/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../../../../inc/MarlinConfigPre.h"
#if HAS_TFT_LVGL_UI
#include "tft_lvgl_configuration.h"
#if ENABLED(MKS_WIFI_MODULE)
#include "draw_ui.h"
#include "wifiSerial.h"
#ifdef __STM32F1__
#include
#include
#include
#include
#include
#include "../../../../MarlinCore.h"
DEFINE_WFSERIAL(WifiSerial1, 1);
WifiSerial::WifiSerial(usart_dev *usart_device, uint8 tx_pin, uint8 rx_pin) {
this->usart_device = usart_device;
this->tx_pin = tx_pin;
this->rx_pin = rx_pin;
}
/**
* Set up / tear down
*/
#if STM32_MCU_SERIES == STM32_SERIES_F1
/* F1 MCUs have no GPIO_AFR[HL], so turn off PWM if there's a conflict
* on this GPIO bit. */
static void disable_timer_if_necessary(timer_dev *dev, uint8 ch) {
if (dev) timer_set_mode(dev, ch, TIMER_DISABLED);
}
static void usart_enable_no_irq(usart_dev *usart_device, bool with_irq) {
if (with_irq) usart_enable(usart_device);
else {
usart_reg_map *regs = usart_device->regs;
regs->CR1 |= (USART_CR1_TE | USART_CR1_RE);// don't change the word length etc, and 'or' in the patten not overwrite |USART_CR1_M_8N1);
regs->CR1 |= USART_CR1_UE;
}
}
#elif STM32_MCU_SERIES == STM32_SERIES_F2 || STM32_MCU_SERIES == STM32_SERIES_F4
#define disable_timer_if_necessary(dev, ch) ((void)0)
static void usart_enable_no_irq(usart_dev *usart_device, bool with_irq) {
if (with_irq) usart_enable(usart_device);
else {
usart_reg_map *regs = usart_device->regs;
regs->CR1 |= (USART_CR1_TE | USART_CR1_RE);// don't change the word length etc, and 'or' in the patten not overwrite |USART_CR1_M_8N1);
regs->CR1 |= USART_CR1_UE;
}
}
#else
#warning "Unsupported STM32 series; timer conflicts are possible"
#define usart_enable_no_irq(X, Y) usart_enable(X)
#endif
void WifiSerial::begin(uint32 baud) { begin(baud, SERIAL_8N1); }
/**
* Roger Clark.
* Note. The config parameter is not currently used. This is a work in progress.
* Code needs to be written to set the config of the hardware serial control register in question.
*/
void WifiSerial::begin(uint32 baud, uint8_t config) {
//ASSERT(baud <= this->usart_device->max_baud); // Roger Clark. Assert doesn't do anything useful, we may as well save the space in flash and ram etc
if (baud > this->usart_device->max_baud) return;
const stm32_pin_info *txi = &PIN_MAP[this->tx_pin],
*rxi = &PIN_MAP[this->rx_pin];
disable_timer_if_necessary(txi->timer_device, txi->timer_channel);
usart_init(this->usart_device);
// Reinitialize the receive buffer, mks_esp8266 fixed data frame length is 1k bytes
rb_init(this->usart_device->rb, WIFI_RX_BUF_SIZE, wifiRxBuf);
usart_config_gpios_async(this->usart_device,
rxi->gpio_device, rxi->gpio_bit,
txi->gpio_device, txi->gpio_bit,
config);
usart_set_baud_rate(this->usart_device, USART_USE_PCLK, baud);
usart_enable_no_irq(this->usart_device, baud == WIFI_BAUDRATE);
}
void WifiSerial::end(void) {
usart_disable(this->usart_device);
}
int WifiSerial::available(void) {
return usart_data_available(this->usart_device);
}
//
// I/O
//
int WifiSerial::read(void) {
if (usart_data_available(usart_device) <= 0) return -1;
return usart_getc(usart_device);
}
int WifiSerial::write(unsigned char ch) {
usart_putc(this->usart_device, ch);
return 1;
}
int WifiSerial::wifi_rb_is_full(void) {
return rb_is_full(this->usart_device->rb);
}
#else
WifiSerial WifiSerial1(USART1);
void WifiSerial::setRx(uint32_t _rx)
{
_serial.pin_rx = digitalPinToPinName(_rx);
}
void WifiSerial::setTx(uint32_t _tx)
{
_serial.pin_tx = digitalPinToPinName(_tx);
}
void WifiSerial::setRx(PinName _rx)
{
_serial.pin_rx = _rx;
}
void WifiSerial::setTx(PinName _tx)
{
_serial.pin_tx = _tx;
}
void WifiSerial::init(PinName _rx, PinName _tx)
{
if (_rx == _tx) {
_serial.pin_rx = NC;
} else {
_serial.pin_rx = _rx;
}
_serial.pin_tx = _tx;
_serial.rx_buff = wifiRxBuf;
_serial.rx_head = 0;
_serial.rx_tail = 0;
_serial.tx_buff = wifiTxBuf;
_serial.tx_head = 0;
_serial.tx_tail = 0;
}
WifiSerial::WifiSerial(void *peripheral)
{
// If PIN_SERIALy_RX is not defined assume half-duplex
_serial.pin_rx = NC;
// If Serial is defined in variant set
// the Rx/Tx pins for com port if defined
#if defined(Serial) && defined(PIN_SERIAL_TX)
if ((void *)this == (void *)&Serial) {
#if defined(PIN_SERIAL_RX)
setRx(PIN_SERIAL_RX);
#endif
setTx(PIN_SERIAL_TX);
} else
#endif
#if defined(PIN_SERIAL1_TX) && defined(USART1_BASE)
if (peripheral == USART1) {
#if defined(PIN_SERIAL1_RX)
setRx(PIN_SERIAL1_RX);
#endif
setTx(PIN_SERIAL1_TX);
} else
#endif
#if defined(PIN_SERIAL2_TX) && defined(USART2_BASE)
if (peripheral == USART2) {
#if defined(PIN_SERIAL2_RX)
setRx(PIN_SERIAL2_RX);
#endif
setTx(PIN_SERIAL2_TX);
} else
#endif
#if defined(PIN_SERIAL3_TX) && defined(USART3_BASE)
if (peripheral == USART3) {
#if defined(PIN_SERIAL3_RX)
setRx(PIN_SERIAL3_RX);
#endif
setTx(PIN_SERIAL3_TX);
} else
#endif
#if defined(PIN_SERIAL4_TX) &&\
(defined(USART4_BASE) || defined(UART4_BASE))
#if defined(USART4_BASE)
if (peripheral == USART4)
#elif defined(UART4_BASE)
if (peripheral == UART4)
#endif
{
#if defined(PIN_SERIAL4_RX)
setRx(PIN_SERIAL4_RX);
#endif
setTx(PIN_SERIAL4_TX);
} else
#endif
#if defined(PIN_SERIAL5_TX) &&\
(defined(USART5_BASE) || defined(UART5_BASE))
#if defined(USART5_BASE)
if (peripheral == USART5)
#elif defined(UART5_BASE)
if (peripheral == UART5)
#endif
{
#if defined(PIN_SERIAL5_RX)
setRx(PIN_SERIAL5_RX);
#endif
setTx(PIN_SERIAL5_TX);
} else
#endif
#if defined(PIN_SERIAL6_TX) && defined(USART6_BASE)
if (peripheral == USART6) {
#if defined(PIN_SERIAL6_RX)
setRx(PIN_SERIAL6_RX);
#endif
setTx(PIN_SERIAL6_TX);
} else
#endif
#if defined(PIN_SERIAL7_TX) &&\
(defined(USART7_BASE) || defined(UART7_BASE))
#if defined(USART7_BASE)
if (peripheral == USART7)
#elif defined(UART7_BASE)
if (peripheral == UART7)
#endif
{
#if defined(PIN_SERIAL7_RX)
setRx(PIN_SERIAL7_RX);
#endif
setTx(PIN_SERIAL7_TX);
} else
#endif
#if defined(PIN_SERIAL8_TX) &&\
(defined(USART8_BASE) || defined(UART8_BASE))
#if defined(USART8_BASE)
if (peripheral == USART8)
#elif defined(UART8_BASE)
if (peripheral == UART8)
#endif
{
#if defined(PIN_SERIAL8_RX)
setRx(PIN_SERIAL8_RX);
#endif
setTx(PIN_SERIAL8_TX);
} else
#endif
#if defined(PIN_SERIAL9_TX) && defined(UART9_BASE)
if (peripheral == UART9) {
#if defined(PIN_SERIAL9_RX)
setRx(PIN_SERIAL9_RX);
#endif
setTx(PIN_SERIAL9_TX);
} else
#endif
#if defined(PIN_SERIAL10_TX) &&\
(defined(USART10_BASE) || defined(UART10_BASE))
#if defined(USART10_BASE)
if (peripheral == USART10)
#elif defined(UART10_BASE)
if (peripheral == UART10)
#endif
{
#if defined(PIN_SERIAL10_RX)
setRx(PIN_SERIAL10_RX);
#endif
setTx(PIN_SERIAL10_TX);
} else
#endif
#if defined(PIN_SERIALLP1_TX) && defined(LPUART1_BASE)
if (peripheral == LPUART1) {
#if defined(PIN_SERIALLP1_RX)
setRx(PIN_SERIALLP1_RX);
#endif
setTx(PIN_SERIALLP1_TX);
} else
#endif
// else get the pins of the first peripheral occurence in PinMap
{
_serial.pin_rx = pinmap_pin(peripheral, PinMap_UART_RX);
_serial.pin_tx = pinmap_pin(peripheral, PinMap_UART_TX);
}
// if (halfDuplex == HALF_DUPLEX_ENABLED) {
// _serial.pin_rx = NC;
// }
init(_serial.pin_rx, _serial.pin_tx);
}
void WifiSerial::flush()
{
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written) {
return;
}
while ((_serial.tx_head != _serial.tx_tail)) {
// nop, the interrupt handler will free up space for us
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished tranmission (TXC is set).
}
bool WifiSerial::isHalfDuplex(void) const
{
return _serial.pin_rx == NC;
}
void WifiSerial::enableHalfDuplexRx(void)
{
if (isHalfDuplex()) {
// In half-duplex mode we have to wait for all TX characters to
// be transmitted before we can receive data.
flush();
if (!_rx_enabled) {
_rx_enabled = true;
uart_enable_rx(&_serial);
}
}
}
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void WifiSerial::_rx_complete_irq(serial_t *obj)
{
// No Parity error, read byte and store it in the buffer if there is room
unsigned char c;
if (uart_getc(obj, &c) == 0) {
WRITE(WIFI_IO1_PIN, HIGH);
rx_buffer_index_t i = (unsigned int)(obj->rx_head + 1) % WIFI_RX_BUF_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != obj->rx_tail) {
obj->rx_buff[obj->rx_head] = c;
obj->rx_head = i;
}
}
}
// Actual interrupt handlers //////////////////////////////////////////////////////////////
int WifiSerial::_tx_complete_irq(serial_t *obj)
{
// If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte
obj->tx_tail = (obj->tx_tail + 1) % WIFI_TX_BUF_SIZE;
if (obj->tx_head == obj->tx_tail) {
return -1;
}
return 0;
}
void WifiSerial::begin(unsigned long baud) { begin(baud, SERIAL_8N1); }
void WifiSerial::begin(unsigned long baud, byte config) {
uint32_t databits = 0;
uint32_t stopbits = 0;
uint32_t parity = 0;
_baud = baud;
_config = config;
// Manage databits
switch (config & 0x07) {
case 0x02:
databits = 6;
break;
case 0x04:
databits = 7;
break;
case 0x06:
databits = 8;
break;
default:
databits = 0;
break;
}
if ((config & 0x30) == 0x30) {
parity = UART_PARITY_ODD;
databits++;
} else if ((config & 0x20) == 0x20) {
parity = UART_PARITY_EVEN;
databits++;
} else {
parity = UART_PARITY_NONE;
}
if ((config & 0x08) == 0x08) {
stopbits = UART_STOPBITS_2;
} else {
stopbits = UART_STOPBITS_1;
}
switch (databits) {
#ifdef UART_WORDLENGTH_7B
case 7:
databits = UART_WORDLENGTH_7B;
break;
#endif
case 8:
databits = UART_WORDLENGTH_8B;
break;
case 9:
databits = UART_WORDLENGTH_9B;
break;
default:
case 0:
Error_Handler();
break;
}
uart_init(&_serial, (uint32_t)baud, databits, parity, stopbits);
enableHalfDuplexRx();
if (baud == WIFI_BAUDRATE) uart_attach_rx_callback(&_serial, _rx_complete_irq);
else {
USART1->CR1 |= (USART_CR1_RE);// don't change the word length etc, and 'or' in the patten not overwrite |USART_CR1_M_8N1);
}
}
void WifiSerial::end(void)
{
// wait for transmission of outgoing data
flush();
uart_deinit(&_serial);
// clear any received data
_serial.rx_head = _serial.rx_tail;
}
int WifiSerial::available(void) {
return ((unsigned int)(WIFI_RX_BUF_SIZE + _serial.rx_head - _serial.rx_tail)) % WIFI_RX_BUF_SIZE;
}
//
// I/O
//
int WifiSerial::read(void)
{
enableHalfDuplexRx();
// if the head isn't ahead of the tail, we don't have any characters
if (_serial.rx_head == _serial.rx_tail) {
return -1;
} else {
unsigned char c = _serial.rx_buff[_serial.rx_tail];
_serial.rx_tail = (rx_buffer_index_t)(_serial.rx_tail + 1) % WIFI_RX_BUF_SIZE;
return c;
}
}
int WifiSerial::write(uint8_t c)
{
_written = true;
if (isHalfDuplex()) {
if (_rx_enabled) {
_rx_enabled = false;
uart_enable_tx(&_serial);
}
}
tx_buffer_index_t i = (_serial.tx_head + 1) % WIFI_TX_BUF_SIZE;
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == _serial.tx_tail) {
// nop, the interrupt handler will free up space for us
}
_serial.tx_buff[_serial.tx_head] = c;
_serial.tx_head = i;
if (!serial_tx_active(&_serial)) {
uart_attach_tx_callback(&_serial, _tx_complete_irq);
}
return 1;
}
#endif // __STM32F1__
#endif // MKS_WIFI_MODULE
#endif // HAS_TFT_LVGL_UI