/** * \file * * \brief Commonly used includes, types and macros. * * Copyright (c) 2010-2016 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit Atmel Support */ #ifndef UTILS_COMPILER_H #define UTILS_COMPILER_H #include #include #include "arduino_due_x.h" #include "conf_clock.h" #ifdef SAM3XA_SERIES #define SAM3XA 1 #endif #define UDD_NO_SLEEP_MGR 1 #define pmc_is_wakeup_clocks_restored() true #undef udd_get_endpoint_size_max #define UDD_USB_INT_FUN USBD_ISR /** * \defgroup group_sam_utils Compiler abstraction layer and code utilities * * Compiler abstraction layer and code utilities for AT91SAM. * This module provides various abstraction layers and utilities to make code compatible between different compilers. * * \{ */ #include #if (defined __ICCARM__) # include #endif #include #include "preprocessor.h" //_____ D E C L A R A T I O N S ____________________________________________ #ifndef __ASSEMBLY__ // Not defined for assembling. #include #include #include #include #ifdef __ICCARM__ /*! \name Compiler Keywords * * Port of some keywords from GCC to IAR Embedded Workbench. */ //! @{ #define __asm__ asm #define __inline__ inline #define __volatile__ //! @} #endif #define FUNC_PTR void * /** * \def UNUSED * \brief Marking \a v as a unused parameter or value. */ #ifndef UNUSED #define UNUSED(x) ((void)(x)) #endif /** * \def unused * \brief Marking \a v as a unused parameter or value. */ #define unused(v) do { (void)(v); }while(0) /** * \def barrier * \brief Memory barrier */ #define barrier() __DMB() /** * \brief Emit the compiler pragma \a arg. * * \param arg The pragma directive as it would appear after \e \#pragma * (i.e. not stringified). */ #define COMPILER_PRAGMA(arg) _Pragma(#arg) /** * \def COMPILER_PACK_SET(alignment) * \brief Set maximum alignment for subsequent struct and union * definitions to \a alignment. */ #define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment)) /** * \def COMPILER_PACK_RESET() * \brief Set default alignment for subsequent struct and union * definitions. */ #define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack()) /** * \brief Set aligned boundary. */ #if (defined __GNUC__) || (defined __CC_ARM) # define COMPILER_ALIGNED(a) __attribute__((__aligned__(a))) #elif (defined __ICCARM__) # define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a) #endif /** * \brief Set word-aligned boundary. */ #if (defined __GNUC__) || defined(__CC_ARM) #define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4))) #elif (defined __ICCARM__) #define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4) #endif /** * \def __always_inline * \brief The function should always be inlined. * * This annotation instructs the compiler to ignore its inlining * heuristics and inline the function no matter how big it thinks it * becomes. */ #ifdef __CC_ARM # define __always_inline __forceinline #elif (defined __GNUC__) #ifdef __always_inline # undef __always_inline #endif # define __always_inline inline __attribute__((__always_inline__)) #elif (defined __ICCARM__) # define __always_inline _Pragma("inline=forced") #endif /** * \def __no_inline * \brief The function should not be inlined. * * This annotation instructs the compiler to ignore its inlining * heuristics and not inline the function. */ #ifdef __CC_ARM # define __no_inline __attribute__((noinline)) #elif (defined __GNUC__) # define __no_inline __attribute__((__noinline__)) #elif (defined __ICCARM__) # define __no_inline _Pragma("inline=never") #endif /*! \brief This macro is used to test fatal errors. * * The macro tests if the expression is false. If it is, a fatal error is * detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO * is defined, a unit test version of the macro is used, to allow execution * of further tests after a false expression. * * \param expr Expression to evaluate and supposed to be nonzero. */ #ifdef _ASSERT_ENABLE_ # if defined(TEST_SUITE_DEFINE_ASSERT_MACRO) // Assert() is defined in unit_test/suite.h # include "unit_test/suite.h" # else #undef TEST_SUITE_DEFINE_ASSERT_MACRO # define Assert(expr) \ {\ if (!(expr)) while (true);\ } # endif #else # define Assert(expr) ((void) 0) #endif /* Define WEAK attribute */ #if defined ( __CC_ARM ) /* Keil µVision 4 */ # define WEAK __attribute__ ((weak)) #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define WEAK __weak #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define WEAK __attribute__ ((weak)) #endif /* Define NO_INIT attribute */ #if 0 //ndef NO_INIT #ifdef __CC_ARM # define NO_INIT __attribute__((zero_init)) #elif defined ( __ICCARM__ ) # define NO_INIT __no_init #elif defined ( __GNUC__ ) # define NO_INIT __attribute__((section(".no_init"))) #endif #endif /* Define RAMFUNC attribute */ #if defined ( __CC_ARM ) /* Keil µVision 4 */ # define RAMFUNC __attribute__ ((section(".ramfunc"))) #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define RAMFUNC __ramfunc #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define RAMFUNC __attribute__ ((section(".ramfunc"))) #endif /* Define OPTIMIZE_HIGH attribute */ #if defined ( __CC_ARM ) /* Keil µVision 4 */ # define OPTIMIZE_HIGH _Pragma("O3") #elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ # define OPTIMIZE_HIGH _Pragma("optimize=high") #elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ # define OPTIMIZE_HIGH __attribute__((optimize("s"))) #endif /*! \name Usual Types */ //! @{ typedef unsigned char Bool; //!< Boolean. #ifndef __cplusplus #ifndef __bool_true_false_are_defined typedef unsigned char bool; //!< Boolean. #endif #endif typedef int8_t S8 ; //!< 8-bit signed integer. typedef uint8_t U8 ; //!< 8-bit unsigned integer. typedef int16_t S16; //!< 16-bit signed integer. typedef uint16_t U16; //!< 16-bit unsigned integer. typedef uint16_t le16_t; typedef uint16_t be16_t; typedef int32_t S32; //!< 32-bit signed integer. typedef uint32_t U32; //!< 32-bit unsigned integer. typedef uint32_t le32_t; typedef uint32_t be32_t; typedef int64_t S64; //!< 64-bit signed integer. typedef uint64_t U64; //!< 64-bit unsigned integer. typedef float F32; //!< 32-bit floating-point number. typedef double F64; //!< 64-bit floating-point number. typedef uint32_t iram_size_t; //! @} /*! \name Status Types */ //! @{ typedef bool Status_bool_t; //!< Boolean status. typedef U8 Status_t; //!< 8-bit-coded status. //! @} /*! \name Aliasing Aggregate Types */ //! @{ //! 16-bit union. typedef union { S16 s16 ; U16 u16 ; S8 s8 [2]; U8 u8 [2]; } Union16; //! 32-bit union. typedef union { S32 s32 ; U32 u32 ; S16 s16[2]; U16 u16[2]; S8 s8 [4]; U8 u8 [4]; } Union32; //! 64-bit union. typedef union { S64 s64 ; U64 u64 ; S32 s32[2]; U32 u32[2]; S16 s16[4]; U16 u16[4]; S8 s8 [8]; U8 u8 [8]; } Union64; //! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. typedef union { S64 *s64ptr; U64 *u64ptr; S32 *s32ptr; U32 *u32ptr; S16 *s16ptr; U16 *u16ptr; S8 *s8ptr ; U8 *u8ptr ; } UnionPtr; //! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef union { volatile S64 *s64ptr; volatile U64 *u64ptr; volatile S32 *s32ptr; volatile U32 *u32ptr; volatile S16 *s16ptr; volatile U16 *u16ptr; volatile S8 *s8ptr ; volatile U8 *u8ptr ; } UnionVPtr; //! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. typedef union { const S64 *s64ptr; const U64 *u64ptr; const S32 *s32ptr; const U32 *u32ptr; const S16 *s16ptr; const U16 *u16ptr; const S8 *s8ptr ; const U8 *u8ptr ; } UnionCPtr; //! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef union { const volatile S64 *s64ptr; const volatile U64 *u64ptr; const volatile S32 *s32ptr; const volatile U32 *u32ptr; const volatile S16 *s16ptr; const volatile U16 *u16ptr; const volatile S8 *s8ptr ; const volatile U8 *u8ptr ; } UnionCVPtr; //! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { S64 *s64ptr; U64 *u64ptr; S32 *s32ptr; U32 *u32ptr; S16 *s16ptr; U16 *u16ptr; S8 *s8ptr ; U8 *u8ptr ; } StructPtr; //! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { volatile S64 *s64ptr; volatile U64 *u64ptr; volatile S32 *s32ptr; volatile U32 *u32ptr; volatile S16 *s16ptr; volatile U16 *u16ptr; volatile S8 *s8ptr ; volatile U8 *u8ptr ; } StructVPtr; //! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { const S64 *s64ptr; const U64 *u64ptr; const S32 *s32ptr; const U32 *u32ptr; const S16 *s16ptr; const U16 *u16ptr; const S8 *s8ptr ; const U8 *u8ptr ; } StructCPtr; //! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. typedef struct { const volatile S64 *s64ptr; const volatile U64 *u64ptr; const volatile S32 *s32ptr; const volatile U32 *u32ptr; const volatile S16 *s16ptr; const volatile U16 *u16ptr; const volatile S8 *s8ptr ; const volatile U8 *u8ptr ; } StructCVPtr; //! @} #endif // #ifndef __ASSEMBLY__ /*! \name Usual Constants */ //! @{ #define DISABLE 0 #define ENABLE 1 #ifndef __cplusplus #ifndef __bool_true_false_are_defined #define false (1==0) #define true (1==1) #endif #endif #ifndef PASS #define PASS 0 #endif #ifndef FAIL #define FAIL 1 #endif #ifndef LOW #define LOW 0x0 #endif #ifndef HIGH #define HIGH 0x1 #endif //! @} #ifndef __ASSEMBLY__ // not for assembling. //! \name Optimization Control //@{ /** * \def likely(exp) * \brief The expression \a exp is likely to be true */ #ifndef likely # define likely(exp) (exp) #endif /** * \def unlikely(exp) * \brief The expression \a exp is unlikely to be true */ #ifndef unlikely # define unlikely(exp) (exp) #endif /** * \def is_constant(exp) * \brief Determine if an expression evaluates to a constant value. * * \param exp Any expression * * \return true if \a exp is constant, false otherwise. */ #if (defined __GNUC__) || (defined __CC_ARM) # define is_constant(exp) __builtin_constant_p(exp) #else # define is_constant(exp) (0) #endif //! @} /*! \name Bit-Field Handling */ //! @{ /*! \brief Reads the bits of a value specified by a given bit-mask. * * \param value Value to read bits from. * \param mask Bit-mask indicating bits to read. * * \return Read bits. */ #define Rd_bits( value, mask) ((value) & (mask)) /*! \brief Writes the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue to write bits to. * \param mask Bit-mask indicating bits to write. * \param bits Bits to write. * * \return Resulting value with written bits. */ #define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\ ((bits ) & (mask))) /*! \brief Tests the bits of a value specified by a given bit-mask. * * \param value Value of which to test bits. * \param mask Bit-mask indicating bits to test. * * \return \c 1 if at least one of the tested bits is set, else \c 0. */ #define Tst_bits( value, mask) (Rd_bits(value, mask) != 0) /*! \brief Clears the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue of which to clear bits. * \param mask Bit-mask indicating bits to clear. * * \return Resulting value with cleared bits. */ #define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask)) /*! \brief Sets the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue of which to set bits. * \param mask Bit-mask indicating bits to set. * * \return Resulting value with set bits. */ #define Set_bits(lvalue, mask) ((lvalue) |= (mask)) /*! \brief Toggles the bits of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue of which to toggle bits. * \param mask Bit-mask indicating bits to toggle. * * \return Resulting value with toggled bits. */ #define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask)) /*! \brief Reads the bit-field of a value specified by a given bit-mask. * * \param value Value to read a bit-field from. * \param mask Bit-mask indicating the bit-field to read. * * \return Read bit-field. */ #define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask)) /*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask. * * \param lvalue C lvalue to write a bit-field to. * \param mask Bit-mask indicating the bit-field to write. * \param bitfield Bit-field to write. * * \return Resulting value with written bit-field. */ #define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask))) //! @} /*! \name Zero-Bit Counting * * Under GCC, __builtin_clz and __builtin_ctz behave like macros when * applied to constant expressions (values known at compile time), so they are * more optimized than the use of the corresponding assembly instructions and * they can be used as constant expressions e.g. to initialize objects having * static storage duration, and like the corresponding assembly instructions * when applied to non-constant expressions (values unknown at compile time), so * they are more optimized than an assembly periphrasis. Hence, clz and ctz * ensure a possible and optimized behavior for both constant and non-constant * expressions. */ //! @{ /*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer. * * \param u Value of which to count the leading zero bits. * * \return The count of leading zero bits in \a u. */ #ifndef clz #if (defined __GNUC__) || (defined __CC_ARM) # define clz(u) ((u) ? __builtin_clz(u) : 32) #elif (defined __ICCARM__) # define clz(u) ((u) ? __CLZ(u) : 32) #else # define clz(u) (((u) == 0) ? 32 : \ ((u) & (1UL << 31)) ? 0 : \ ((u) & (1UL << 30)) ? 1 : \ ((u) & (1UL << 29)) ? 2 : \ ((u) & (1UL << 28)) ? 3 : \ ((u) & (1UL << 27)) ? 4 : \ ((u) & (1UL << 26)) ? 5 : \ ((u) & (1UL << 25)) ? 6 : \ ((u) & (1UL << 24)) ? 7 : \ ((u) & (1UL << 23)) ? 8 : \ ((u) & (1UL << 22)) ? 9 : \ ((u) & (1UL << 21)) ? 10 : \ ((u) & (1UL << 20)) ? 11 : \ ((u) & (1UL << 19)) ? 12 : \ ((u) & (1UL << 18)) ? 13 : \ ((u) & (1UL << 17)) ? 14 : \ ((u) & (1UL << 16)) ? 15 : \ ((u) & (1UL << 15)) ? 16 : \ ((u) & (1UL << 14)) ? 17 : \ ((u) & (1UL << 13)) ? 18 : \ ((u) & (1UL << 12)) ? 19 : \ ((u) & (1UL << 11)) ? 20 : \ ((u) & (1UL << 10)) ? 21 : \ ((u) & (1UL << 9)) ? 22 : \ ((u) & (1UL << 8)) ? 23 : \ ((u) & (1UL << 7)) ? 24 : \ ((u) & (1UL << 6)) ? 25 : \ ((u) & (1UL << 5)) ? 26 : \ ((u) & (1UL << 4)) ? 27 : \ ((u) & (1UL << 3)) ? 28 : \ ((u) & (1UL << 2)) ? 29 : \ ((u) & (1UL << 1)) ? 30 : \ 31) #endif #endif /*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer. * * \param u Value of which to count the trailing zero bits. * * \return The count of trailing zero bits in \a u. */ #ifndef ctz #if (defined __GNUC__) || (defined __CC_ARM) # define ctz(u) ((u) ? __builtin_ctz(u) : 32) #else # define ctz(u) ((u) & (1UL << 0) ? 0 : \ (u) & (1UL << 1) ? 1 : \ (u) & (1UL << 2) ? 2 : \ (u) & (1UL << 3) ? 3 : \ (u) & (1UL << 4) ? 4 : \ (u) & (1UL << 5) ? 5 : \ (u) & (1UL << 6) ? 6 : \ (u) & (1UL << 7) ? 7 : \ (u) & (1UL << 8) ? 8 : \ (u) & (1UL << 9) ? 9 : \ (u) & (1UL << 10) ? 10 : \ (u) & (1UL << 11) ? 11 : \ (u) & (1UL << 12) ? 12 : \ (u) & (1UL << 13) ? 13 : \ (u) & (1UL << 14) ? 14 : \ (u) & (1UL << 15) ? 15 : \ (u) & (1UL << 16) ? 16 : \ (u) & (1UL << 17) ? 17 : \ (u) & (1UL << 18) ? 18 : \ (u) & (1UL << 19) ? 19 : \ (u) & (1UL << 20) ? 20 : \ (u) & (1UL << 21) ? 21 : \ (u) & (1UL << 22) ? 22 : \ (u) & (1UL << 23) ? 23 : \ (u) & (1UL << 24) ? 24 : \ (u) & (1UL << 25) ? 25 : \ (u) & (1UL << 26) ? 26 : \ (u) & (1UL << 27) ? 27 : \ (u) & (1UL << 28) ? 28 : \ (u) & (1UL << 29) ? 29 : \ (u) & (1UL << 30) ? 30 : \ (u) & (1UL << 31) ? 31 : \ 32) #endif #endif //! @} /*! \name Bit Reversing */ //! @{ /*! \brief Reverses the bits of \a u8. * * \param u8 U8 of which to reverse the bits. * * \return Value resulting from \a u8 with reversed bits. */ #define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24)) /*! \brief Reverses the bits of \a u16. * * \param u16 U16 of which to reverse the bits. * * \return Value resulting from \a u16 with reversed bits. */ #define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16)) /*! \brief Reverses the bits of \a u32. * * \param u32 U32 of which to reverse the bits. * * \return Value resulting from \a u32 with reversed bits. */ #define bit_reverse32(u32) __RBIT(u32) /*! \brief Reverses the bits of \a u64. * * \param u64 U64 of which to reverse the bits. * * \return Value resulting from \a u64 with reversed bits. */ #define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\ ((U64)bit_reverse32((U64)(u64)) << 32))) //! @} /*! \name Alignment */ //! @{ /*! \brief Tests alignment of the number \a val with the \a n boundary. * * \param val Input value. * \param n Boundary. * * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0. */ #define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) ) /*! \brief Gets alignment of the number \a val with respect to the \a n boundary. * * \param val Input value. * \param n Boundary. * * \return Alignment of the number \a val with respect to the \a n boundary. */ #define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) ) /*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary. * * \param lval Input/output lvalue. * \param n Boundary. * \param alg Alignment. * * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary. */ #define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) ) /*! \brief Aligns the number \a val with the upper \a n boundary. * * \param val Input value. * \param n Boundary. * * \return Value resulting from the number \a val aligned with the upper \a n boundary. */ #define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1)) /*! \brief Aligns the number \a val with the lower \a n boundary. * * \param val Input value. * \param n Boundary. * * \return Value resulting from the number \a val aligned with the lower \a n boundary. */ #define Align_down(val, n ) ( (val) & ~((n) - 1)) //! @} /*! \brief Calls the routine at address \a addr. * * It generates a long call opcode. * * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if * it is invoked from the CPU supervisor mode. * * \param addr Address of the routine to call. * * \note It may be used as a long jump opcode in some special cases. */ #define Long_call(addr) ((*(void (*)(void))(addr))()) /*! \name MCU Endianism Handling * ARM is MCU little endianism. */ //! @{ #define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16. #define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16. #define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32. #define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32. #define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32. #define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32. #define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32. #define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32. #define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32. #define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32. #define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32. #define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32. #define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64. #define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64. #define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64. #define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64. #define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64. #define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64. #define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64. #define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64. #define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64. #define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64. #define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64. #define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64. #define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64. #define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64. #define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64. #define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64. #define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64. #define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64. #define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64. #define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64. #define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64. #define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64. #define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64. #define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64. #define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64. #define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64. #define BE16(x) swap16(x) #define LE16(x) (x) #define le16_to_cpu(x) (x) #define cpu_to_le16(x) (x) #define LE16_TO_CPU(x) (x) #define CPU_TO_LE16(x) (x) #define be16_to_cpu(x) swap16(x) #define cpu_to_be16(x) swap16(x) #define BE16_TO_CPU(x) swap16(x) #define CPU_TO_BE16(x) swap16(x) #define le32_to_cpu(x) (x) #define cpu_to_le32(x) (x) #define LE32_TO_CPU(x) (x) #define CPU_TO_LE32(x) (x) #define be32_to_cpu(x) swap32(x) #define cpu_to_be32(x) swap32(x) #define BE32_TO_CPU(x) swap32(x) #define CPU_TO_BE32(x) swap32(x) //! @} /*! \name Endianism Conversion * * The same considerations as for clz and ctz apply here but GCC's * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when * applied to constant expressions, so two sets of macros are defined here: * - Swap16, Swap32 and Swap64 to apply to constant expressions (values known * at compile time); * - swap16, swap32 and swap64 to apply to non-constant expressions (values * unknown at compile time). */ //! @{ /*! \brief Toggles the endianism of \a u16 (by swapping its bytes). * * \param u16 U16 of which to toggle the endianism. * * \return Value resulting from \a u16 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\ ((U16)(u16) << 8))) /*! \brief Toggles the endianism of \a u32 (by swapping its bytes). * * \param u32 U32 of which to toggle the endianism. * * \return Value resulting from \a u32 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\ ((U32)Swap16((U32)(u32)) << 16))) /*! \brief Toggles the endianism of \a u64 (by swapping its bytes). * * \param u64 U64 of which to toggle the endianism. * * \return Value resulting from \a u64 with toggled endianism. * * \note More optimized if only used with values known at compile time. */ #define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\ ((U64)Swap32((U64)(u64)) << 32))) /*! \brief Toggles the endianism of \a u16 (by swapping its bytes). * * \param u16 U16 of which to toggle the endianism. * * \return Value resulting from \a u16 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #define swap16(u16) Swap16(u16) /*! \brief Toggles the endianism of \a u32 (by swapping its bytes). * * \param u32 U32 of which to toggle the endianism. * * \return Value resulting from \a u32 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #if (defined __GNUC__) # define swap32(u32) ((U32)__builtin_bswap32((U32)(u32))) #else # define swap32(u32) Swap32(u32) #endif /*! \brief Toggles the endianism of \a u64 (by swapping its bytes). * * \param u64 U64 of which to toggle the endianism. * * \return Value resulting from \a u64 with toggled endianism. * * \note More optimized if only used with values unknown at compile time. */ #if (defined __GNUC__) # define swap64(u64) ((U64)__builtin_bswap64((U64)(u64))) #else # define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\ ((U64)swap32((U64)(u64)) << 32))) #endif //! @} /*! \name Target Abstraction */ //! @{ #define _GLOBEXT_ extern //!< extern storage-class specifier. #define _CONST_TYPE_ const //!< const type qualifier. #define _MEM_TYPE_SLOW_ //!< Slow memory type. #define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type. #define _MEM_TYPE_FAST_ //!< Fast memory type. typedef U8 Byte; //!< 8-bit unsigned integer. #define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM. #define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM. #define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM. #define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM. #define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32. #define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32. #define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32. #define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32. #define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32. #define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32. #define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32. #define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32. //! @} /** * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using * integer arithmetic. * * \param a An integer * \param b Another integer * * \return (\a a / \a b) rounded up to the nearest integer. */ #define div_ceil(a, b) (((a) + (b) - 1) / (b)) #endif // #ifndef __ASSEMBLY__ #ifdef __ICCARM__ #define SHORTENUM __packed #elif defined(__GNUC__) #define SHORTENUM __attribute__((packed)) #endif /* No operation */ #ifdef __ICCARM__ #define nop() __no_operation() #elif defined(__GNUC__) #define nop() (__NOP()) #endif #define FLASH_DECLARE(x) const x #define FLASH_EXTERN(x) extern const x #define PGM_READ_BYTE(x) *(x) #define PGM_READ_WORD(x) *(x) #define PGM_READ_DWORD(x) *(x) #define MEMCPY_ENDIAN memcpy #define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len)) /*Defines the Flash Storage for the request and response of MAC*/ #define CMD_ID_OCTET (0) /* Converting of values from CPU endian to little endian. */ #define CPU_ENDIAN_TO_LE16(x) (x) #define CPU_ENDIAN_TO_LE32(x) (x) #define CPU_ENDIAN_TO_LE64(x) (x) /* Converting of values from little endian to CPU endian. */ #define LE16_TO_CPU_ENDIAN(x) (x) #define LE32_TO_CPU_ENDIAN(x) (x) #define LE64_TO_CPU_ENDIAN(x) (x) /* Converting of constants from little endian to CPU endian. */ #define CLE16_TO_CPU_ENDIAN(x) (x) #define CLE32_TO_CPU_ENDIAN(x) (x) #define CLE64_TO_CPU_ENDIAN(x) (x) /* Converting of constants from CPU endian to little endian. */ #define CCPU_ENDIAN_TO_LE16(x) (x) #define CCPU_ENDIAN_TO_LE32(x) (x) #define CCPU_ENDIAN_TO_LE64(x) (x) #define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src)) #define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src)) /** * @brief Converts a 64-Bit value into a 8 Byte array * * @param[in] value 64-Bit value * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value * @ingroup apiPalApi */ static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data) { uint8_t val_index = 0; while (val_index < 8) { data[val_index++] = value & 0xFF; value = value >> 8; } } /** * @brief Converts a 16-Bit value into a 2 Byte array * * @param[in] value 16-Bit value * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value * @ingroup apiPalApi */ static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* Converts a 16-Bit value into a 2 Byte array */ static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* Converts a 16-Bit value into a 2 Byte array */ static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data) { data[0] = value & 0xFF; data[1] = (value >> 8) & 0xFF; } /* * @brief Converts a 2 Byte array into a 16-Bit value * * @param data Specifies the pointer to the 2 Byte array * * @return 16-Bit value * @ingroup apiPalApi */ static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data) { return (data[0] | ((uint16_t)data[1] << 8)); } /* Converts a 8 Byte array into a 32-Bit value */ static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data) { union { uint32_t u32; uint8_t u8[8]; }long_addr; uint8_t index; for (index = 0; index < 4; index++) { long_addr.u8[index] = *data++; } return long_addr.u32; } /** * @brief Converts a 8 Byte array into a 64-Bit value * * @param data Specifies the pointer to the 8 Byte array * * @return 64-Bit value * @ingroup apiPalApi */ static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data) { union { uint64_t u64; uint8_t u8[8]; } long_addr; uint8_t val_index; for (val_index = 0; val_index < 8; val_index++) { long_addr.u8[val_index] = *data++; } return long_addr.u64; } /** * \} */ #endif /* UTILS_COMPILER_H */