /* %4:%3:%2 will be acc from now on*/ + + /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/ + A("clr %9") /* "decimal place we get for free"*/ + A("lds %2,bezier_F") + A("lds %3,bezier_F+1") + A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/ + + /* if (A_negative) {*/ + A("lds r0,A_negative") + A("or r0,%0") /* Is flag signalling negative? */ + A("brne 3f") /* If yes, Skip next instruction if A was negative*/ + A("rjmp 1f") /* Otherwise, jump */ + + /* uint24_t v; */ + /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */ + /* acc -= v; */ + L("3") + A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/ + A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/ + A("sub %9,r1") + A("sbc %2,%0") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/ + A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/ + A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ + A("sub %9,r0") + A("sbc %2,r1") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/ + A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/ + A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ + A("sub %2,r0") + A("sbc %3,r1") + A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/ + A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/ + A("sub %9,r0") + A("sbc %2,r1") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/ + A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/ + A("sub %2,r0") + A("sbc %3,r1") + A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/ + A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/ + A("sub %3,r0") + A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/ + + /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ + A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ + A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ + A("clr %10") /* %10 = 0*/ + A("clr %11") /* %11 = 0*/ + A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ + A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ + A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ + A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ + A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ + A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ + A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ + A("mov %5,%10") /* %6:%5 =*/ + A("mov %6,%11") /* f = %10:%11*/ + + /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/ + /* acc += v; */ + A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/ + A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/ + A("add %9,r1") + A("adc %2,%0") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/ + A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/ + A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ + A("add %9,r0") + A("adc %2,r1") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/ + A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/ + A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ + A("add %2,r0") + A("adc %3,r1") + A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/ + A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/ + A("add %9,r0") + A("adc %2,r1") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/ + A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/ + A("add %2,r0") + A("adc %3,r1") + A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/ + A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/ + A("add %3,r0") + A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/ + + /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/ + A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ + A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ + A("clr %10") /* %10 = 0*/ + A("clr %11") /* %11 = 0*/ + A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ + A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ + A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ + A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ + A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ + A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ + A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ + A("mov %5,%10") /* %6:%5 =*/ + A("mov %6,%11") /* f = %10:%11*/ + + /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/ + /* acc -= v; */ + A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/ + A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/ + A("sub %9,r1") + A("sbc %2,%0") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/ + A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/ + A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ + A("sub %9,r0") + A("sbc %2,r1") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/ + A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/ + A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ + A("sub %2,r0") + A("sbc %3,r1") + A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/ + A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/ + A("sub %9,r0") + A("sbc %2,r1") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/ + A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/ + A("sub %2,r0") + A("sbc %3,r1") + A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/ + A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/ + A("sub %3,r0") + A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/ + A("jmp 2f") /* Done!*/ + + L("1") + + /* uint24_t v; */ + /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/ + /* acc += v; */ + A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/ + A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/ + A("add %9,r1") + A("adc %2,%0") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/ + A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/ + A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ + A("add %9,r0") + A("adc %2,r1") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/ + A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/ + A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ + A("add %2,r0") + A("adc %3,r1") + A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/ + A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/ + A("add %9,r0") + A("adc %2,r1") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/ + A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/ + A("add %2,r0") + A("adc %3,r1") + A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/ + A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/ + A("add %3,r0") + A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/ + + /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ + A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ + A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ + A("clr %10") /* %10 = 0*/ + A("clr %11") /* %11 = 0*/ + A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ + A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ + A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ + A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ + A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ + A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ + A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ + A("mov %5,%10") /* %6:%5 =*/ + A("mov %6,%11") /* f = %10:%11*/ + + /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/ + /* acc -= v;*/ + A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/ + A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/ + A("sub %9,r1") + A("sbc %2,%0") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/ + A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/ + A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ + A("sub %9,r0") + A("sbc %2,r1") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/ + A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/ + A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ + A("sub %2,r0") + A("sbc %3,r1") + A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/ + A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/ + A("sub %9,r0") + A("sbc %2,r1") + A("sbc %3,%0") + A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/ + A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/ + A("sub %2,r0") + A("sbc %3,r1") + A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/ + A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/ + A("sub %3,r0") + A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/ + + /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/ + A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ + A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ + A("clr %10") /* %10 = 0*/ + A("clr %11") /* %11 = 0*/ + A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ + A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ + A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ + A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ + A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ + A("adc %11,%0") /* %11 += carry*/ + A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ + A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ + A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ + A("mov %5,%10") /* %6:%5 =*/ + A("mov %6,%11") /* f = %10:%11*/ + + /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/ + /* acc += v; */ + A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/ + A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/ + A("add %9,r1") + A("adc %2,%0") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/ + A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/ + A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ + A("add %9,r0") + A("adc %2,r1") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/ + A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/ + A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ + A("add %2,r0") + A("adc %3,r1") + A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/ + A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/ + A("add %9,r0") + A("adc %2,r1") + A("adc %3,%0") + A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/ + A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/ + A("add %2,r0") + A("adc %3,r1") + A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/ + A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/ + A("add %3,r0") + A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/ + L("2") + " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */ + : "+r"(r0), + "+r"(r1), + "+r"(r2), + "+r"(r3), + "+r"(r4), + "+r"(r5), + "+r"(r6), + "+r"(r7), + "+r"(r8), + "+r"(r9), + "+r"(r10), + "+r"(r11) + : + :"cc","r0","r1" + ); + return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16); + } + + #else + + // For all the other 32bit CPUs + FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) { + // Calculate the Bézier coefficients + bezier_A = 768 * (v1 - v0); + bezier_B = 1920 * (v0 - v1); + bezier_C = 1280 * (v1 - v0); + bezier_F = 128 * v0; + bezier_AV = av; + } + + FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) { + #if defined(__arm__) || defined(__thumb__) + + // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute + uint32_t flo = 0; + uint32_t fhi = bezier_AV * curr_step; + uint32_t t = fhi; + int32_t alo = bezier_F; + int32_t ahi = 0; + int32_t A = bezier_A; + int32_t B = bezier_B; + int32_t C = bezier_C; + + __asm__ __volatile__( + ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax + A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles + A("lsls %[alo],%[alo],#31") // 1 cycles + A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits] + A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits] + A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits] + A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles + A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits] + A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits] + A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles + A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits] + A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits] + A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles + A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles + : [alo]"+r"( alo ) , + [flo]"+r"( flo ) , + [fhi]"+r"( fhi ) , + [ahi]"+r"( ahi ) , + [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY + [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as + [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem, + [t]"+r"( t ) // we list all registers as input-outputs. + : + : "cc" + ); + return alo; + + #else + + // For non ARM targets, we provide a fallback implementation. Really doubt it + // will be useful, unless the processor is fast and 32bit + + uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits + uint64_t f = t; + f *= t; // Range 32*2 = 64 bits (unsigned) + f >>= 32; // Range 32 bits (unsigned) + f *= t; // Range 32*2 = 64 bits (unsigned) + f >>= 32; // Range 32 bits : f = t^3 (unsigned) + int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed) + acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign) + f *= t; // Range 32*2 = 64 bits + f >>= 32; // Range 32 bits : f = t^3 (unsigned) + acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign) + f *= t; // Range 32*2 = 64 bits + f >>= 32; // Range 32 bits : f = t^3 (unsigned) + acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign) + acc >>= (31 + 7); // Range 24bits (plus sign) + return (int32_t) acc; + + #endif + } + #endif +#endif // S_CURVE_ACCELERATION + +/** + * Stepper Driver Interrupt + * + * Directly pulses the stepper motors at high frequency. + */ + +HAL_STEP_TIMER_ISR() { + HAL_timer_isr_prologue(STEP_TIMER_NUM); + + Stepper::isr(); + + HAL_timer_isr_epilogue(STEP_TIMER_NUM); +} + +#ifdef CPU_32_BIT + #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B) +#else + #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B) +#endif + +#if ENABLED(MKS_TEST) + extern uint8_t mks_test_flag; +#endif + +void Stepper::isr() { + + static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now) + + #ifndef __AVR__ + // Disable interrupts, to avoid ISR preemption while we reprogram the period + // (AVR enters the ISR with global interrupts disabled, so no need to do it here) + DISABLE_ISRS(); + #endif + + // Program timer compare for the maximum period, so it does NOT + // flag an interrupt while this ISR is running - So changes from small + // periods to big periods are respected and the timer does not reset to 0 + HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(HAL_TIMER_TYPE_MAX)); + + // Count of ticks for the next ISR + hal_timer_t next_isr_ticks = 0; + + // Limit the amount of iterations + uint8_t max_loops = 10; + + // We need this variable here to be able to use it in the following loop + hal_timer_t min_ticks; + do { + // Enable ISRs to reduce USART processing latency + ENABLE_ISRS(); + #if ENABLED(MKS_TEST) + if(mks_test_flag == 0x1e) { + WRITE(X_STEP_PIN, HIGH); + WRITE(Y_STEP_PIN, HIGH); + WRITE(Z_STEP_PIN, HIGH); + WRITE(E0_STEP_PIN, HIGH); + #if !MB(MKS_ROBIN_E3P) + WRITE(E1_STEP_PIN, HIGH); + #endif + //WRITE(E2_STEP_PIN, HIGH); + } + #endif + + if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses + + #if ENABLED(LIN_ADVANCE) + if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses + #endif + + #if ENABLED(INTEGRATED_BABYSTEPPING) + const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses + if (is_babystep) nextBabystepISR = babystepping_isr(); + #endif + + // ^== Time critical. NOTHING besides pulse generation should be above here!!! + + if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block + + #if ENABLED(INTEGRATED_BABYSTEPPING) + if (is_babystep) // Avoid ANY stepping too soon after baby-stepping + NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step + + if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping + NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping + #endif + + // Get the interval to the next ISR call + const uint32_t interval = _MIN( + nextMainISR // Time until the next Pulse / Block phase + #if ENABLED(LIN_ADVANCE) + , nextAdvanceISR // Come back early for Linear Advance? + #endif + #if ENABLED(INTEGRATED_BABYSTEPPING) + , nextBabystepISR // Come back early for Babystepping? + #endif + , uint32_t(HAL_TIMER_TYPE_MAX) // Come back in a very long time + ); + + // + // Compute remaining time for each ISR phase + // NEVER : The phase is idle + // Zero : The phase will occur on the next ISR call + // Non-zero : The phase will occur on a future ISR call + // + + nextMainISR -= interval; + + #if ENABLED(LIN_ADVANCE) + if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval; + #endif + + #if ENABLED(INTEGRATED_BABYSTEPPING) + if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval; + #endif + + /** + * This needs to avoid a race-condition caused by interleaving + * of interrupts required by both the LA and Stepper algorithms. + * + * Assume the following tick times for stepper pulses: + * Stepper ISR (S): 1 1000 2000 3000 4000 + * Linear Adv. (E): 10 1010 2010 3010 4010 + * + * The current algorithm tries to interleave them, giving: + * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E + * + * Ideal timing would yield these delta periods: + * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E + * + * But, since each event must fire an ISR with a minimum duration, the + * minimum delta might be 900, so deltas under 900 get rounded up: + * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E + * + * It works, but divides the speed of all motors by half, leading to a sudden + * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even + * accounting for double/quad stepping, which makes it even worse). + */ + + // Compute the tick count for the next ISR + next_isr_ticks += interval; + + /** + * The following section must be done with global interrupts disabled. + * We want nothing to interrupt it, as that could mess the calculations + * we do for the next value to program in the period register of the + * stepper timer and lead to skipped ISRs (if the value we happen to program + * is less than the current count due to something preempting between the + * read and the write of the new period value). + */ + #if ENABLED(MKS_TEST) + if(mks_test_flag == 0x1e) { + WRITE(X_STEP_PIN, LOW); + WRITE(Y_STEP_PIN, LOW); + WRITE(Z_STEP_PIN, LOW); + WRITE(E0_STEP_PIN, LOW); + #if !MB(MKS_ROBIN_E3P) + WRITE(E1_STEP_PIN, LOW); + #endif + //WRITE(E2_STEP_PIN, LOW); + } + #endif + DISABLE_ISRS(); + + /** + * Get the current tick value + margin + * Assuming at least 6µs between calls to this ISR... + * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin + * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin + */ + min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t( + #ifdef __AVR__ + 8 + #else + 1 + #endif + * (STEPPER_TIMER_TICKS_PER_US) + ); + + /** + * NB: If for some reason the stepper monopolizes the MPU, eventually the + * timer will wrap around (and so will 'next_isr_ticks'). So, limit the + * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse + * timing, since the MCU isn't fast enough. + */ + if (!--max_loops) next_isr_ticks = min_ticks; + + // Advance pulses if not enough time to wait for the next ISR + } while (next_isr_ticks < min_ticks); + + // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are + // sure that the time has not arrived yet - Warrantied by the scheduler + + // Set the next ISR to fire at the proper time + HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks)); + + // Don't forget to finally reenable interrupts + ENABLE_ISRS(); +} + +#if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE + #define ISR_PULSE_CONTROL 1 +#endif +#if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM) + #define ISR_MULTI_STEPS 1 +#endif + +/** + * This phase of the ISR should ONLY create the pulses for the steppers. + * This prevents jitter caused by the interval between the start of the + * interrupt and the start of the pulses. DON'T add any logic ahead of the + * call to this method that might cause variation in the timing. The aim + * is to keep pulse timing as regular as possible. + */ +void Stepper::pulse_phase_isr() { + + // If we must abort the current block, do so! + if (abort_current_block) { + abort_current_block = false; + if (current_block) discard_current_block(); + } + + // If there is no current block, do nothing + if (!current_block) return; + + // Count of pending loops and events for this iteration + const uint32_t pending_events = step_event_count - step_events_completed; + uint8_t events_to_do = _MIN(pending_events, steps_per_isr); + + // Just update the value we will get at the end of the loop + step_events_completed += events_to_do; + + // Take multiple steps per interrupt (For high speed moves) + #if ISR_MULTI_STEPS + bool firstStep = true; + USING_TIMED_PULSE(); + #endif + xyze_bool_t step_needed{0}; + + do { + #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS) + #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN + + // Determine if a pulse is needed using Bresenham + #define PULSE_PREP(AXIS) do{ \ + delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \ + step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \ + if (step_needed[_AXIS(AXIS)]) { \ + count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ + delta_error[_AXIS(AXIS)] -= advance_divisor; \ + } \ + }while(0) + + // Start an active pulse if needed + #define PULSE_START(AXIS) do{ \ + if (step_needed[_AXIS(AXIS)]) { \ + _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \ + } \ + }while(0) + + // Stop an active pulse if needed + #define PULSE_STOP(AXIS) do { \ + if (step_needed[_AXIS(AXIS)]) { \ + _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \ + } \ + }while(0) + + // Direct Stepping page? + const bool is_page = IS_PAGE(current_block); + + #if ENABLED(DIRECT_STEPPING) + + if (is_page) { + + #if STEPPER_PAGE_FORMAT == SP_4x4D_128 + + #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \ + if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \ + else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \ + page_step_state.sd[_AXIS(AXIS)] = VALUE; \ + page_step_state.bd[_AXIS(AXIS)] += VALUE; \ + }while(0) + + #define PAGE_PULSE_PREP(AXIS) do{ \ + step_needed[_AXIS(AXIS)] = \ + pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \ + }while(0) + + switch (page_step_state.segment_steps) { + case DirectStepping::Config::SEGMENT_STEPS: + page_step_state.segment_idx += 2; + page_step_state.segment_steps = 0; + // fallthru + case 0: { + const uint8_t low = page_step_state.page[page_step_state.segment_idx], + high = page_step_state.page[page_step_state.segment_idx + 1]; + uint8_t dm = last_direction_bits; + + PAGE_SEGMENT_UPDATE(X, low >> 4); + PAGE_SEGMENT_UPDATE(Y, low & 0xF); + PAGE_SEGMENT_UPDATE(Z, high >> 4); + PAGE_SEGMENT_UPDATE(E, high & 0xF); + + if (dm != last_direction_bits) + set_directions(dm); + + } break; + + default: break; + } + + PAGE_PULSE_PREP(X); + PAGE_PULSE_PREP(Y); + PAGE_PULSE_PREP(Z); + PAGE_PULSE_PREP(E); + + page_step_state.segment_steps++; + + #elif STEPPER_PAGE_FORMAT == SP_4x2_256 + + #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \ + page_step_state.sd[_AXIS(AXIS)] = VALUE; \ + page_step_state.bd[_AXIS(AXIS)] += VALUE; + + #define PAGE_PULSE_PREP(AXIS) do{ \ + step_needed[_AXIS(AXIS)] = \ + pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \ + }while(0) + + switch (page_step_state.segment_steps) { + case DirectStepping::Config::SEGMENT_STEPS: + page_step_state.segment_idx++; + page_step_state.segment_steps = 0; + // fallthru + case 0: { + const uint8_t b = page_step_state.page[page_step_state.segment_idx]; + PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3); + PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3); + PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3); + PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3); + } break; + default: break; + } + + PAGE_PULSE_PREP(X); + PAGE_PULSE_PREP(Y); + PAGE_PULSE_PREP(Z); + PAGE_PULSE_PREP(E); + + page_step_state.segment_steps++; + + #elif STEPPER_PAGE_FORMAT == SP_4x1_512 + + #define PAGE_PULSE_PREP(AXIS, BITS) do{ \ + step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \ + if (step_needed[_AXIS(AXIS)]) \ + page_step_state.bd[_AXIS(AXIS)]++; \ + }while(0) + + uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1]; + if (page_step_state.segment_idx & 0x1) steps >>= 4; + + PAGE_PULSE_PREP(X, 3); + PAGE_PULSE_PREP(Y, 2); + PAGE_PULSE_PREP(Z, 1); + PAGE_PULSE_PREP(E, 0); + + page_step_state.segment_idx++; + + #else + #error "Unknown direct stepping page format!" + #endif + } + + #endif // DIRECT_STEPPING + + if (!is_page) { + // Determine if pulses are needed + #if HAS_X_STEP + PULSE_PREP(X); + #endif + #if HAS_Y_STEP + PULSE_PREP(Y); + #endif + #if HAS_Z_STEP + PULSE_PREP(Z); + #endif + + #if EITHER(LIN_ADVANCE, MIXING_EXTRUDER) + delta_error.e += advance_dividend.e; + if (delta_error.e >= 0) { + count_position.e += count_direction.e; + #if ENABLED(LIN_ADVANCE) + delta_error.e -= advance_divisor; + // Don't step E here - But remember the number of steps to perform + motor_direction(E_AXIS) ? --LA_steps : ++LA_steps; + #else + step_needed.e = true; + #endif + } + #elif HAS_E0_STEP + PULSE_PREP(E); + #endif + } + + #if ISR_MULTI_STEPS + if (firstStep) + firstStep = false; + else + AWAIT_LOW_PULSE(); + #endif + + // Pulse start + #if HAS_X_STEP + PULSE_START(X); + #endif + #if HAS_Y_STEP + PULSE_START(Y); + #endif + #if HAS_Z_STEP + PULSE_START(Z); + #endif + + #if DISABLED(LIN_ADVANCE) + #if ENABLED(MIXING_EXTRUDER) + if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN); + #elif HAS_E0_STEP + PULSE_START(E); + #endif + #endif + + #if ENABLED(I2S_STEPPER_STREAM) + i2s_push_sample(); + #endif + + // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s + #if ISR_MULTI_STEPS + START_HIGH_PULSE(); + AWAIT_HIGH_PULSE(); + #endif + + // Pulse stop + #if HAS_X_STEP + PULSE_STOP(X); + #endif + #if HAS_Y_STEP + PULSE_STOP(Y); + #endif + #if HAS_Z_STEP + PULSE_STOP(Z); + #endif + + #if DISABLED(LIN_ADVANCE) + #if ENABLED(MIXING_EXTRUDER) + if (delta_error.e >= 0) { + delta_error.e -= advance_divisor; + E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN); + } + #elif HAS_E0_STEP + PULSE_STOP(E); + #endif + #endif + + #if ISR_MULTI_STEPS + if (events_to_do) START_LOW_PULSE(); + #endif + + } while (--events_to_do); +} + +// This is the last half of the stepper interrupt: This one processes and +// properly schedules blocks from the planner. This is executed after creating +// the step pulses, so it is not time critical, as pulses are already done. + +uint32_t Stepper::block_phase_isr() { + + // If no queued movements, just wait 1ms for the next block + uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL; + + // If there is a current block + if (current_block) { + + // If current block is finished, reset pointer and finalize state + if (step_events_completed >= step_event_count) { + #if ENABLED(DIRECT_STEPPING) + #if STEPPER_PAGE_FORMAT == SP_4x4D_128 + #define PAGE_SEGMENT_UPDATE_POS(AXIS) \ + count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7; + #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256 + #define PAGE_SEGMENT_UPDATE_POS(AXIS) \ + count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)]; + #endif + + if (IS_PAGE(current_block)) { + PAGE_SEGMENT_UPDATE_POS(X); + PAGE_SEGMENT_UPDATE_POS(Y); + PAGE_SEGMENT_UPDATE_POS(Z); + PAGE_SEGMENT_UPDATE_POS(E); + } + #endif + TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block)); + discard_current_block(); + } + else { + // Step events not completed yet... + + // Are we in acceleration phase ? + if (step_events_completed <= accelerate_until) { // Calculate new timer value + + #if ENABLED(S_CURVE_ACCELERATION) + // Get the next speed to use (Jerk limited!) + uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time + ? _eval_bezier_curve(acceleration_time) + : current_block->cruise_rate; + #else + acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate; + NOMORE(acc_step_rate, current_block->nominal_rate); + #endif + + // acc_step_rate is in steps/second + + // step_rate to timer interval and steps per stepper isr + interval = calc_timer_interval(acc_step_rate, &steps_per_isr); + acceleration_time += interval; + + #if ENABLED(LIN_ADVANCE) + if (LA_use_advance_lead) { + // Fire ISR if final adv_rate is reached + if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0; + } + else if (LA_steps) nextAdvanceISR = 0; + #endif + + // Update laser - Accelerating + #if ENABLED(LASER_POWER_INLINE_TRAPEZOID) + if (laser_trap.enabled) { + #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT) + if (current_block->laser.entry_per) { + laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count; + laser_trap.last_step_count = step_events_completed; + + // Should be faster than a divide, since this should trip just once + if (laser_trap.acc_step_count < 0) { + while (laser_trap.acc_step_count < 0) { + laser_trap.acc_step_count += current_block->laser.entry_per; + if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++; + } + cutter.set_ocr_power(laser_trap.cur_power); + } + } + #else + if (laser_trap.till_update) + laser_trap.till_update--; + else { + laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER; + laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate; + cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles + } + #endif + } + #endif + } + // Are we in Deceleration phase ? + else if (step_events_completed > decelerate_after) { + uint32_t step_rate; + + #if ENABLED(S_CURVE_ACCELERATION) + // If this is the 1st time we process the 2nd half of the trapezoid... + if (!bezier_2nd_half) { + // Initialize the Bézier speed curve + _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse); + bezier_2nd_half = true; + // The first point starts at cruise rate. Just save evaluation of the Bézier curve + step_rate = current_block->cruise_rate; + } + else { + // Calculate the next speed to use + step_rate = deceleration_time < current_block->deceleration_time + ? _eval_bezier_curve(deceleration_time) + : current_block->final_rate; + } + #else + + // Using the old trapezoidal control + step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate); + if (step_rate < acc_step_rate) { // Still decelerating? + step_rate = acc_step_rate - step_rate; + NOLESS(step_rate, current_block->final_rate); + } + else + step_rate = current_block->final_rate; + #endif + + // step_rate is in steps/second + + // step_rate to timer interval and steps per stepper isr + interval = calc_timer_interval(step_rate, &steps_per_isr); + deceleration_time += interval; + + #if ENABLED(LIN_ADVANCE) + if (LA_use_advance_lead) { + // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached + if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) { + initiateLA(); + LA_isr_rate = current_block->advance_speed; + } + } + else if (LA_steps) nextAdvanceISR = 0; + #endif // LIN_ADVANCE + + // Update laser - Decelerating + #if ENABLED(LASER_POWER_INLINE_TRAPEZOID) + if (laser_trap.enabled) { + #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT) + if (current_block->laser.exit_per) { + laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count; + laser_trap.last_step_count = step_events_completed; + + // Should be faster than a divide, since this should trip just once + if (laser_trap.acc_step_count < 0) { + while (laser_trap.acc_step_count < 0) { + laser_trap.acc_step_count += current_block->laser.exit_per; + if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--; + } + cutter.set_ocr_power(laser_trap.cur_power); + } + } + #else + if (laser_trap.till_update) + laser_trap.till_update--; + else { + laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER; + laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate; + cutter.set_ocr_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles + } + #endif + } + #endif + } + // Must be in cruise phase otherwise + else { + + #if ENABLED(LIN_ADVANCE) + // If there are any esteps, fire the next advance_isr "now" + if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA(); + #endif + + // Calculate the ticks_nominal for this nominal speed, if not done yet + if (ticks_nominal < 0) { + // step_rate to timer interval and loops for the nominal speed + ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr); + } + + // The timer interval is just the nominal value for the nominal speed + interval = ticks_nominal; + + // Update laser - Cruising + #if ENABLED(LASER_POWER_INLINE_TRAPEZOID) + if (laser_trap.enabled) { + if (!laser_trap.cruise_set) { + laser_trap.cur_power = current_block->laser.power; + cutter.set_ocr_power(laser_trap.cur_power); + laser_trap.cruise_set = true; + } + #if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT) + laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER; + #else + laser_trap.last_step_count = step_events_completed; + #endif + } + #endif + } + } + } + + // If there is no current block at this point, attempt to pop one from the buffer + // and prepare its movement + if (!current_block) { + + // Anything in the buffer? + if ((current_block = planner.get_current_block())) { + + // Sync block? Sync the stepper counts and return + while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) { + _set_position(current_block->position); + discard_current_block(); + + // Try to get a new block + if (!(current_block = planner.get_current_block())) + return interval; // No more queued movements! + } + + // For non-inline cutter, grossly apply power + #if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE) + cutter.apply_power(current_block->cutter_power); + #endif + + TERN_(POWER_LOSS_RECOVERY, recovery.info.sdpos = current_block->sdpos); + + #if ENABLED(DIRECT_STEPPING) + if (IS_PAGE(current_block)) { + page_step_state.segment_steps = 0; + page_step_state.segment_idx = 0; + page_step_state.page = page_manager.get_page(current_block->page_idx); + page_step_state.bd.reset(); + + if (DirectStepping::Config::DIRECTIONAL) + current_block->direction_bits = last_direction_bits; + + if (!page_step_state.page) { + discard_current_block(); + return interval; + } + } + #endif + + // Flag all moving axes for proper endstop handling + + #if IS_CORE + // Define conditions for checking endstops + #define S_(N) current_block->steps[CORE_AXIS_##N] + #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N) + #endif + + #if CORE_IS_XY || CORE_IS_XZ + /** + * Head direction in -X axis for CoreXY and CoreXZ bots. + * + * If steps differ, both axes are moving. + * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below) + * If DeltaA == DeltaB, the movement is only in the 1st axis (X) + */ + #if EITHER(COREXY, COREXZ) + #define X_CMP(A,B) ((A)==(B)) + #else + #define X_CMP(A,B) ((A)!=(B)) + #endif + #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) ) + #elif ENABLED(MARKFORGED_XY) + #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b) + #else + #define X_MOVE_TEST !!current_block->steps.a + #endif + + #if CORE_IS_XY || CORE_IS_YZ + /** + * Head direction in -Y axis for CoreXY / CoreYZ bots. + * + * If steps differ, both axes are moving + * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y) + * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z) + */ + #if EITHER(COREYX, COREYZ) + #define Y_CMP(A,B) ((A)==(B)) + #else + #define Y_CMP(A,B) ((A)!=(B)) + #endif + #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) ) + #else + #define Y_MOVE_TEST !!current_block->steps.b + #endif + + #if CORE_IS_XZ || CORE_IS_YZ + /** + * Head direction in -Z axis for CoreXZ or CoreYZ bots. + * + * If steps differ, both axes are moving + * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above) + * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z) + */ + #if EITHER(COREZX, COREZY) + #define Z_CMP(A,B) ((A)==(B)) + #else + #define Z_CMP(A,B) ((A)!=(B)) + #endif + #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) ) + #else + #define Z_MOVE_TEST !!current_block->steps.c + #endif + + uint8_t axis_bits = 0; + if (X_MOVE_TEST) SBI(axis_bits, A_AXIS); + if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS); + if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS); + //if (!!current_block->steps.e) SBI(axis_bits, E_AXIS); + //if (!!current_block->steps.a) SBI(axis_bits, X_HEAD); + //if (!!current_block->steps.b) SBI(axis_bits, Y_HEAD); + //if (!!current_block->steps.c) SBI(axis_bits, Z_HEAD); + axis_did_move = axis_bits; + + // No acceleration / deceleration time elapsed so far + acceleration_time = deceleration_time = 0; + + #if ENABLED(ADAPTIVE_STEP_SMOOTHING) + uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling) + // Decide if axis smoothing is possible + uint32_t max_rate = current_block->nominal_rate; // Get the step event rate + while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible... + max_rate <<= 1; // Try to double the rate + if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit + ++oversampling; // Increase the oversampling (used for left-shift) + } + oversampling_factor = oversampling; // For all timer interval calculations + #else + constexpr uint8_t oversampling = 0; + #endif + + // Based on the oversampling factor, do the calculations + step_event_count = current_block->step_event_count << oversampling; + + // Initialize Bresenham delta errors to 1/2 + delta_error = -int32_t(step_event_count); + + // Calculate Bresenham dividends and divisors + advance_dividend = current_block->steps << 1; + advance_divisor = step_event_count << 1; + + // No step events completed so far + step_events_completed = 0; + + // Compute the acceleration and deceleration points + accelerate_until = current_block->accelerate_until << oversampling; + decelerate_after = current_block->decelerate_after << oversampling; + + #if ENABLED(MIXING_EXTRUDER) + MIXER_STEPPER_SETUP(); + #endif + + TERN_(HAS_MULTI_EXTRUDER, stepper_extruder = current_block->extruder); + + // Initialize the trapezoid generator from the current block. + #if ENABLED(LIN_ADVANCE) + #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1 + // If the now active extruder wasn't in use during the last move, its pressure is most likely gone. + if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0; + #endif + + if ((LA_use_advance_lead = current_block->use_advance_lead)) { + LA_final_adv_steps = current_block->final_adv_steps; + LA_max_adv_steps = current_block->max_adv_steps; + initiateLA(); // Start the ISR + LA_isr_rate = current_block->advance_speed; + } + else LA_isr_rate = LA_ADV_NEVER; + #endif + + if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips) + || ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles + || current_block->direction_bits != last_direction_bits + || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder) + ) { + TERN_(HAS_MULTI_EXTRUDER, last_moved_extruder = stepper_extruder); + TERN_(HAS_L64XX, L64XX_OK_to_power_up = true); + set_directions(current_block->direction_bits); + } + + #if ENABLED(LASER_POWER_INLINE) + const power_status_t stat = current_block->laser.status; + #if ENABLED(LASER_POWER_INLINE_TRAPEZOID) + laser_trap.enabled = stat.isPlanned && stat.isEnabled; + laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE + laser_trap.cruise_set = false; + #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT) + laser_trap.last_step_count = 0; + laser_trap.acc_step_count = current_block->laser.entry_per / 2; + #else + laser_trap.till_update = 0; + #endif + // Always have PWM in this case + if (stat.isPlanned) { // Planner controls the laser + cutter.set_ocr_power( + stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF + ); + } + #else + if (stat.isPlanned) { // Planner controls the laser + #if ENABLED(SPINDLE_LASER_PWM) + cutter.set_ocr_power( + stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF + ); + #else + cutter.set_enabled(stat.isEnabled); + #endif + } + #endif + #endif // LASER_POWER_INLINE + + // At this point, we must ensure the movement about to execute isn't + // trying to force the head against a limit switch. If using interrupt- + // driven change detection, and already against a limit then no call to + // the endstop_triggered method will be done and the movement will be + // done against the endstop. So, check the limits here: If the movement + // is against the limits, the block will be marked as to be killed, and + // on the next call to this ISR, will be discarded. + endstops.update(); + + #if ENABLED(Z_LATE_ENABLE) + // If delayed Z enable, enable it now. This option will severely interfere with + // timing between pulses when chaining motion between blocks, and it could lead + // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!! + if (current_block->steps.z) ENABLE_AXIS_Z(); + #endif + + // Mark the time_nominal as not calculated yet + ticks_nominal = -1; + + #if ENABLED(S_CURVE_ACCELERATION) + // Initialize the Bézier speed curve + _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse); + // We haven't started the 2nd half of the trapezoid + bezier_2nd_half = false; + #else + // Set as deceleration point the initial rate of the block + acc_step_rate = current_block->initial_rate; + #endif + + // Calculate the initial timer interval + interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr); + } + #if ENABLED(LASER_POWER_INLINE_CONTINUOUS) + else { // No new block found; so apply inline laser parameters + // This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed + const power_status_t stat = planner.laser_inline.status; + if (stat.isPlanned) { // Planner controls the laser + #if ENABLED(SPINDLE_LASER_PWM) + cutter.set_ocr_power( + stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF + ); + #else + cutter.set_enabled(stat.isEnabled); + #endif + } + } + #endif + } + + // Return the interval to wait + return interval; +} + +#if ENABLED(LIN_ADVANCE) + + // Timer interrupt for E. LA_steps is set in the main routine + uint32_t Stepper::advance_isr() { + uint32_t interval; + + if (LA_use_advance_lead) { + if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) { + LA_steps--; + LA_current_adv_steps--; + interval = LA_isr_rate; + } + else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) { + LA_steps++; + LA_current_adv_steps++; + interval = LA_isr_rate; + } + else + interval = LA_isr_rate = LA_ADV_NEVER; + } + else + interval = LA_ADV_NEVER; + + if (!LA_steps) return interval; // Leave pins alone if there are no steps! + + DIR_WAIT_BEFORE(); + + #if ENABLED(MIXING_EXTRUDER) + // We don't know which steppers will be stepped because LA loop follows, + // with potentially multiple steps. Set all. + if (LA_steps > 0) + MIXER_STEPPER_LOOP(j) NORM_E_DIR(j); + else if (LA_steps < 0) + MIXER_STEPPER_LOOP(j) REV_E_DIR(j); + #else + if (LA_steps > 0) + NORM_E_DIR(stepper_extruder); + else if (LA_steps < 0) + REV_E_DIR(stepper_extruder); + #endif + + DIR_WAIT_AFTER(); + + //const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS); + + // Step E stepper if we have steps + #if ISR_MULTI_STEPS + bool firstStep = true; + USING_TIMED_PULSE(); + #endif + + while (LA_steps) { + #if ISR_MULTI_STEPS + if (firstStep) + firstStep = false; + else + AWAIT_LOW_PULSE(); + #endif + + // Set the STEP pulse ON + #if ENABLED(MIXING_EXTRUDER) + E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN); + #else + E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN); + #endif + + // Enforce a minimum duration for STEP pulse ON + #if ISR_PULSE_CONTROL + START_HIGH_PULSE(); + #endif + + LA_steps < 0 ? ++LA_steps : --LA_steps; + + #if ISR_PULSE_CONTROL + AWAIT_HIGH_PULSE(); + #endif + + // Set the STEP pulse OFF + #if ENABLED(MIXING_EXTRUDER) + E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN); + #else + E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN); + #endif + + // For minimum pulse time wait before looping + // Just wait for the requested pulse duration + #if ISR_PULSE_CONTROL + if (LA_steps) START_LOW_PULSE(); + #endif + } // LA_steps + + return interval; + } + +#endif // LIN_ADVANCE + +#if ENABLED(INTEGRATED_BABYSTEPPING) + + // Timer interrupt for baby-stepping + uint32_t Stepper::babystepping_isr() { + babystep.task(); + return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER; + } + +#endif + +// Check if the given block is busy or not - Must not be called from ISR contexts +// The current_block could change in the middle of the read by an Stepper ISR, so +// we must explicitly prevent that! +bool Stepper::is_block_busy(const block_t* const block) { + #ifdef __AVR__ + // A SW memory barrier, to ensure GCC does not overoptimize loops + #define sw_barrier() asm volatile("": : :"memory"); + + // Keep reading until 2 consecutive reads return the same value, + // meaning there was no update in-between caused by an interrupt. + // This works because stepper ISRs happen at a slower rate than + // successive reads of a variable, so 2 consecutive reads with + // the same value means no interrupt updated it. + block_t* vold, *vnew = current_block; + sw_barrier(); + do { + vold = vnew; + vnew = current_block; + sw_barrier(); + } while (vold != vnew); + #else + block_t *vnew = current_block; + #endif + + // Return if the block is busy or not + return block == vnew; +} + +void Stepper::init() { + + #if MB(ALLIGATOR) + const float motor_current[] = MOTOR_CURRENT; + unsigned int digipot_motor = 0; + LOOP_L_N(i, 3 + EXTRUDERS) { + digipot_motor = 255 * (motor_current[i] / 2.5); + dac084s085::setValue(i, digipot_motor); + } + #endif + + // Init Microstepping Pins + TERN_(HAS_MICROSTEPS, microstep_init()); + + // Init Dir Pins + TERN_(HAS_X_DIR, X_DIR_INIT()); + TERN_(HAS_X2_DIR, X2_DIR_INIT()); + #if HAS_Y_DIR + Y_DIR_INIT(); + #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_DIR) + Y2_DIR_INIT(); + #endif + #endif + #if HAS_Z_DIR + Z_DIR_INIT(); + #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_DIR + Z2_DIR_INIT(); + #endif + #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_DIR + Z3_DIR_INIT(); + #endif + #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_DIR + Z4_DIR_INIT(); + #endif + #endif + #if HAS_E0_DIR + E0_DIR_INIT(); + #endif + #if HAS_E1_DIR + E1_DIR_INIT(); + #endif + #if HAS_E2_DIR + E2_DIR_INIT(); + #endif + #if HAS_E3_DIR + E3_DIR_INIT(); + #endif + #if HAS_E4_DIR + E4_DIR_INIT(); + #endif + #if HAS_E5_DIR + E5_DIR_INIT(); + #endif + #if HAS_E6_DIR + E6_DIR_INIT(); + #endif + #if HAS_E7_DIR + E7_DIR_INIT(); + #endif + + // Init Enable Pins - steppers default to disabled. + #if HAS_X_ENABLE + X_ENABLE_INIT(); + if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); + #if EITHER(DUAL_X_CARRIAGE, X_DUAL_STEPPER_DRIVERS) && HAS_X2_ENABLE + X2_ENABLE_INIT(); + if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); + #endif + #endif + #if HAS_Y_ENABLE + Y_ENABLE_INIT(); + if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); + #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_ENABLE) + Y2_ENABLE_INIT(); + if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); + #endif + #endif + #if HAS_Z_ENABLE + Z_ENABLE_INIT(); + if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); + #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_ENABLE + Z2_ENABLE_INIT(); + if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); + #endif + #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_ENABLE + Z3_ENABLE_INIT(); + if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH); + #endif + #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_ENABLE + Z4_ENABLE_INIT(); + if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH); + #endif + #endif + #if HAS_E0_ENABLE + E0_ENABLE_INIT(); + if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); + #endif + #if HAS_E1_ENABLE + E1_ENABLE_INIT(); + if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); + #endif + #if HAS_E2_ENABLE + E2_ENABLE_INIT(); + if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); + #endif + #if HAS_E3_ENABLE + E3_ENABLE_INIT(); + if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); + #endif + #if HAS_E4_ENABLE + E4_ENABLE_INIT(); + if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH); + #endif + #if HAS_E5_ENABLE + E5_ENABLE_INIT(); + if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH); + #endif + #if HAS_E6_ENABLE + E6_ENABLE_INIT(); + if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH); + #endif + #if HAS_E7_ENABLE + E7_ENABLE_INIT(); + if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH); + #endif + + #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT() + #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW) + #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS() + + #define AXIS_INIT(AXIS, PIN) \ + _STEP_INIT(AXIS); \ + _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \ + _DISABLE_AXIS(AXIS) + + #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E) + + // Init Step Pins + #if HAS_X_STEP + #if EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE) + X2_STEP_INIT(); + X2_STEP_WRITE(INVERT_X_STEP_PIN); + #endif + AXIS_INIT(X, X); + #endif + + #if HAS_Y_STEP + #if ENABLED(Y_DUAL_STEPPER_DRIVERS) + Y2_STEP_INIT(); + Y2_STEP_WRITE(INVERT_Y_STEP_PIN); + #endif + AXIS_INIT(Y, Y); + #endif + + #if HAS_Z_STEP + #if NUM_Z_STEPPER_DRIVERS >= 2 + Z2_STEP_INIT(); + Z2_STEP_WRITE(INVERT_Z_STEP_PIN); + #endif + #if NUM_Z_STEPPER_DRIVERS >= 3 + Z3_STEP_INIT(); + Z3_STEP_WRITE(INVERT_Z_STEP_PIN); + #endif + #if NUM_Z_STEPPER_DRIVERS >= 4 + Z4_STEP_INIT(); + Z4_STEP_WRITE(INVERT_Z_STEP_PIN); + #endif + AXIS_INIT(Z, Z); + #endif + + #if E_STEPPERS && HAS_E0_STEP + E_AXIS_INIT(0); + #endif + #if E_STEPPERS > 1 && HAS_E1_STEP + E_AXIS_INIT(1); + #endif + #if E_STEPPERS > 2 && HAS_E2_STEP + E_AXIS_INIT(2); + #endif + #if E_STEPPERS > 3 && HAS_E3_STEP + E_AXIS_INIT(3); + #endif + #if E_STEPPERS > 4 && HAS_E4_STEP + E_AXIS_INIT(4); + #endif + #if E_STEPPERS > 5 && HAS_E5_STEP + E_AXIS_INIT(5); + #endif + #if E_STEPPERS > 6 && HAS_E6_STEP + E_AXIS_INIT(6); + #endif + #if E_STEPPERS > 7 && HAS_E7_STEP + E_AXIS_INIT(7); + #endif + + #if DISABLED(I2S_STEPPER_STREAM) + HAL_timer_start(STEP_TIMER_NUM, 122); // Init Stepper ISR to 122 Hz for quick starting + wake_up(); + sei(); + #endif + + // Init direction bits for first moves + set_directions((INVERT_X_DIR ? _BV(X_AXIS) : 0) + | (INVERT_Y_DIR ? _BV(Y_AXIS) : 0) + | (INVERT_Z_DIR ? _BV(Z_AXIS) : 0)); + + #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM + initialized = true; + digipot_init(); + #endif +} + +/** + * Set the stepper positions directly in steps + * + * The input is based on the typical per-axis XYZ steps. + * For CORE machines XYZ needs to be translated to ABC. + * + * This allows get_axis_position_mm to correctly + * derive the current XYZ position later on. + */ +void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { + #if CORE_IS_XY + // corexy positioning + // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html + count_position.set(a + b, CORESIGN(a - b), c); + #elif CORE_IS_XZ + // corexz planning + count_position.set(a + c, b, CORESIGN(a - c)); + #elif CORE_IS_YZ + // coreyz planning + count_position.set(a, b + c, CORESIGN(b - c)); + #elif ENABLED(MARKFORGED_XY) + count_position.set(a - b, b, c); + #else + // default non-h-bot planning + count_position.set(a, b, c); + #endif + count_position.e = e; +} + +/** + * Get a stepper's position in steps. + */ +int32_t Stepper::position(const AxisEnum axis) { + #ifdef __AVR__ + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = suspend(); + #endif + + const int32_t v = count_position[axis]; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) wake_up(); + #endif + return v; +} + +// Set the current position in steps +void Stepper::set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { + planner.synchronize(); + const bool was_enabled = suspend(); + _set_position(a, b, c, e); + if (was_enabled) wake_up(); +} + +void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) { + planner.synchronize(); + + #ifdef __AVR__ + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = suspend(); + #endif + + count_position[a] = v; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) wake_up(); + #endif +} + +// Signal endstops were triggered - This function can be called from +// an ISR context (Temperature, Stepper or limits ISR), so we must +// be very careful here. If the interrupt being preempted was the +// Stepper ISR (this CAN happen with the endstop limits ISR) then +// when the stepper ISR resumes, we must be very sure that the movement +// is properly canceled +void Stepper::endstop_triggered(const AxisEnum axis) { + + const bool was_enabled = suspend(); + endstops_trigsteps[axis] = ( + #if IS_CORE + (axis == CORE_AXIS_2 + ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]) + : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2] + ) * double(0.5) + #elif ENABLED(MARKFORGED_XY) + axis == CORE_AXIS_1 + ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2] + : count_position[CORE_AXIS_2] + #else // !IS_CORE + count_position[axis] + #endif + ); + + // Discard the rest of the move if there is a current block + quick_stop(); + + if (was_enabled) wake_up(); +} + +int32_t Stepper::triggered_position(const AxisEnum axis) { + #ifdef __AVR__ + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = suspend(); + #endif + + const int32_t v = endstops_trigsteps[axis]; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) wake_up(); + #endif + + return v; +} + +void Stepper::report_a_position(const xyz_long_t &pos) { + #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, DELTA, IS_SCARA) + SERIAL_ECHOPAIR(STR_COUNT_A, pos.x, " B:", pos.y); + #else + SERIAL_ECHOPAIR_P(PSTR(STR_COUNT_X), pos.x, SP_Y_LBL, pos.y); + #endif + #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA) + SERIAL_ECHOLNPAIR(" C:", pos.z); + #else + SERIAL_ECHOLNPAIR_P(SP_Z_LBL, pos.z); + #endif +} + +void Stepper::report_positions() { + + #ifdef __AVR__ + // Protect the access to the position. + const bool was_enabled = suspend(); + #endif + + const xyz_long_t pos = count_position; + + #ifdef __AVR__ + if (was_enabled) wake_up(); + #endif + + report_a_position(pos); +} + +#if ENABLED(BABYSTEPPING) + + #define _ENABLE_AXIS(AXIS) ENABLE_AXIS_## AXIS() + #define _READ_DIR(AXIS) AXIS ##_DIR_READ() + #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR + #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true) + + #if MINIMUM_STEPPER_PULSE + #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND) + #else + #define STEP_PULSE_CYCLES 0 + #endif + + #if ENABLED(DELTA) + #define CYCLES_EATEN_BABYSTEP (2 * 15) + #else + #define CYCLES_EATEN_BABYSTEP 0 + #endif + #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP)) + + #if EXTRA_CYCLES_BABYSTEP > 20 + #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM) + #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ } + #else + #define _SAVE_START() NOOP + #if EXTRA_CYCLES_BABYSTEP > 0 + #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE) + #elif ENABLED(DELTA) + #define _PULSE_WAIT() DELAY_US(2); + #elif STEP_PULSE_CYCLES > 0 + #define _PULSE_WAIT() NOOP + #else + #define _PULSE_WAIT() DELAY_US(4); + #endif + #endif + + #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT) + #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE + #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER + #else + #define EXTRA_DIR_WAIT_BEFORE() + #define EXTRA_DIR_WAIT_AFTER() + #endif + + #if DISABLED(DELTA) + + #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \ + const uint8_t old_dir = _READ_DIR(AXIS); \ + _ENABLE_AXIS(AXIS); \ + DIR_WAIT_BEFORE(); \ + _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \ + DIR_WAIT_AFTER(); \ + _SAVE_START(); \ + _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \ + _PULSE_WAIT(); \ + _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \ + EXTRA_DIR_WAIT_BEFORE(); \ + _APPLY_DIR(AXIS, old_dir); \ + EXTRA_DIR_WAIT_AFTER(); \ + }while(0) + + #endif + + #if IS_CORE + + #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \ + const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \ + _ENABLE_AXIS(A); _ENABLE_AXIS(B); \ + DIR_WAIT_BEFORE(); \ + _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \ + _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \ + DIR_WAIT_AFTER(); \ + _SAVE_START(); \ + _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \ + _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \ + _PULSE_WAIT(); \ + _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \ + _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \ + EXTRA_DIR_WAIT_BEFORE(); \ + _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \ + EXTRA_DIR_WAIT_AFTER(); \ + }while(0) + + #endif + + // MUST ONLY BE CALLED BY AN ISR, + // No other ISR should ever interrupt this! + void Stepper::do_babystep(const AxisEnum axis, const bool direction) { + + #if DISABLED(INTEGRATED_BABYSTEPPING) + cli(); + #endif + + switch (axis) { + + #if ENABLED(BABYSTEP_XY) + + case X_AXIS: + #if CORE_IS_XY + BABYSTEP_CORE(X, Y, 0, direction, 0); + #elif CORE_IS_XZ + BABYSTEP_CORE(X, Z, 0, direction, 0); + #else + BABYSTEP_AXIS(X, 0, direction); + #endif + break; + + case Y_AXIS: + #if CORE_IS_XY + BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0)); + #elif CORE_IS_YZ + BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0)); + #else + BABYSTEP_AXIS(Y, 0, direction); + #endif + break; + + #endif + + case Z_AXIS: { + + #if CORE_IS_XZ + BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0)); + #elif CORE_IS_YZ + BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0)); + #elif DISABLED(DELTA) + BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction); + + #else // DELTA + + const bool z_direction = direction ^ BABYSTEP_INVERT_Z; + + ENABLE_AXIS_X(); + ENABLE_AXIS_Y(); + ENABLE_AXIS_Z(); + + DIR_WAIT_BEFORE(); + + const xyz_byte_t old_dir = { X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ() }; + + X_DIR_WRITE(INVERT_X_DIR ^ z_direction); + Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction); + Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction); + + DIR_WAIT_AFTER(); + + _SAVE_START(); + + X_STEP_WRITE(!INVERT_X_STEP_PIN); + Y_STEP_WRITE(!INVERT_Y_STEP_PIN); + Z_STEP_WRITE(!INVERT_Z_STEP_PIN); + + _PULSE_WAIT(); + + X_STEP_WRITE(INVERT_X_STEP_PIN); + Y_STEP_WRITE(INVERT_Y_STEP_PIN); + Z_STEP_WRITE(INVERT_Z_STEP_PIN); + + // Restore direction bits + EXTRA_DIR_WAIT_BEFORE(); + + X_DIR_WRITE(old_dir.x); + Y_DIR_WRITE(old_dir.y); + Z_DIR_WRITE(old_dir.z); + + EXTRA_DIR_WAIT_AFTER(); + + #endif + + } break; + + default: break; + } + + #if DISABLED(INTEGRATED_BABYSTEPPING) + sei(); + #endif + } + +#endif // BABYSTEPPING + +/** + * Software-controlled Stepper Motor Current + */ + +#if HAS_MOTOR_CURRENT_SPI + + // From Arduino DigitalPotControl example + void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) { + WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip + SPI.transfer(address); // Send the address and value via SPI + SPI.transfer(value); + WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip + //delay(10); + } + +#endif // HAS_MOTOR_CURRENT_SPI + +#if HAS_MOTOR_CURRENT_PWM + + void Stepper::refresh_motor_power() { + if (!initialized) return; + LOOP_L_N(i, COUNT(motor_current_setting)) { + switch (i) { + #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y) + case 0: + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) + case 1: + #endif + #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1) + case 2: + #endif + set_digipot_current(i, motor_current_setting[i]); + default: break; + } + } + } + +#endif // HAS_MOTOR_CURRENT_PWM + +#if !MB(PRINTRBOARD_G2) + + #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM + + void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) { + if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1)) + motor_current_setting[driver] = current; // update motor_current_setting + + if (!initialized) return; + + #if HAS_MOTOR_CURRENT_SPI + + //SERIAL_ECHOLNPAIR("Digipotss current ", current); + + const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; + set_digipot_value_spi(digipot_ch[driver], current); + + #elif HAS_MOTOR_CURRENT_PWM + + #define _WRITE_CURRENT_PWM(P) analogWrite(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE)) + switch (driver) { + case 0: + #if PIN_EXISTS(MOTOR_CURRENT_PWM_X) + _WRITE_CURRENT_PWM(X); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y) + _WRITE_CURRENT_PWM(Y); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) + _WRITE_CURRENT_PWM(XY); + #endif + break; + case 1: + #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) + _WRITE_CURRENT_PWM(Z); + #endif + break; + case 2: + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) + _WRITE_CURRENT_PWM(E); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0) + _WRITE_CURRENT_PWM(E0); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1) + _WRITE_CURRENT_PWM(E1); + #endif + break; + } + #endif + } + + void Stepper::digipot_init() { + + #if HAS_MOTOR_CURRENT_SPI + + SPI.begin(); + SET_OUTPUT(DIGIPOTSS_PIN); + + LOOP_L_N(i, COUNT(motor_current_setting)) + set_digipot_current(i, motor_current_setting[i]); + + #elif HAS_MOTOR_CURRENT_PWM + + #if PIN_EXISTS(MOTOR_CURRENT_PWM_X) + SET_PWM(MOTOR_CURRENT_PWM_X_PIN); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y) + SET_PWM(MOTOR_CURRENT_PWM_Y_PIN); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) + SET_PWM(MOTOR_CURRENT_PWM_XY_PIN); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) + SET_PWM(MOTOR_CURRENT_PWM_Z_PIN); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) + SET_PWM(MOTOR_CURRENT_PWM_E_PIN); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0) + SET_PWM(MOTOR_CURRENT_PWM_E0_PIN); + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1) + SET_PWM(MOTOR_CURRENT_PWM_E1_PIN); + #endif + + refresh_motor_power(); + + // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise) + #ifdef __AVR__ + SET_CS5(PRESCALER_1); + #endif + #endif + } + + #endif + +#else // PRINTRBOARD_G2 + + #include HAL_PATH(../HAL, fastio/G2_PWM.h) + +#endif + +#if HAS_MICROSTEPS + + /** + * Software-controlled Microstepping + */ + + void Stepper::microstep_init() { + #if HAS_X_MS_PINS + SET_OUTPUT(X_MS1_PIN); + SET_OUTPUT(X_MS2_PIN); + #if PIN_EXISTS(X_MS3) + SET_OUTPUT(X_MS3_PIN); + #endif + #endif + #if HAS_X2_MS_PINS + SET_OUTPUT(X2_MS1_PIN); + SET_OUTPUT(X2_MS2_PIN); + #if PIN_EXISTS(X2_MS3) + SET_OUTPUT(X2_MS3_PIN); + #endif + #endif + #if HAS_Y_MS_PINS + SET_OUTPUT(Y_MS1_PIN); + SET_OUTPUT(Y_MS2_PIN); + #if PIN_EXISTS(Y_MS3) + SET_OUTPUT(Y_MS3_PIN); + #endif + #endif + #if HAS_Y2_MS_PINS + SET_OUTPUT(Y2_MS1_PIN); + SET_OUTPUT(Y2_MS2_PIN); + #if PIN_EXISTS(Y2_MS3) + SET_OUTPUT(Y2_MS3_PIN); + #endif + #endif + #if HAS_Z_MS_PINS + SET_OUTPUT(Z_MS1_PIN); + SET_OUTPUT(Z_MS2_PIN); + #if PIN_EXISTS(Z_MS3) + SET_OUTPUT(Z_MS3_PIN); + #endif + #endif + #if HAS_Z2_MS_PINS + SET_OUTPUT(Z2_MS1_PIN); + SET_OUTPUT(Z2_MS2_PIN); + #if PIN_EXISTS(Z2_MS3) + SET_OUTPUT(Z2_MS3_PIN); + #endif + #endif + #if HAS_Z3_MS_PINS + SET_OUTPUT(Z3_MS1_PIN); + SET_OUTPUT(Z3_MS2_PIN); + #if PIN_EXISTS(Z3_MS3) + SET_OUTPUT(Z3_MS3_PIN); + #endif + #endif + #if HAS_Z4_MS_PINS + SET_OUTPUT(Z4_MS1_PIN); + SET_OUTPUT(Z4_MS2_PIN); + #if PIN_EXISTS(Z4_MS3) + SET_OUTPUT(Z4_MS3_PIN); + #endif + #endif + #if HAS_E0_MS_PINS + SET_OUTPUT(E0_MS1_PIN); + SET_OUTPUT(E0_MS2_PIN); + #if PIN_EXISTS(E0_MS3) + SET_OUTPUT(E0_MS3_PIN); + #endif + #endif + #if HAS_E1_MS_PINS + SET_OUTPUT(E1_MS1_PIN); + SET_OUTPUT(E1_MS2_PIN); + #if PIN_EXISTS(E1_MS3) + SET_OUTPUT(E1_MS3_PIN); + #endif + #endif + #if HAS_E2_MS_PINS + SET_OUTPUT(E2_MS1_PIN); + SET_OUTPUT(E2_MS2_PIN); + #if PIN_EXISTS(E2_MS3) + SET_OUTPUT(E2_MS3_PIN); + #endif + #endif + #if HAS_E3_MS_PINS + SET_OUTPUT(E3_MS1_PIN); + SET_OUTPUT(E3_MS2_PIN); + #if PIN_EXISTS(E3_MS3) + SET_OUTPUT(E3_MS3_PIN); + #endif + #endif + #if HAS_E4_MS_PINS + SET_OUTPUT(E4_MS1_PIN); + SET_OUTPUT(E4_MS2_PIN); + #if PIN_EXISTS(E4_MS3) + SET_OUTPUT(E4_MS3_PIN); + #endif + #endif + #if HAS_E5_MS_PINS + SET_OUTPUT(E5_MS1_PIN); + SET_OUTPUT(E5_MS2_PIN); + #if PIN_EXISTS(E5_MS3) + SET_OUTPUT(E5_MS3_PIN); + #endif + #endif + #if HAS_E6_MS_PINS + SET_OUTPUT(E6_MS1_PIN); + SET_OUTPUT(E6_MS2_PIN); + #if PIN_EXISTS(E6_MS3) + SET_OUTPUT(E6_MS3_PIN); + #endif + #endif + #if HAS_E7_MS_PINS + SET_OUTPUT(E7_MS1_PIN); + SET_OUTPUT(E7_MS2_PIN); + #if PIN_EXISTS(E7_MS3) + SET_OUTPUT(E7_MS3_PIN); + #endif + #endif + + static const uint8_t microstep_modes[] = MICROSTEP_MODES; + for (uint16_t i = 0; i < COUNT(microstep_modes); i++) + microstep_mode(i, microstep_modes[i]); + } + + void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) { + if (ms1 >= 0) switch (driver) { + #if HAS_X_MS_PINS || HAS_X2_MS_PINS + case 0: + #if HAS_X_MS_PINS + WRITE(X_MS1_PIN, ms1); + #endif + #if HAS_X2_MS_PINS + WRITE(X2_MS1_PIN, ms1); + #endif + break; + #endif + #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS + case 1: + #if HAS_Y_MS_PINS + WRITE(Y_MS1_PIN, ms1); + #endif + #if HAS_Y2_MS_PINS + WRITE(Y2_MS1_PIN, ms1); + #endif + break; + #endif + #if HAS_SOME_Z_MS_PINS + case 2: + #if HAS_Z_MS_PINS + WRITE(Z_MS1_PIN, ms1); + #endif + #if HAS_Z2_MS_PINS + WRITE(Z2_MS1_PIN, ms1); + #endif + #if HAS_Z3_MS_PINS + WRITE(Z3_MS1_PIN, ms1); + #endif + #if HAS_Z4_MS_PINS + WRITE(Z4_MS1_PIN, ms1); + #endif + break; + #endif + #if HAS_E0_MS_PINS + case 3: WRITE(E0_MS1_PIN, ms1); break; + #endif + #if HAS_E1_MS_PINS + case 4: WRITE(E1_MS1_PIN, ms1); break; + #endif + #if HAS_E2_MS_PINS + case 5: WRITE(E2_MS1_PIN, ms1); break; + #endif + #if HAS_E3_MS_PINS + case 6: WRITE(E3_MS1_PIN, ms1); break; + #endif + #if HAS_E4_MS_PINS + case 7: WRITE(E4_MS1_PIN, ms1); break; + #endif + #if HAS_E5_MS_PINS + case 8: WRITE(E5_MS1_PIN, ms1); break; + #endif + #if HAS_E6_MS_PINS + case 9: WRITE(E6_MS1_PIN, ms1); break; + #endif + #if HAS_E7_MS_PINS + case 10: WRITE(E7_MS1_PIN, ms1); break; + #endif + } + if (ms2 >= 0) switch (driver) { + #if HAS_X_MS_PINS || HAS_X2_MS_PINS + case 0: + #if HAS_X_MS_PINS + WRITE(X_MS2_PIN, ms2); + #endif + #if HAS_X2_MS_PINS + WRITE(X2_MS2_PIN, ms2); + #endif + break; + #endif + #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS + case 1: + #if HAS_Y_MS_PINS + WRITE(Y_MS2_PIN, ms2); + #endif + #if HAS_Y2_MS_PINS + WRITE(Y2_MS2_PIN, ms2); + #endif + break; + #endif + #if HAS_SOME_Z_MS_PINS + case 2: + #if HAS_Z_MS_PINS + WRITE(Z_MS2_PIN, ms2); + #endif + #if HAS_Z2_MS_PINS + WRITE(Z2_MS2_PIN, ms2); + #endif + #if HAS_Z3_MS_PINS + WRITE(Z3_MS2_PIN, ms2); + #endif + #if HAS_Z4_MS_PINS + WRITE(Z4_MS2_PIN, ms2); + #endif + break; + #endif + #if HAS_E0_MS_PINS + case 3: WRITE(E0_MS2_PIN, ms2); break; + #endif + #if HAS_E1_MS_PINS + case 4: WRITE(E1_MS2_PIN, ms2); break; + #endif + #if HAS_E2_MS_PINS + case 5: WRITE(E2_MS2_PIN, ms2); break; + #endif + #if HAS_E3_MS_PINS + case 6: WRITE(E3_MS2_PIN, ms2); break; + #endif + #if HAS_E4_MS_PINS + case 7: WRITE(E4_MS2_PIN, ms2); break; + #endif + #if HAS_E5_MS_PINS + case 8: WRITE(E5_MS2_PIN, ms2); break; + #endif + #if HAS_E6_MS_PINS + case 9: WRITE(E6_MS2_PIN, ms2); break; + #endif + #if HAS_E7_MS_PINS + case 10: WRITE(E7_MS2_PIN, ms2); break; + #endif + } + if (ms3 >= 0) switch (driver) { + #if HAS_X_MS_PINS || HAS_X2_MS_PINS + case 0: + #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3) + WRITE(X_MS3_PIN, ms3); + #endif + #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3) + WRITE(X2_MS3_PIN, ms3); + #endif + break; + #endif + #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS + case 1: + #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3) + WRITE(Y_MS3_PIN, ms3); + #endif + #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3) + WRITE(Y2_MS3_PIN, ms3); + #endif + break; + #endif + #if HAS_SOME_Z_MS_PINS + case 2: + #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3) + WRITE(Z_MS3_PIN, ms3); + #endif + #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3) + WRITE(Z2_MS3_PIN, ms3); + #endif + #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3) + WRITE(Z3_MS3_PIN, ms3); + #endif + #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3) + WRITE(Z4_MS3_PIN, ms3); + #endif + break; + #endif + #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3) + case 3: WRITE(E0_MS3_PIN, ms3); break; + #endif + #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3) + case 4: WRITE(E1_MS3_PIN, ms3); break; + #endif + #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3) + case 5: WRITE(E2_MS3_PIN, ms3); break; + #endif + #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3) + case 6: WRITE(E3_MS3_PIN, ms3); break; + #endif + #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3) + case 7: WRITE(E4_MS3_PIN, ms3); break; + #endif + #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3) + case 8: WRITE(E5_MS3_PIN, ms3); break; + #endif + #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3) + case 9: WRITE(E6_MS3_PIN, ms3); break; + #endif + #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3) + case 10: WRITE(E7_MS3_PIN, ms3); break; + #endif + } + } + + void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) { + switch (stepping_mode) { + #if HAS_MICROSTEP1 + case 1: microstep_ms(driver, MICROSTEP1); break; + #endif + #if HAS_MICROSTEP2 + case 2: microstep_ms(driver, MICROSTEP2); break; + #endif + #if HAS_MICROSTEP4 + case 4: microstep_ms(driver, MICROSTEP4); break; + #endif + #if HAS_MICROSTEP8 + case 8: microstep_ms(driver, MICROSTEP8); break; + #endif + #if HAS_MICROSTEP16 + case 16: microstep_ms(driver, MICROSTEP16); break; + #endif + #if HAS_MICROSTEP32 + case 32: microstep_ms(driver, MICROSTEP32); break; + #endif + #if HAS_MICROSTEP64 + case 64: microstep_ms(driver, MICROSTEP64); break; + #endif + #if HAS_MICROSTEP128 + case 128: microstep_ms(driver, MICROSTEP128); break; + #endif + + default: SERIAL_ERROR_MSG("Microsteps unavailable"); break; + } + } + + void Stepper::microstep_readings() { + #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN)) + #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0) + SERIAL_ECHOPGM("MS1|2|3 Pins"); + #if HAS_X_MS_PINS + MS_LINE(X); + #if PIN_EXISTS(X_MS3) + PIN_CHAR(X_MS3); + #endif + #endif + #if HAS_Y_MS_PINS + MS_LINE(Y); + #if PIN_EXISTS(Y_MS3) + PIN_CHAR(Y_MS3); + #endif + #endif + #if HAS_Z_MS_PINS + MS_LINE(Z); + #if PIN_EXISTS(Z_MS3) + PIN_CHAR(Z_MS3); + #endif + #endif + #if HAS_E0_MS_PINS + MS_LINE(E0); + #if PIN_EXISTS(E0_MS3) + PIN_CHAR(E0_MS3); + #endif + #endif + #if HAS_E1_MS_PINS + MS_LINE(E1); + #if PIN_EXISTS(E1_MS3) + PIN_CHAR(E1_MS3); + #endif + #endif + #if HAS_E2_MS_PINS + MS_LINE(E2); + #if PIN_EXISTS(E2_MS3) + PIN_CHAR(E2_MS3); + #endif + #endif + #if HAS_E3_MS_PINS + MS_LINE(E3); + #if PIN_EXISTS(E3_MS3) + PIN_CHAR(E3_MS3); + #endif + #endif + #if HAS_E4_MS_PINS + MS_LINE(E4); + #if PIN_EXISTS(E4_MS3) + PIN_CHAR(E4_MS3); + #endif + #endif + #if HAS_E5_MS_PINS + MS_LINE(E5); + #if PIN_EXISTS(E5_MS3) + PIN_CHAR(E5_MS3); + #endif + #endif + #if HAS_E6_MS_PINS + MS_LINE(E6); + #if PIN_EXISTS(E6_MS3) + PIN_CHAR(E6_MS3); + #endif + #endif + #if HAS_E7_MS_PINS + MS_LINE(E7); + #if PIN_EXISTS(E7_MS3) + PIN_CHAR(E7_MS3); + #endif + #endif + SERIAL_EOL(); + } + +#endif // HAS_MICROSTEPS -- cgit v1.2.3