/** * Copyright (C) 2011 Circuits At Home, LTD. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Contact information * ------------------- * * Circuits At Home, LTD * Web : https://www.circuitsathome.com * e-mail : support@circuitsathome.com */ // // USB functions supporting Flash Drive // #include "../../../inc/MarlinConfigPre.h" #if ENABLED(USB_FLASH_DRIVE_SUPPORT) && DISABLED(USE_UHS3_USB) #include "Usb.h" static uint8_t usb_error = 0; static uint8_t usb_task_state; /* constructor */ USB::USB() : bmHubPre(0) { usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; // Set up state machine init(); } /* Initialize data structures */ void USB::init() { //devConfigIndex = 0; bmHubPre = 0; } uint8_t USB::getUsbTaskState() { return usb_task_state; } void USB::setUsbTaskState(uint8_t state) { usb_task_state = state; } EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) { UsbDevice *p = addrPool.GetUsbDevicePtr(addr); if (!p || !p->epinfo) return nullptr; EpInfo *pep = p->epinfo; for (uint8_t i = 0; i < p->epcount; i++) { if ((pep)->epAddr == ep) return pep; pep++; } return nullptr; } /** * Set device table entry * Each device is different and has different number of endpoints. * This function plugs endpoint record structure, defined in application, to devtable */ uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr) { if (!eprecord_ptr) return USB_ERROR_INVALID_ARGUMENT; UsbDevice *p = addrPool.GetUsbDevicePtr(addr); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->address.devAddress = addr; p->epinfo = eprecord_ptr; p->epcount = epcount; return 0; } uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t *nak_limit) { UsbDevice *p = addrPool.GetUsbDevicePtr(addr); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; if (!p->epinfo) return USB_ERROR_EPINFO_IS_NULL; *ppep = getEpInfoEntry(addr, ep); if (!*ppep) return USB_ERROR_EP_NOT_FOUND_IN_TBL; *nak_limit = (0x0001UL << (((*ppep)->bmNakPower > USB_NAK_MAX_POWER) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower)); (*nak_limit)--; /* USBTRACE2("\r\nAddress: ", addr); USBTRACE2(" EP: ", ep); USBTRACE2(" NAK Power: ",(*ppep)->bmNakPower); USBTRACE2(" NAK Limit: ", nak_limit); USBTRACE("\r\n"); */ regWr(rPERADDR, addr); // Set peripheral address uint8_t mode = regRd(rMODE); //Serial.print("\r\nMode: "); //Serial.println( mode, HEX); //Serial.print("\r\nLS: "); //Serial.println(p->lowspeed, HEX); // Set bmLOWSPEED and bmHUBPRE in case of low-speed device, reset them otherwise regWr(rMODE, (p->lowspeed) ? mode | bmLOWSPEED | bmHubPre : mode & ~(bmHUBPRE | bmLOWSPEED)); return 0; } /* Control transfer. Sets address, endpoint, fills control packet with necessary data, dispatches control packet, and initiates bulk IN transfer, */ /* depending on request. Actual requests are defined as inlines */ /* return codes: */ /* 00 = success */ /* 01-0f = non-zero HRSLT */ uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bRequest, uint8_t wValLo, uint8_t wValHi, uint16_t wInd, uint16_t total, uint16_t nbytes, uint8_t* dataptr, USBReadParser *p) { bool direction = false; // Request direction, IN or OUT uint8_t rcode; SETUP_PKT setup_pkt; EpInfo *pep = nullptr; uint16_t nak_limit = 0; rcode = SetAddress(addr, ep, &pep, &nak_limit); if (rcode) return rcode; direction = ((bmReqType & 0x80) > 0); /* fill in setup packet */ setup_pkt.ReqType_u.bmRequestType = bmReqType; setup_pkt.bRequest = bRequest; setup_pkt.wVal_u.wValueLo = wValLo; setup_pkt.wVal_u.wValueHi = wValHi; setup_pkt.wIndex = wInd; setup_pkt.wLength = total; bytesWr(rSUDFIFO, 8, (uint8_t*) & setup_pkt); // Transfer to setup packet FIFO rcode = dispatchPkt(tokSETUP, ep, nak_limit); // Dispatch packet if (rcode) return rcode; // Return HRSLT if not zero if (dataptr) { // Data stage, if present if (direction) { // IN transfer uint16_t left = total; pep->bmRcvToggle = 1; // BmRCVTOG1; while (left) { // Bytes read into buffer uint16_t read = nbytes; //uint16_t read = (leftbmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1; continue; } if (rcode) return rcode; // Invoke callback function if inTransfer completed successfully and callback function pointer is specified if (!rcode && p) ((USBReadParser*)p)->Parse(read, dataptr, total - left); left -= read; if (read < nbytes) break; } } else { // OUT transfer pep->bmSndToggle = 1; // BmSNDTOG1; rcode = OutTransfer(pep, nak_limit, nbytes, dataptr); } if (rcode) return rcode; // Return error } // Status stage return dispatchPkt((direction) ? tokOUTHS : tokINHS, ep, nak_limit); // GET if direction } /** * IN transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. * Keep sending INs and writes data to memory area pointed by 'data' * rcode 0 if no errors. rcode 01-0f is relayed from dispatchPkt(). Rcode f0 means RCVDAVIRQ error, fe = USB xfer timeout */ uint8_t USB::inTransfer(uint8_t addr, uint8_t ep, uint16_t *nbytesptr, uint8_t* data, uint8_t bInterval /*= 0*/) { EpInfo *pep = nullptr; uint16_t nak_limit = 0; uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit); if (rcode) { USBTRACE3("(USB::InTransfer) SetAddress Failed ", rcode, 0x81); USBTRACE3("(USB::InTransfer) addr requested ", addr, 0x81); USBTRACE3("(USB::InTransfer) ep requested ", ep, 0x81); return rcode; } return InTransfer(pep, nak_limit, nbytesptr, data, bInterval); } uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, uint8_t* data, uint8_t bInterval /*= 0*/) { uint8_t rcode = 0; uint8_t pktsize; uint16_t nbytes = *nbytesptr; //printf("Requesting %i bytes ", nbytes); uint8_t maxpktsize = pep->maxPktSize; *nbytesptr = 0; regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); // Set toggle value // Use a 'break' to exit this loop for (;;) { rcode = dispatchPkt(tokIN, pep->epAddr, nak_limit); // IN packet to EP-'endpoint'. Function takes care of NAKS. if (rcode == hrTOGERR) { // Yes, we flip it wrong here so that next time it is actually correct! pep->bmRcvToggle = (regRd(rHRSL) & bmRCVTOGRD) ? 0 : 1; regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); // Set toggle value continue; } if (rcode) { //printf(">>>>>>>> Problem! dispatchPkt %2.2x\r\n", rcode); break; // Should be 0, indicating ACK. Else return error code. } /* check for RCVDAVIRQ and generate error if not present */ /* the only case when absence of RCVDAVIRQ makes sense is when toggle error occurred. Need to add handling for that */ if ((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) { //printf(">>>>>>>> Problem! NO RCVDAVIRQ!\r\n"); rcode = 0xF0; // Receive error break; } pktsize = regRd(rRCVBC); // Number of received bytes //printf("Got %i bytes \r\n", pktsize); // This would be OK, but... //assert(pktsize <= nbytes); if (pktsize > nbytes) { // This can happen. Use of assert on Arduino locks up the Arduino. // So I will trim the value, and hope for the best. //printf(">>>>>>>> Problem! Wanted %i bytes but got %i.\r\n", nbytes, pktsize); pktsize = nbytes; } int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr); if (mem_left < 0) mem_left = 0; data = bytesRd(rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data); regWr(rHIRQ, bmRCVDAVIRQ); // Clear the IRQ & free the buffer *nbytesptr += pktsize; // Add this packet's byte count to total transfer length /* The transfer is complete under two conditions: */ /* 1. The device sent a short packet (L.T. maxPacketSize) */ /* 2. 'nbytes' have been transferred. */ if (pktsize < maxpktsize || *nbytesptr >= nbytes) { // Transferred 'nbytes' bytes? // Save toggle value pep->bmRcvToggle = ((regRd(rHRSL) & bmRCVTOGRD)) ? 1 : 0; //printf("\r\n"); rcode = 0; break; } else if (bInterval > 0) delay(bInterval); // Delay according to polling interval } return rcode; } /** * OUT transfer to arbitrary endpoint. Handles multiple packets if necessary. Transfers 'nbytes' bytes. * Handles NAK bug per Maxim Application Note 4000 for single buffer transfer * rcode 0 if no errors. rcode 01-0f is relayed from HRSL */ uint8_t USB::outTransfer(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* data) { EpInfo *pep = nullptr; uint16_t nak_limit = 0; uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit); if (rcode) return rcode; return OutTransfer(pep, nak_limit, nbytes, data); } uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8_t *data) { uint8_t rcode = hrSUCCESS, retry_count; uint8_t *data_p = data; // Local copy of the data pointer uint16_t bytes_tosend, nak_count; uint16_t bytes_left = nbytes; uint8_t maxpktsize = pep->maxPktSize; if (maxpktsize < 1 || maxpktsize > 64) return USB_ERROR_INVALID_MAX_PKT_SIZE; uint32_t timeout = (uint32_t)millis() + USB_XFER_TIMEOUT; regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); // Set toggle value while (bytes_left) { retry_count = 0; nak_count = 0; bytes_tosend = (bytes_left >= maxpktsize) ? maxpktsize : bytes_left; bytesWr(rSNDFIFO, bytes_tosend, data_p); // Filling output FIFO regWr(rSNDBC, bytes_tosend); // Set number of bytes regWr(rHXFR, (tokOUT | pep->epAddr)); // Dispatch packet while (!(regRd(rHIRQ) & bmHXFRDNIRQ)); // Wait for the completion IRQ regWr(rHIRQ, bmHXFRDNIRQ); // Clear IRQ rcode = (regRd(rHRSL) & 0x0F); while (rcode && ((int32_t)((uint32_t)millis() - timeout) < 0L)) { switch (rcode) { case hrNAK: nak_count++; if (nak_limit && (nak_count == nak_limit)) goto breakout; //return rcode; break; case hrTIMEOUT: retry_count++; if (retry_count == USB_RETRY_LIMIT) goto breakout; //return rcode; break; case hrTOGERR: // Yes, we flip it wrong here so that next time it is actually correct! pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1; regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); // Set toggle value break; default: goto breakout; } /* process NAK according to Host out NAK bug */ regWr(rSNDBC, 0); regWr(rSNDFIFO, *data_p); regWr(rSNDBC, bytes_tosend); regWr(rHXFR, (tokOUT | pep->epAddr)); // Dispatch packet while (!(regRd(rHIRQ) & bmHXFRDNIRQ)); // Wait for the completion IRQ regWr(rHIRQ, bmHXFRDNIRQ); // Clear IRQ rcode = (regRd(rHRSL) & 0x0F); } // While rcode && .... bytes_left -= bytes_tosend; data_p += bytes_tosend; } // While bytes_left... breakout: pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 1 : 0; // BmSNDTOG1 : bmSNDTOG0; // Update toggle return ( rcode); // Should be 0 in all cases } /** * Dispatch USB packet. Assumes peripheral address is set and relevant buffer is loaded/empty * If NAK, tries to re-send up to nak_limit times * If nak_limit == 0, do not count NAKs, exit after timeout * If bus timeout, re-sends up to USB_RETRY_LIMIT times * return codes 0x00-0x0F are HRSLT( 0x00 being success ), 0xFF means timeout */ uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) { uint32_t timeout = (uint32_t)millis() + USB_XFER_TIMEOUT; uint8_t tmpdata; uint8_t rcode = hrSUCCESS; uint8_t retry_count = 0; uint16_t nak_count = 0; while ((int32_t)((uint32_t)millis() - timeout) < 0L) { #if defined(ESP8266) || defined(ESP32) yield(); // Needed in order to reset the watchdog timer on the ESP8266 #endif regWr(rHXFR, (token | ep)); // Launch the transfer rcode = USB_ERROR_TRANSFER_TIMEOUT; while ((int32_t)((uint32_t)millis() - timeout) < 0L) { // Wait for transfer completion #if defined(ESP8266) || defined(ESP32) yield(); // Needed to reset the watchdog timer on the ESP8266 #endif tmpdata = regRd(rHIRQ); if (tmpdata & bmHXFRDNIRQ) { regWr(rHIRQ, bmHXFRDNIRQ); // Clear the interrupt rcode = 0x00; break; } } // While millis() < timeout //if (rcode != 0x00) return rcode; // Exit if timeout rcode = (regRd(rHRSL) & 0x0F); // Analyze transfer result switch (rcode) { case hrNAK: nak_count++; if (nak_limit && (nak_count == nak_limit)) return (rcode); break; case hrTIMEOUT: retry_count++; if (retry_count == USB_RETRY_LIMIT) return (rcode); break; default: return (rcode); } } // While timeout > millis() return rcode; } // USB main task. Performs enumeration/cleanup void USB::Task() { // USB state machine uint8_t rcode; uint8_t tmpdata; static uint32_t delay = 0; //USB_FD_DEVICE_DESCRIPTOR buf; bool lowspeed = false; MAX3421E::Task(); tmpdata = getVbusState(); /* modify USB task state if Vbus changed */ switch (tmpdata) { case SE1: // Illegal state usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL; lowspeed = false; break; case SE0: // Disconnected if ((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED) usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; lowspeed = false; break; case LSHOST: lowspeed = true; // Intentional fallthrough case FSHOST: // Attached if ((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) { delay = (uint32_t)millis() + USB_SETTLE_DELAY; usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE; } break; } for (uint8_t i = 0; i < USB_NUMDEVICES; i++) if (devConfig[i]) rcode = devConfig[i]->Poll(); switch (usb_task_state) { case USB_DETACHED_SUBSTATE_INITIALIZE: init(); for (uint8_t i = 0; i < USB_NUMDEVICES; i++) if (devConfig[i]) rcode = devConfig[i]->Release(); usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE; break; case USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE: // Just sit here break; case USB_DETACHED_SUBSTATE_ILLEGAL: // Just sit here break; case USB_ATTACHED_SUBSTATE_SETTLE: // Settle time for just attached device if ((int32_t)((uint32_t)millis() - delay) >= 0L) usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE; else break; // Don't fall through case USB_ATTACHED_SUBSTATE_RESET_DEVICE: regWr(rHCTL, bmBUSRST); // Issue bus reset usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE; break; case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE: if ((regRd(rHCTL) & bmBUSRST) == 0) { tmpdata = regRd(rMODE) | bmSOFKAENAB; // Start SOF generation regWr(rMODE, tmpdata); usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF; //delay = (uint32_t)millis() + 20; // 20ms wait after reset per USB spec } break; case USB_ATTACHED_SUBSTATE_WAIT_SOF: // Todo: change check order if (regRd(rHIRQ) & bmFRAMEIRQ) { // When first SOF received _and_ 20ms has passed we can continue /* if (delay < (uint32_t)millis()) // 20ms passed usb_task_state = USB_STATE_CONFIGURING; */ usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET; delay = (uint32_t)millis() + 20; } break; case USB_ATTACHED_SUBSTATE_WAIT_RESET: if ((int32_t)((uint32_t)millis() - delay) >= 0L) usb_task_state = USB_STATE_CONFIGURING; else break; // Don't fall through case USB_STATE_CONFIGURING: //Serial.print("\r\nConf.LS: "); //Serial.println(lowspeed, HEX); rcode = Configuring(0, 0, lowspeed); if (!rcode) usb_task_state = USB_STATE_RUNNING; else if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) { usb_error = rcode; usb_task_state = USB_STATE_ERROR; } break; case USB_STATE_RUNNING: break; case USB_STATE_ERROR: //MAX3421E::Init(); break; } } uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) { //uint8_t buf[12]; uint8_t rcode; UsbDevice *p0 = nullptr, *p = nullptr; // Get pointer to pseudo device with address 0 assigned p0 = addrPool.GetUsbDevicePtr(0); if (!p0) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; if (!p0->epinfo) return USB_ERROR_EPINFO_IS_NULL; p0->lowspeed = lowspeed; // Allocate new address according to device class uint8_t bAddress = addrPool.AllocAddress(parent, false, port); if (!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; p = addrPool.GetUsbDevicePtr(bAddress); if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; // Assign new address to the device rcode = setAddr(0, 0, bAddress); if (rcode) { addrPool.FreeAddress(bAddress); bAddress = 0; } return rcode; } uint8_t USB::AttemptConfig(uint8_t driver, uint8_t parent, uint8_t port, bool lowspeed) { //printf("AttemptConfig: parent = %i, port = %i\r\n", parent, port); uint8_t retries = 0; again: uint8_t rcode = devConfig[driver]->ConfigureDevice(parent, port, lowspeed); if (rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) { if (parent == 0) { // Send a bus reset on the root interface. regWr(rHCTL, bmBUSRST); // Issue bus reset delay(102); // Delay 102ms, compensate for clock inaccuracy. } else { // Reset parent port devConfig[parent]->ResetHubPort(port); } } else if (rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works delay(100); retries++; goto again; } else if (rcode) return rcode; rcode = devConfig[driver]->Init(parent, port, lowspeed); if (rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works delay(100); retries++; goto again; } if (rcode) { // Issue a bus reset, because the device may be in a limbo state if (parent == 0) { // Send a bus reset on the root interface. regWr(rHCTL, bmBUSRST); // Issue bus reset delay(102); // Delay 102ms, compensate for clock inaccuracy. } else { // Reset parent port devConfig[parent]->ResetHubPort(port); } } return rcode; } /** * This is broken. It needs to enumerate differently. * It causes major problems with several devices if detected in an unexpected order. * * Oleg - I wouldn't do anything before the newly connected device is considered sane. * i.e.(delays are not indicated for brevity): * 1. reset * 2. GetDevDescr(); * 3a. If ACK, continue with allocating address, addressing, etc. * 3b. Else reset again, count resets, stop at some number (5?). * 4. When max.number of resets is reached, toggle power/fail * If desired, this could be modified by performing two resets with GetDevDescr() in the middle - however, from my experience, if a device answers to GDD() * it doesn't need to be reset again * New steps proposal: * 1: get address pool instance. exit on fail * 2: pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf). exit on fail. * 3: bus reset, 100ms delay * 4: set address * 5: pUsb->setEpInfoEntry(bAddress, 1, epInfo), exit on fail * 6: while (configurations) { * for (each configuration) { * for (each driver) { * 6a: Ask device if it likes configuration. Returns 0 on OK. * If successful, the driver configured device. * The driver now owns the endpoints, and takes over managing them. * The following will need codes: * Everything went well, instance consumed, exit with success. * Instance already in use, ignore it, try next driver. * Not a supported device, ignore it, try next driver. * Not a supported configuration for this device, ignore it, try next driver. * Could not configure device, fatal, exit with fail. * } * } * } * 7: for (each driver) { * 7a: Ask device if it knows this VID/PID. Acts exactly like 6a, but using VID/PID * 8: if we get here, no driver likes the device plugged in, so exit failure. */ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) { //uint8_t bAddress = 0; //printf("Configuring: parent = %i, port = %i\r\n", parent, port); uint8_t devConfigIndex; uint8_t rcode = 0; uint8_t buf[sizeof (USB_FD_DEVICE_DESCRIPTOR)]; USB_FD_DEVICE_DESCRIPTOR *udd = reinterpret_cast(buf); UsbDevice *p = nullptr; EpInfo *oldep_ptr = nullptr; EpInfo epInfo; epInfo.epAddr = 0; epInfo.maxPktSize = 8; epInfo.bmSndToggle = 0; epInfo.bmRcvToggle = 0; epInfo.bmNakPower = USB_NAK_MAX_POWER; //delay(2000); AddressPool &addrPool = GetAddressPool(); // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if (!p) { //printf("Configuring error: USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL\r\n"); return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to // Avoid toggle inconsistence p->epinfo = &epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = getDevDescr(0, 0, sizeof (USB_FD_DEVICE_DESCRIPTOR), (uint8_t*)buf); // Restore p->epinfo p->epinfo = oldep_ptr; if (rcode) { //printf("Configuring error: Can't get USB_FD_DEVICE_DESCRIPTOR\r\n"); return rcode; } // To-do? // Allocate new address according to device class //bAddress = addrPool.AllocAddress(parent, false, port); uint16_t vid = udd->idVendor, pid = udd->idProduct; uint8_t klass = udd->bDeviceClass, subklass = udd->bDeviceSubClass; // Attempt to configure if VID/PID or device class matches with a driver // Qualify with subclass too. // // VID/PID & class tests default to false for drivers not yet ported // Subclass defaults to true, so you don't have to define it if you don't have to. // for (devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) { if (!devConfig[devConfigIndex]) continue; // No driver if (devConfig[devConfigIndex]->GetAddress()) continue; // Consumed if (devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) { rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed); if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED) break; } } if (devConfigIndex < USB_NUMDEVICES) return rcode; // Blindly attempt to configure for (devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) { if (!devConfig[devConfigIndex]) continue; if (devConfig[devConfigIndex]->GetAddress()) continue; // Consumed if (devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed); //printf("ERROR ENUMERATING %2.2x\r\n", rcode); if (!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) { // In case of an error dev_index should be reset to 0 // in order to start from the very beginning the // next time the program gets here //if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) //devConfigIndex = 0; return rcode; } } // Arriving here means the device class is unsupported by registered classes return DefaultAddressing(parent, port, lowspeed); } uint8_t USB::ReleaseDevice(uint8_t addr) { if (addr) { for (uint8_t i = 0; i < USB_NUMDEVICES; i++) { if (!devConfig[i]) continue; if (devConfig[i]->GetAddress() == addr) return devConfig[i]->Release(); } } return 0; } // Get device descriptor uint8_t USB::getDevDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr) { return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, nbytes, dataptr, nullptr); } // Get configuration descriptor uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr) { return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, nbytes, dataptr, nullptr); } /** * Requests Configuration Descriptor. Sends two Get Conf Descr requests. * The first one gets the total length of all descriptors, then the second one requests this * total length. The length of the first request can be shorter (4 bytes), however, there are * devices which won't work unless this length is set to 9. */ uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser *p) { const uint8_t bufSize = 64; uint8_t buf[bufSize]; USB_FD_CONFIGURATION_DESCRIPTOR *ucd = reinterpret_cast(buf); uint8_t ret = getConfDescr(addr, ep, 9, conf, buf); if (ret) return ret; uint16_t total = ucd->wTotalLength; //USBTRACE2("\r\ntotal conf.size:", total); return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, total, bufSize, buf, p); } // Get string descriptor uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t ns, uint8_t index, uint16_t langid, uint8_t* dataptr) { return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, ns, ns, dataptr, nullptr); } // Set address uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) { uint8_t rcode = ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, nullptr, nullptr); //delay(2); // Per USB 2.0 sect.9.2.6.3 delay(300); // Older spec says you should wait at least 200ms return rcode; //return ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, nullptr, nullptr); } // Set configuration uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) { return ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, 0x0000, nullptr, nullptr); } #endif // USB_FLASH_DRIVE_SUPPORT