/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../../inc/MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "../bedlevel.h" unified_bed_leveling ubl; #include "../../../MarlinCore.h" #include "../../../gcode/gcode.h" #include "../../../module/settings.h" #include "../../../module/planner.h" #include "../../../module/motion.h" #include "../../../module/probe.h" #if ENABLED(EXTENSIBLE_UI) #include "../../../lcd/extui/ui_api.h" #endif #include "math.h" void unified_bed_leveling::echo_name() { SERIAL_ECHOPGM("Unified Bed Leveling"); } void unified_bed_leveling::report_current_mesh() { if (!leveling_is_valid()) return; SERIAL_ECHO_MSG(" G29 I999"); GRID_LOOP(x, y) if (!isnan(z_values[x][y])) { SERIAL_ECHO_START(); SERIAL_ECHOPAIR(" M421 I", int(x), " J", int(y)); SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, z_values[x][y], 4); serial_delay(75); // Prevent Printrun from exploding } } void unified_bed_leveling::report_state() { echo_name(); SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n"); serial_delay(50); } int8_t unified_bed_leveling::storage_slot; float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; #define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST)) const float unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X, _GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3), _GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7), _GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11), _GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15) ), unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y, _GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3), _GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7), _GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11), _GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15) ); volatile int16_t unified_bed_leveling::encoder_diff; unified_bed_leveling::unified_bed_leveling() { reset(); } void unified_bed_leveling::reset() { const bool was_enabled = planner.leveling_active; set_bed_leveling_enabled(false); storage_slot = -1; ZERO(z_values); #if ENABLED(EXTENSIBLE_UI) GRID_LOOP(x, y) ExtUI::onMeshUpdate(x, y, 0); #endif if (was_enabled) report_current_position(); } void unified_bed_leveling::invalidate() { set_bed_leveling_enabled(false); set_all_mesh_points_to_value(NAN); } void unified_bed_leveling::set_all_mesh_points_to_value(const float value) { GRID_LOOP(x, y) { z_values[x][y] = value; TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value)); } } #if ENABLED(OPTIMIZED_MESH_STORAGE) constexpr float mesh_store_scaling = 1000; constexpr int16_t Z_STEPS_NAN = INT16_MAX; void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) { auto z_to_store = [](const float &z) { if (isnan(z)) return Z_STEPS_NAN; const int32_t z_scaled = TRUNC(z * mesh_store_scaling); if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX)) return Z_STEPS_NAN; // If Z is out of range, return our custom 'NaN' return int16_t(z_scaled); }; GRID_LOOP(x, y) stored_values[x][y] = z_to_store(in_values[x][y]); } void unified_bed_leveling::set_mesh_from_store(const mesh_store_t &stored_values, bed_mesh_t &out_values) { auto store_to_z = [](const int16_t z_scaled) { return z_scaled == Z_STEPS_NAN ? NAN : z_scaled / mesh_store_scaling; }; GRID_LOOP(x, y) out_values[x][y] = store_to_z(stored_values[x][y]); } #endif // OPTIMIZED_MESH_STORAGE static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) { SERIAL_ECHO_SP(sp); SERIAL_CHAR('('); if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); } SERIAL_ECHO(x); SERIAL_CHAR(','); if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); } SERIAL_ECHO(y); SERIAL_CHAR(')'); serial_delay(5); } static void serial_echo_column_labels(const uint8_t sp) { SERIAL_ECHO_SP(7); LOOP_L_N(i, GRID_MAX_POINTS_X) { if (i < 10) SERIAL_CHAR(' '); SERIAL_ECHO((int)i); SERIAL_ECHO_SP(sp); } serial_delay(10); } /** * Produce one of these mesh maps: * 0: Human-readable * 1: CSV format for spreadsheet import * 2: TODO: Display on Graphical LCD * 4: Compact Human-Readable */ void unified_bed_leveling::display_map(const int map_type) { const bool was = gcode.set_autoreport_paused(true); constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567] twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4; SERIAL_ECHOPGM("\nBed Topography Report"); if (human) { SERIAL_ECHOLNPGM(":\n"); serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y); serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y); SERIAL_EOL(); serial_echo_column_labels(eachsp - 2); } else { SERIAL_ECHOPGM(" for "); serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n")); } // Add XY probe offset from extruder because probe.probe_at_point() subtracts them when // moving to the XY position to be measured. This ensures better agreement between // the current Z position after G28 and the mesh values. const xy_int8_t curr = closest_indexes(xy_pos_t(current_position) + probe.offset_xy); if (!lcd) SERIAL_EOL(); for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { // Row Label (J index) if (human) { if (j < 10) SERIAL_CHAR(' '); SERIAL_ECHO(j); SERIAL_ECHOPGM(" |"); } // Row Values (I indexes) LOOP_L_N(i, GRID_MAX_POINTS_X) { // Opening Brace or Space const bool is_current = i == curr.x && j == curr.y; if (human) SERIAL_CHAR(is_current ? '[' : ' '); // Z Value at current I, J const float f = z_values[i][j]; if (lcd) { // TODO: Display on Graphical LCD } else if (isnan(f)) serialprintPGM(human ? PSTR(" . ") : PSTR("NAN")); else if (human || csv) { if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Space for positive ('-' for negative) SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits } if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t'); // Closing Brace or Space if (human) SERIAL_CHAR(is_current ? ']' : ' '); SERIAL_FLUSHTX(); idle_no_sleep(); } if (!lcd) SERIAL_EOL(); // A blank line between rows (unless compact) if (j && human && !comp) SERIAL_ECHOLNPGM(" |"); } if (human) { serial_echo_column_labels(eachsp - 2); SERIAL_EOL(); serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y); serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y); SERIAL_EOL(); SERIAL_EOL(); } gcode.set_autoreport_paused(was); } bool unified_bed_leveling::sanity_check() { uint8_t error_flag = 0; if (settings.calc_num_meshes() < 1) { SERIAL_ECHOLNPGM("?Mesh too big for EEPROM."); error_flag++; } return !!error_flag; } #endif // AUTO_BED_LEVELING_UBL