/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * HAL Pins Debugging for Teensy 4.0 (IMXRT1062DVL6A) / 4.1 (IMXRT1062DVJ6A) */ #warning "PINS_DEBUGGING is not fully supported for Teensy 4.0 / 4.1 so 'M43' may cause hangs." #define NUMBER_PINS_TOTAL NUM_DIGITAL_PINS #define digitalRead_mod(p) extDigitalRead(p) // AVR digitalRead disabled PWM before it read the pin #define PRINT_PORT(p) #define PRINT_ARRAY_NAME(x) do{ sprintf_P(buffer, PSTR("%-" STRINGIFY(MAX_NAME_LENGTH) "s"), pin_array[x].name); SERIAL_ECHO(buffer); }while(0) #define PRINT_PIN(p) do{ sprintf_P(buffer, PSTR("%02d"), p); SERIAL_ECHO(buffer); }while(0) #define GET_ARRAY_PIN(p) pin_array[p].pin #define GET_ARRAY_IS_DIGITAL(p) pin_array[p].is_digital #define VALID_PIN(pin) (pin >= 0 && pin < (int8_t)NUMBER_PINS_TOTAL ? 1 : 0) #define DIGITAL_PIN_TO_ANALOG_PIN(p) int(p - analogInputToDigitalPin(0)) #define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && (P) <= analogInputToDigitalPin(13)) || ((P) >= analogInputToDigitalPin(14) && (P) <= analogInputToDigitalPin(17)) #define pwm_status(pin) HAL_pwm_status(pin) #define GET_PINMODE(PIN) (VALID_PIN(pin) && IS_OUTPUT(pin)) #define MULTI_NAME_PAD 16 // space needed to be pretty if not first name assigned to a pin struct pwm_pin_info_struct { uint8_t type; // 0=no pwm, 1=flexpwm, 2=quad uint8_t module; // 0-3, 0-3 uint8_t channel; // 0=X, 1=A, 2=B uint8_t muxval; // }; #define M(a, b) ((((a) - 1) << 4) | (b)) const struct pwm_pin_info_struct pwm_pin_info[] = { {1, M(1, 1), 0, 4}, // FlexPWM1_1_X 0 // AD_B0_03 {1, M(1, 0), 0, 4}, // FlexPWM1_0_X 1 // AD_B0_02 {1, M(4, 2), 1, 1}, // FlexPWM4_2_A 2 // EMC_04 {1, M(4, 2), 2, 1}, // FlexPWM4_2_B 3 // EMC_05 {1, M(2, 0), 1, 1}, // FlexPWM2_0_A 4 // EMC_06 {1, M(2, 1), 1, 1}, // FlexPWM2_1_A 5 // EMC_08 {1, M(2, 2), 1, 2}, // FlexPWM2_2_A 6 // B0_10 {1, M(1, 3), 2, 6}, // FlexPWM1_3_B 7 // B1_01 {1, M(1, 3), 1, 6}, // FlexPWM1_3_A 8 // B1_00 {1, M(2, 2), 2, 2}, // FlexPWM2_2_B 9 // B0_11 {2, M(1, 0), 0, 1}, // QuadTimer1_0 10 // B0_00 {2, M(1, 2), 0, 1}, // QuadTimer1_2 11 // B0_02 {2, M(1, 1), 0, 1}, // QuadTimer1_1 12 // B0_01 {2, M(2, 0), 0, 1}, // QuadTimer2_0 13 // B0_03 {2, M(3, 2), 0, 1}, // QuadTimer3_2 14 // AD_B1_02 {2, M(3, 3), 0, 1}, // QuadTimer3_3 15 // AD_B1_03 {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {2, M(3, 1), 0, 1}, // QuadTimer3_1 18 // AD_B1_01 {2, M(3, 0), 0, 1}, // QuadTimer3_0 19 // AD_B1_00 {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {1, M(4, 0), 1, 1}, // FlexPWM4_0_A 22 // AD_B1_08 {1, M(4, 1), 1, 1}, // FlexPWM4_1_A 23 // AD_B1_09 {1, M(1, 2), 0, 4}, // FlexPWM1_2_X 24 // AD_B0_12 {1, M(1, 3), 0, 4}, // FlexPWM1_3_X 25 // AD_B0_13 {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {1, M(3, 1), 2, 1}, // FlexPWM3_1_B 28 // EMC_32 {1, M(3, 1), 1, 1}, // FlexPWM3_1_A 29 // EMC_31 {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {1, M(2, 0), 2, 1}, // FlexPWM2_0_B 33 // EMC_07 #ifdef ARDUINO_TEENSY40 {1, M(1, 1), 2, 1}, // FlexPWM1_1_B 34 // SD_B0_03 {1, M(1, 1), 1, 1}, // FlexPWM1_1_A 35 // SD_B0_02 {1, M(1, 0), 2, 1}, // FlexPWM1_0_B 36 // SD_B0_01 {1, M(1, 0), 1, 1}, // FlexPWM1_0_A 37 // SD_B0_00 {1, M(1, 2), 2, 1}, // FlexPWM1_2_B 38 // SD_B0_05 {1, M(1, 2), 1, 1}, // FlexPWM1_2_A 39 // SD_B0_04 #endif #ifdef ARDUINO_TEENSY41 {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {1, M(2, 3), 1, 6}, // FlexPWM2_3_A 36 // B1_00 {1, M(2, 3), 2, 6}, // FlexPWM2_3_B 37 // B1_01 {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {0, M(1, 0), 0, 0}, {1, M(1, 1), 2, 1}, // FlexPWM1_1_B 42 // SD_B0_03 {1, M(1, 1), 1, 1}, // FlexPWM1_1_A 43 // SD_B0_02 {1, M(1, 0), 2, 1}, // FlexPWM1_0_B 44 // SD_B0_01 {1, M(1, 0), 1, 1}, // FlexPWM1_0_A 45 // SD_B0_00 {1, M(1, 2), 2, 1}, // FlexPWM1_2_B 46 // SD_B0_05 {1, M(1, 2), 1, 1}, // FlexPWM1_2_A 47 // SD_B0_04 {0, M(1, 0), 0, 0}, // duplicate FlexPWM1_0_B {0, M(1, 0), 0, 0}, // duplicate FlexPWM1_2_A {0, M(1, 0), 0, 0}, // duplicate FlexPWM1_2_B {1, M(3, 3), 2, 1}, // FlexPWM3_3_B 51 // EMC_22 {0, M(1, 0), 0, 0}, // duplicate FlexPWM1_1_B {0, M(1, 0), 0, 0}, // duplicate FlexPWM1_1_A {1, M(3, 0), 1, 1}, // FlexPWM3_0_A 53 // EMC_29 #endif }; void HAL_print_analog_pin(char buffer[], int8_t pin) { if (pin <= 23) sprintf_P(buffer, PSTR("(A%2d) "), int(pin - 14)); else if (pin <= 41) sprintf_P(buffer, PSTR("(A%2d) "), int(pin - 24)); } void HAL_analog_pin_state(char buffer[], int8_t pin) { if (pin <= 23) sprintf_P(buffer, PSTR("Analog in =% 5d"), analogRead(pin - 14)); else if (pin <= 41) sprintf_P(buffer, PSTR("Analog in =% 5d"), analogRead(pin - 24)); } #define PWM_PRINT(V) do{ sprintf_P(buffer, PSTR("PWM: %4d"), V); SERIAL_ECHO(buffer); }while(0) /** * Print a pin's PWM status. * Return true if it's currently a PWM pin. */ bool HAL_pwm_status(int8_t pin) { char buffer[20]; // for the sprintf statements const struct pwm_pin_info_struct *info; if (pin >= CORE_NUM_DIGITAL) return 0; info = pwm_pin_info + pin; if (info->type == 0) return 0; /* TODO decode pwm value from timers */ // for now just indicate if output is set as pwm PWM_PRINT(*(portConfigRegister(pin)) == info->muxval); return (*(portConfigRegister(pin)) == info->muxval); } static void pwm_details(uint8_t pin) { /* TODO */ }