/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* stepper/trinamic.cpp
* Stepper driver indirection for Trinamic
*/
#include "../../inc/MarlinConfig.h"
#if HAS_TRINAMIC_CONFIG
#include "trinamic.h"
#include "../stepper.h"
#include
#include
enum StealthIndex : uint8_t { STEALTH_AXIS_XY, STEALTH_AXIS_Z, STEALTH_AXIS_E };
#define TMC_INIT(ST, STEALTH_INDEX) tmc_init(stepper##ST, ST##_CURRENT, ST##_MICROSTEPS, ST##_HYBRID_THRESHOLD, stealthchop_by_axis[STEALTH_INDEX], chopper_timing_##ST, ST##_INTERPOLATE)
// IC = TMC model number
// ST = Stepper object letter
// L = Label characters
// AI = Axis Enum Index
// SWHW = SW/SH UART selection
#if ENABLED(TMC_USE_SW_SPI)
#define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), TMC_SW_MOSI, TMC_SW_MISO, TMC_SW_SCK, ST##_CHAIN_POS)
#else
#define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), ST##_CHAIN_POS)
#endif
#if ENABLED(TMC_SERIAL_MULTIPLEXER)
#define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS, SERIAL_MUL_PIN1, SERIAL_MUL_PIN2)
#else
#define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS)
#endif
#define TMC_UART_SW_DEFINE(IC, ST, L, AI) TMCMarlin stepper##ST(ST##_SERIAL_RX_PIN, ST##_SERIAL_TX_PIN, float(ST##_RSENSE), ST##_SLAVE_ADDRESS)
#define _TMC_SPI_DEFINE(IC, ST, AI) __TMC_SPI_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
#define TMC_SPI_DEFINE(ST, AI) _TMC_SPI_DEFINE(ST##_DRIVER_TYPE, ST, AI##_AXIS)
#define _TMC_UART_DEFINE(SWHW, IC, ST, AI) TMC_UART_##SWHW##_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
#define TMC_UART_DEFINE(SWHW, ST, AI) _TMC_UART_DEFINE(SWHW, ST##_DRIVER_TYPE, ST, AI##_AXIS)
#if DISTINCT_E > 1
#define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E##AI)
#define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E##AI)
#else
#define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E)
#define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E)
#endif
// Stepper objects of TMC2130/TMC2160/TMC2660/TMC5130/TMC5160 steppers used
#if AXIS_HAS_SPI(X)
TMC_SPI_DEFINE(X, X);
#endif
#if AXIS_HAS_SPI(X2)
TMC_SPI_DEFINE(X2, X);
#endif
#if AXIS_HAS_SPI(Y)
TMC_SPI_DEFINE(Y, Y);
#endif
#if AXIS_HAS_SPI(Y2)
TMC_SPI_DEFINE(Y2, Y);
#endif
#if AXIS_HAS_SPI(Z)
TMC_SPI_DEFINE(Z, Z);
#endif
#if AXIS_HAS_SPI(Z2)
TMC_SPI_DEFINE(Z2, Z);
#endif
#if AXIS_HAS_SPI(Z3)
TMC_SPI_DEFINE(Z3, Z);
#endif
#if AXIS_HAS_SPI(Z4)
TMC_SPI_DEFINE(Z4, Z);
#endif
#if AXIS_HAS_SPI(E0)
TMC_SPI_DEFINE_E(0);
#endif
#if AXIS_HAS_SPI(E1)
TMC_SPI_DEFINE_E(1);
#endif
#if AXIS_HAS_SPI(E2)
TMC_SPI_DEFINE_E(2);
#endif
#if AXIS_HAS_SPI(E3)
TMC_SPI_DEFINE_E(3);
#endif
#if AXIS_HAS_SPI(E4)
TMC_SPI_DEFINE_E(4);
#endif
#if AXIS_HAS_SPI(E5)
TMC_SPI_DEFINE_E(5);
#endif
#if AXIS_HAS_SPI(E6)
TMC_SPI_DEFINE_E(6);
#endif
#if AXIS_HAS_SPI(E7)
TMC_SPI_DEFINE_E(7);
#endif
#ifndef TMC_BAUD_RATE
// Reduce baud rate for boards not already overriding TMC_BAUD_RATE for software serial.
// Testing has shown that 115200 is not 100% reliable on AVR platforms, occasionally
// failing to read status properly. 32-bit platforms typically define an even lower
// TMC_BAUD_RATE, due to differences in how SoftwareSerial libraries work on different
// platforms.
#define TMC_BAUD_RATE TERN(HAS_TMC_SW_SERIAL, 57600, 115200)
#endif
#if HAS_DRIVER(TMC2130)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01;
chopconf.toff = chop_init.toff;
chopconf.intpol = interpolate;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
PWMCONF_t pwmconf{0};
pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
pwmconf.pwm_autoscale = true;
pwmconf.pwm_grad = 5;
pwmconf.pwm_ampl = 180;
st.PWMCONF(pwmconf.sr);
TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
st.GSTAT(); // Clear GSTAT
}
#endif // TMC2130
#if HAS_DRIVER(TMC2160)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01;
chopconf.toff = chop_init.toff;
chopconf.intpol = interpolate;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
TMC2160_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
st.GSTAT(); // Clear GSTAT
}
#endif // TMC2160
//
// TMC2208/2209 Driver objects and inits
//
#if HAS_TMC220x
#if AXIS_HAS_UART(X)
#ifdef X_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, X, X);
#define X_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, X, X);
#define X_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(X2)
#ifdef X2_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, X2, X);
#define X2_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, X2, X);
#define X2_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(Y)
#ifdef Y_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Y, Y);
#define Y_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, Y, Y);
#define Y_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(Y2)
#ifdef Y2_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Y2, Y);
#define Y2_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, Y2, Y);
#define Y2_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(Z)
#ifdef Z_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z, Z);
#define Z_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, Z, Z);
#define Z_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(Z2)
#ifdef Z2_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z2, Z);
#define Z2_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, Z2, Z);
#define Z2_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(Z3)
#ifdef Z3_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z3, Z);
#define Z3_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, Z3, Z);
#define Z3_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(Z4)
#ifdef Z4_HARDWARE_SERIAL
TMC_UART_DEFINE(HW, Z4, Z);
#define Z4_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE(SW, Z4, Z);
#define Z4_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E0)
#ifdef E0_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 0);
#define E0_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 0);
#define E0_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E1)
#ifdef E1_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 1);
#define E1_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 1);
#define E1_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E2)
#ifdef E2_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 2);
#define E2_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 2);
#define E2_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E3)
#ifdef E3_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 3);
#define E3_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 3);
#define E3_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E4)
#ifdef E4_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 4);
#define E4_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 4);
#define E4_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E5)
#ifdef E5_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 5);
#define E5_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 5);
#define E5_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E6)
#ifdef E6_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 6);
#define E6_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 6);
#define E6_HAS_SW_SERIAL 1
#endif
#endif
#if AXIS_HAS_UART(E7)
#ifdef E7_HARDWARE_SERIAL
TMC_UART_DEFINE_E(HW, 7);
#define E7_HAS_HW_SERIAL 1
#else
TMC_UART_DEFINE_E(SW, 7);
#define E7_HAS_SW_SERIAL 1
#endif
#endif
enum TMCAxis : uint8_t { X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7, TOTAL };
void tmc_serial_begin() {
#if HAS_TMC_HW_SERIAL
struct {
const void *ptr[TMCAxis::TOTAL];
bool began(const TMCAxis a, const void * const p) {
LOOP_L_N(i, a) if (p == ptr[i]) return true;
ptr[a] = p; return false;
};
} sp_helper;
#define HW_SERIAL_BEGIN(A) do{ if (!sp_helper.began(TMCAxis::A, &A##_HARDWARE_SERIAL)) \
A##_HARDWARE_SERIAL.begin(TMC_BAUD_RATE); }while(0)
#endif
#if AXIS_HAS_UART(X)
#ifdef X_HARDWARE_SERIAL
HW_SERIAL_BEGIN(X);
#else
stepperX.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(X2)
#ifdef X2_HARDWARE_SERIAL
HW_SERIAL_BEGIN(X2);
#else
stepperX2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Y)
#ifdef Y_HARDWARE_SERIAL
HW_SERIAL_BEGIN(Y);
#else
stepperY.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Y2)
#ifdef Y2_HARDWARE_SERIAL
HW_SERIAL_BEGIN(Y2);
#else
stepperY2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z)
#ifdef Z_HARDWARE_SERIAL
HW_SERIAL_BEGIN(Z);
#else
stepperZ.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z2)
#ifdef Z2_HARDWARE_SERIAL
HW_SERIAL_BEGIN(Z2);
#else
stepperZ2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z3)
#ifdef Z3_HARDWARE_SERIAL
HW_SERIAL_BEGIN(Z3);
#else
stepperZ3.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(Z4)
#ifdef Z4_HARDWARE_SERIAL
HW_SERIAL_BEGIN(Z4);
#else
stepperZ4.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E0)
#ifdef E0_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E0);
#else
stepperE0.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E1)
#ifdef E1_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E1);
#else
stepperE1.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E2)
#ifdef E2_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E2);
#else
stepperE2.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E3)
#ifdef E3_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E3);
#else
stepperE3.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E4)
#ifdef E4_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E4);
#else
stepperE4.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E5)
#ifdef E5_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E5);
#else
stepperE5.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E6)
#ifdef E6_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E6);
#else
stepperE6.beginSerial(TMC_BAUD_RATE);
#endif
#endif
#if AXIS_HAS_UART(E7)
#ifdef E7_HARDWARE_SERIAL
HW_SERIAL_BEGIN(E7);
#else
stepperE7.beginSerial(TMC_BAUD_RATE);
#endif
#endif
}
#endif
#if HAS_DRIVER(TMC2208)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
TMC2208_n::GCONF_t gconf{0};
gconf.pdn_disable = true; // Use UART
gconf.mstep_reg_select = true; // Select microsteps with UART
gconf.i_scale_analog = false;
gconf.en_spreadcycle = !stealth;
st.GCONF(gconf.sr);
st.stored.stealthChop_enabled = stealth;
TMC2208_n::CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01; // blank_time = 24
chopconf.toff = chop_init.toff;
chopconf.intpol = interpolate;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
TMC2208_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
st.GSTAT(0b111); // Clear
delay(200);
}
#endif // TMC2208
#if HAS_DRIVER(TMC2209)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
TMC2208_n::GCONF_t gconf{0};
gconf.pdn_disable = true; // Use UART
gconf.mstep_reg_select = true; // Select microsteps with UART
gconf.i_scale_analog = false;
gconf.en_spreadcycle = !stealth;
st.GCONF(gconf.sr);
st.stored.stealthChop_enabled = stealth;
TMC2208_n::CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01; // blank_time = 24
chopconf.toff = chop_init.toff;
chopconf.intpol = interpolate;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
TMC2208_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
st.GSTAT(0b111); // Clear
delay(200);
}
#endif // TMC2209
#if HAS_DRIVER(TMC2660)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t, const bool, const chopper_timing_t &chop_init, const bool interpolate) {
st.begin();
TMC2660_n::CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01;
chopconf.toff = chop_init.toff;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
st.CHOPCONF(chopconf.sr);
st.sdoff(0);
st.rms_current(mA);
st.microsteps(microsteps);
TERN_(SQUARE_WAVE_STEPPING, st.dedge(true));
st.intpol(interpolate);
st.diss2g(true); // Disable short to ground protection. Too many false readings?
TERN_(TMC_DEBUG, st.rdsel(0b01));
}
#endif // TMC2660
#if HAS_DRIVER(TMC5130)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01;
chopconf.toff = chop_init.toff;
chopconf.intpol = interpolate;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
PWMCONF_t pwmconf{0};
pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
pwmconf.pwm_autoscale = true;
pwmconf.pwm_grad = 5;
pwmconf.pwm_ampl = 180;
st.PWMCONF(pwmconf.sr);
TERN(HYBRID_THRESHOLD, st.set_pwm_thrs(hyb_thrs), UNUSED(hyb_thrs));
st.GSTAT(); // Clear GSTAT
}
#endif // TMC5130
#if HAS_DRIVER(TMC5160)
template
void tmc_init(TMCMarlin &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth, const chopper_timing_t &chop_init, const bool interpolate) {
st.begin();
CHOPCONF_t chopconf{0};
chopconf.tbl = 0b01;
chopconf.toff = chop_init.toff;
chopconf.intpol = interpolate;
chopconf.hend = chop_init.hend + 3;
chopconf.hstrt = chop_init.hstrt - 1;
TERN_(SQUARE_WAVE_STEPPING, chopconf.dedge = true);
st.CHOPCONF(chopconf.sr);
st.rms_current(mA, HOLD_MULTIPLIER);
st.microsteps(microsteps);
st.iholddelay(10);
st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
st.en_pwm_mode(stealth);
st.stored.stealthChop_enabled = stealth;
TMC2160_n::PWMCONF_t pwmconf{0};
pwmconf.pwm_lim = 12;
pwmconf.pwm_reg = 8;
pwmconf.pwm_autograd = true;
pwmconf.pwm_autoscale = true;
pwmconf.pwm_freq = 0b01;
pwmconf.pwm_grad = 14;
pwmconf.pwm_ofs = 36;
st.PWMCONF(pwmconf.sr);
#if ENABLED(HYBRID_THRESHOLD)
st.set_pwm_thrs(hyb_thrs);
#else
UNUSED(hyb_thrs);
#endif
st.GSTAT(); // Clear GSTAT
}
#endif // TMC5160
void restore_trinamic_drivers() {
#if AXIS_IS_TMC(X)
stepperX.push();
#endif
#if AXIS_IS_TMC(X2)
stepperX2.push();
#endif
#if AXIS_IS_TMC(Y)
stepperY.push();
#endif
#if AXIS_IS_TMC(Y2)
stepperY2.push();
#endif
#if AXIS_IS_TMC(Z)
stepperZ.push();
#endif
#if AXIS_IS_TMC(Z2)
stepperZ2.push();
#endif
#if AXIS_IS_TMC(Z3)
stepperZ3.push();
#endif
#if AXIS_IS_TMC(Z4)
stepperZ4.push();
#endif
#if AXIS_IS_TMC(E0)
stepperE0.push();
#endif
#if AXIS_IS_TMC(E1)
stepperE1.push();
#endif
#if AXIS_IS_TMC(E2)
stepperE2.push();
#endif
#if AXIS_IS_TMC(E3)
stepperE3.push();
#endif
#if AXIS_IS_TMC(E4)
stepperE4.push();
#endif
#if AXIS_IS_TMC(E5)
stepperE5.push();
#endif
#if AXIS_IS_TMC(E6)
stepperE6.push();
#endif
#if AXIS_IS_TMC(E7)
stepperE7.push();
#endif
}
void reset_trinamic_drivers() {
static constexpr bool stealthchop_by_axis[] = { ENABLED(STEALTHCHOP_XY), ENABLED(STEALTHCHOP_Z), ENABLED(STEALTHCHOP_E) };
#if AXIS_IS_TMC(X)
TMC_INIT(X, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(X2)
TMC_INIT(X2, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(Y)
TMC_INIT(Y, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(Y2)
TMC_INIT(Y2, STEALTH_AXIS_XY);
#endif
#if AXIS_IS_TMC(Z)
TMC_INIT(Z, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(Z2)
TMC_INIT(Z2, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(Z3)
TMC_INIT(Z3, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(Z4)
TMC_INIT(Z4, STEALTH_AXIS_Z);
#endif
#if AXIS_IS_TMC(E0)
TMC_INIT(E0, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E1)
TMC_INIT(E1, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E2)
TMC_INIT(E2, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E3)
TMC_INIT(E3, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E4)
TMC_INIT(E4, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E5)
TMC_INIT(E5, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E6)
TMC_INIT(E6, STEALTH_AXIS_E);
#endif
#if AXIS_IS_TMC(E7)
TMC_INIT(E7, STEALTH_AXIS_E);
#endif
#if USE_SENSORLESS
#if X_SENSORLESS
stepperX.homing_threshold(X_STALL_SENSITIVITY);
#if AXIS_HAS_STALLGUARD(X2)
stepperX2.homing_threshold(CAT(TERN(X2_SENSORLESS, X2, X), _STALL_SENSITIVITY));
#endif
#endif
#if Y_SENSORLESS
stepperY.homing_threshold(Y_STALL_SENSITIVITY);
#if AXIS_HAS_STALLGUARD(Y2)
stepperY2.homing_threshold(CAT(TERN(Y2_SENSORLESS, Y2, Y), _STALL_SENSITIVITY));
#endif
#endif
#if Z_SENSORLESS
stepperZ.homing_threshold(Z_STALL_SENSITIVITY);
#if AXIS_HAS_STALLGUARD(Z2)
stepperZ2.homing_threshold(CAT(TERN(Z2_SENSORLESS, Z2, Z), _STALL_SENSITIVITY));
#endif
#if AXIS_HAS_STALLGUARD(Z3)
stepperZ3.homing_threshold(CAT(TERN(Z3_SENSORLESS, Z3, Z), _STALL_SENSITIVITY));
#endif
#if AXIS_HAS_STALLGUARD(Z4)
stepperZ4.homing_threshold(CAT(TERN(Z4_SENSORLESS, Z4, Z), _STALL_SENSITIVITY));
#endif
#endif
#endif
#ifdef TMC_ADV
TMC_ADV()
#endif
stepper.set_directions();
}
// TMC Slave Address Conflict Detection
//
// Conflict detection is performed in the following way. Similar methods are used for
// hardware and software serial, but the implementations are indepenent.
//
// 1. Populate a data structure with UART parameters and addresses for all possible axis.
// If an axis is not in use, populate it with recognizable placeholder data.
// 2. For each axis in use, static_assert using a constexpr function, which counts the
// number of matching/conflicting axis. If the value is not exactly 1, fail.
#if ANY_AXIS_HAS(HW_SERIAL)
// Hardware serial names are compared as strings, since actually resolving them cannot occur in a constexpr.
// Using a fixed-length character array for the port name allows this to be constexpr compatible.
struct SanityHwSerialDetails { const char port[20]; uint32_t address; };
#define TMC_HW_DETAIL_ARGS(A) TERN(A##_HAS_HW_SERIAL, STRINGIFY(A##_HARDWARE_SERIAL), ""), TERN0(A##_HAS_HW_SERIAL, A##_SLAVE_ADDRESS)
#define TMC_HW_DETAIL(A) {TMC_HW_DETAIL_ARGS(A)}
constexpr SanityHwSerialDetails sanity_tmc_hw_details[] = {
TMC_HW_DETAIL(X), TMC_HW_DETAIL(X2),
TMC_HW_DETAIL(Y), TMC_HW_DETAIL(Y2),
TMC_HW_DETAIL(Z), TMC_HW_DETAIL(Z2), TMC_HW_DETAIL(Z3), TMC_HW_DETAIL(Z4),
TMC_HW_DETAIL(E0), TMC_HW_DETAIL(E1), TMC_HW_DETAIL(E2), TMC_HW_DETAIL(E3), TMC_HW_DETAIL(E4), TMC_HW_DETAIL(E5), TMC_HW_DETAIL(E6), TMC_HW_DETAIL(E7)
};
// constexpr compatible string comparison
constexpr bool str_eq_ce(const char * a, const char * b) {
return *a == *b && (*a == '\0' || str_eq_ce(a+1,b+1));
}
constexpr bool sc_hw_done(size_t start, size_t end) { return start == end; }
constexpr bool sc_hw_skip(const char* port_name) { return !(*port_name); }
constexpr bool sc_hw_match(const char* port_name, uint32_t address, size_t start, size_t end) {
return !sc_hw_done(start, end) && !sc_hw_skip(port_name) && (address == sanity_tmc_hw_details[start].address && str_eq_ce(port_name, sanity_tmc_hw_details[start].port));
}
constexpr int count_tmc_hw_serial_matches(const char* port_name, uint32_t address, size_t start, size_t end) {
return sc_hw_done(start, end) ? 0 : ((sc_hw_skip(port_name) ? 0 : (sc_hw_match(port_name, address, start, end) ? 1 : 0)) + count_tmc_hw_serial_matches(port_name, address, start + 1, end));
}
#define TMC_HWSERIAL_CONFLICT_MSG(A) STRINGIFY(A) "_SLAVE_ADDRESS conflicts with another driver using the same " STRINGIFY(A) "_HARDWARE_SERIAL"
#define SA_NO_TMC_HW_C(A) static_assert(1 >= count_tmc_hw_serial_matches(TMC_HW_DETAIL_ARGS(A), 0, COUNT(sanity_tmc_hw_details)), TMC_HWSERIAL_CONFLICT_MSG(A));
SA_NO_TMC_HW_C(X);SA_NO_TMC_HW_C(X2);
SA_NO_TMC_HW_C(Y);SA_NO_TMC_HW_C(Y2);
SA_NO_TMC_HW_C(Z);SA_NO_TMC_HW_C(Z2);SA_NO_TMC_HW_C(Z3);SA_NO_TMC_HW_C(Z4);
SA_NO_TMC_HW_C(E0);SA_NO_TMC_HW_C(E1);SA_NO_TMC_HW_C(E2);SA_NO_TMC_HW_C(E3);SA_NO_TMC_HW_C(E4);SA_NO_TMC_HW_C(E5);SA_NO_TMC_HW_C(E6);SA_NO_TMC_HW_C(E7);
#endif
#if ANY_AXIS_HAS(SW_SERIAL)
struct SanitySwSerialDetails { int32_t txpin; int32_t rxpin; uint32_t address; };
#define TMC_SW_DETAIL_ARGS(A) TERN(A##_HAS_SW_SERIAL, A##_SERIAL_TX_PIN, -1), TERN(A##_HAS_SW_SERIAL, A##_SERIAL_RX_PIN, -1), TERN0(A##_HAS_SW_SERIAL, A##_SLAVE_ADDRESS)
#define TMC_SW_DETAIL(A) TMC_SW_DETAIL_ARGS(A)
constexpr SanitySwSerialDetails sanity_tmc_sw_details[] = {
TMC_SW_DETAIL(X), TMC_SW_DETAIL(X2),
TMC_SW_DETAIL(Y), TMC_SW_DETAIL(Y2),
TMC_SW_DETAIL(Z), TMC_SW_DETAIL(Z2), TMC_SW_DETAIL(Z3), TMC_SW_DETAIL(Z4),
TMC_SW_DETAIL(E0), TMC_SW_DETAIL(E1), TMC_SW_DETAIL(E2), TMC_SW_DETAIL(E3), TMC_SW_DETAIL(E4), TMC_SW_DETAIL(E5), TMC_SW_DETAIL(E6), TMC_SW_DETAIL(E7)
};
constexpr bool sc_sw_done(size_t start, size_t end) { return start == end; }
constexpr bool sc_sw_skip(int32_t txpin) { return txpin < 0; }
constexpr bool sc_sw_match(int32_t txpin, int32_t rxpin, uint32_t address, size_t start, size_t end) {
return !sc_sw_done(start, end) && !sc_sw_skip(txpin) && (txpin == sanity_tmc_sw_details[start].txpin || rxpin == sanity_tmc_sw_details[start].rxpin) && (address == sanity_tmc_sw_details[start].address);
}
constexpr int count_tmc_sw_serial_matches(int32_t txpin, int32_t rxpin, uint32_t address, size_t start, size_t end) {
return sc_sw_done(start, end) ? 0 : ((sc_sw_skip(txpin) ? 0 : (sc_sw_match(txpin, rxpin, address, start, end) ? 1 : 0)) + count_tmc_sw_serial_matches(txpin, rxpin, address, start + 1, end));
}
#define TMC_SWSERIAL_CONFLICT_MSG(A) STRINGIFY(A) "_SLAVE_ADDRESS conflicts with another driver using the same " STRINGIFY(A) "_SERIAL_RX_PIN or " STRINGIFY(A) "_SERIAL_TX_PIN"
#define SA_NO_TMC_SW_C(A) static_assert(1 >= count_tmc_sw_serial_matches(TMC_SW_DETAIL_ARGS(A), 0, COUNT(sanity_tmc_sw_details)), TMC_SWSERIAL_CONFLICT_MSG(A));
SA_NO_TMC_SW_C(X);SA_NO_TMC_SW_C(X2);
SA_NO_TMC_SW_C(Y);SA_NO_TMC_SW_C(Y2);
SA_NO_TMC_SW_C(Z);SA_NO_TMC_SW_C(Z2);SA_NO_TMC_SW_C(Z3);SA_NO_TMC_SW_C(Z4);
SA_NO_TMC_SW_C(E0);SA_NO_TMC_SW_C(E1);SA_NO_TMC_SW_C(E2);SA_NO_TMC_SW_C(E3);SA_NO_TMC_SW_C(E4);SA_NO_TMC_SW_C(E5);SA_NO_TMC_SW_C(E6);SA_NO_TMC_SW_C(E7);
#endif
#endif // HAS_TRINAMIC_CONFIG