/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (c) 2017 Victor Perez
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#ifdef __STM32F1__
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
uint8_t ServoCount = 0;
#include "Servo.h"
//#include "Servo.h"
#include
#include
#include
#include
/**
* 20 millisecond period config. For a 1-based prescaler,
*
* (prescaler * overflow / CYC_MSEC) msec = 1 timer cycle = 20 msec
* => prescaler * overflow = 20 * CYC_MSEC
*
* This uses the smallest prescaler that allows an overflow < 2^16.
*/
#define MAX_OVERFLOW UINT16_MAX // _BV(16) - 1
#define CYC_MSEC (1000 * CYCLES_PER_MICROSECOND)
#define TAU_MSEC 20
#define TAU_USEC (TAU_MSEC * 1000)
#define TAU_CYC (TAU_MSEC * CYC_MSEC)
#define SERVO_PRESCALER (TAU_CYC / MAX_OVERFLOW + 1)
#define SERVO_OVERFLOW ((uint16_t)round((double)TAU_CYC / SERVO_PRESCALER))
// Unit conversions
#define US_TO_COMPARE(us) uint16_t(map((us), 0, TAU_USEC, 0, SERVO_OVERFLOW))
#define COMPARE_TO_US(c) uint32_t(map((c), 0, SERVO_OVERFLOW, 0, TAU_USEC))
#define ANGLE_TO_US(a) uint16_t(map((a), minAngle, maxAngle, SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW))
#define US_TO_ANGLE(us) int16_t(map((us), SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW, minAngle, maxAngle))
void libServo::servoWrite(uint8_t inPin, uint16_t duty_cycle) {
#ifdef SERVO0_TIMER_NUM
if (servoIndex == 0) {
pwmSetDuty(duty_cycle);
return;
}
#endif
timer_dev *tdev = PIN_MAP[inPin].timer_device;
uint8_t tchan = PIN_MAP[inPin].timer_channel;
if (tdev) timer_set_compare(tdev, tchan, duty_cycle);
}
libServo::libServo() {
servoIndex = ServoCount < MAX_SERVOS ? ServoCount++ : INVALID_SERVO;
timer_set_interrupt_priority(SERVO0_TIMER_NUM, SERVO0_TIMER_IRQ_PRIO);
}
bool libServo::attach(const int32_t inPin, const int32_t inMinAngle, const int32_t inMaxAngle) {
if (servoIndex >= MAX_SERVOS) return false;
if (inPin >= BOARD_NR_GPIO_PINS) return false;
minAngle = inMinAngle;
maxAngle = inMaxAngle;
angle = -1;
#ifdef SERVO0_TIMER_NUM
if (servoIndex == 0 && setupSoftPWM(inPin)) {
pin = inPin; // set attached()
return true;
}
#endif
if (!PWM_PIN(inPin)) return false;
timer_dev *tdev = PIN_MAP[inPin].timer_device;
//uint8_t tchan = PIN_MAP[inPin].timer_channel;
SET_PWM(inPin);
servoWrite(inPin, 0);
timer_pause(tdev);
timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based
timer_set_reload(tdev, SERVO_OVERFLOW);
timer_generate_update(tdev);
timer_resume(tdev);
pin = inPin; // set attached()
return true;
}
bool libServo::detach() {
if (!attached()) return false;
angle = -1;
servoWrite(pin, 0);
return true;
}
int32_t libServo::read() const {
if (attached()) {
#ifdef SERVO0_TIMER_NUM
if (servoIndex == 0) return angle;
#endif
timer_dev *tdev = PIN_MAP[pin].timer_device;
uint8_t tchan = PIN_MAP[pin].timer_channel;
return US_TO_ANGLE(COMPARE_TO_US(timer_get_compare(tdev, tchan)));
}
return 0;
}
void libServo::move(const int32_t value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (attached()) {
angle = constrain(value, minAngle, maxAngle);
servoWrite(pin, US_TO_COMPARE(ANGLE_TO_US(angle)));
safe_delay(servo_delay[servoIndex]);
TERN_(DEACTIVATE_SERVOS_AFTER_MOVE, detach());
}
}
#ifdef SERVO0_TIMER_NUM
extern "C" void Servo_IRQHandler() {
static timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM);
uint16_t SR = timer_get_status(tdev);
if (SR & TIMER_SR_CC1IF) { // channel 1 off
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(SERVO0_PIN, 1); // off
#else
OUT_WRITE(SERVO0_PIN, 0);
#endif
timer_reset_status_bit(tdev, TIMER_SR_CC1IF_BIT);
}
if (SR & TIMER_SR_CC2IF) { // channel 2 resume
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(SERVO0_PIN, 0); // on
#else
OUT_WRITE(SERVO0_PIN, 1);
#endif
timer_reset_status_bit(tdev, TIMER_SR_CC2IF_BIT);
}
}
bool libServo::setupSoftPWM(const int32_t inPin) {
timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM);
if (!tdev) return false;
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(inPin, 1);
#else
OUT_WRITE(inPin, 0);
#endif
timer_pause(tdev);
timer_set_mode(tdev, 1, TIMER_OUTPUT_COMPARE); // counter with isr
timer_oc_set_mode(tdev, 1, TIMER_OC_MODE_FROZEN, 0); // no pin output change
timer_oc_set_mode(tdev, 2, TIMER_OC_MODE_FROZEN, 0); // no pin output change
timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based
timer_set_reload(tdev, SERVO_OVERFLOW);
timer_set_compare(tdev, 1, SERVO_OVERFLOW);
timer_set_compare(tdev, 2, SERVO_OVERFLOW);
timer_attach_interrupt(tdev, 1, Servo_IRQHandler);
timer_attach_interrupt(tdev, 2, Servo_IRQHandler);
timer_generate_update(tdev);
timer_resume(tdev);
return true;
}
void libServo::pwmSetDuty(const uint16_t duty_cycle) {
timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM);
timer_set_compare(tdev, 1, duty_cycle);
timer_generate_update(tdev);
if (duty_cycle) {
timer_enable_irq(tdev, 1);
timer_enable_irq(tdev, 2);
}
else {
timer_disable_irq(tdev, 1);
timer_disable_irq(tdev, 2);
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(pin, 1); // off
#else
OUT_WRITE(pin, 0);
#endif
}
}
void libServo::pauseSoftPWM() { // detach
timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM);
timer_pause(tdev);
pwmSetDuty(0);
}
#else
bool libServo::setupSoftPWM(const int32_t inPin) { return false; }
void libServo::pwmSetDuty(const uint16_t duty_cycle) {}
void libServo::pauseSoftPWM() {}
#endif
#endif // HAS_SERVOS
#endif // __STM32F1__