aboutsummaryrefslogtreecommitdiff
path: root/vendor/adler/src
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/adler/src
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/adler/src')
-rw-r--r--vendor/adler/src/algo.rs146
-rw-r--r--vendor/adler/src/lib.rs287
2 files changed, 0 insertions, 433 deletions
diff --git a/vendor/adler/src/algo.rs b/vendor/adler/src/algo.rs
deleted file mode 100644
index 650cffa..0000000
--- a/vendor/adler/src/algo.rs
+++ /dev/null
@@ -1,146 +0,0 @@
-use crate::Adler32;
-use std::ops::{AddAssign, MulAssign, RemAssign};
-
-impl Adler32 {
- pub(crate) fn compute(&mut self, bytes: &[u8]) {
- // The basic algorithm is, for every byte:
- // a = (a + byte) % MOD
- // b = (b + a) % MOD
- // where MOD = 65521.
- //
- // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows:
- // - Between calls to `write`, we ensure that a and b are always in range 0..MOD.
- // - We use 32-bit arithmetic in this function.
- // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD`
- // operation.
- //
- // According to Wikipedia, b is calculated as follows for non-incremental checksumming:
- // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521)
- // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account
- // for the previous values of a and b, as well as treat every input Byte as being 255:
- // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520
- // Or in other words:
- // b_inc = n*65520 + n(n+1)/2*255
- // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521.
- // 2^32-65521 = n*65520 + n(n+1)/2*255
- // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552.
- //
- // On top of the optimization outlined above, the algorithm can also be parallelized with a
- // bit more work:
- //
- // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn).
- //
- // If we fix some value k<N and rewrite indices 1, ..., N as
- //
- // 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k,
- //
- // then we can express a and b in terms of sums of smaller sequences kb and ka:
- //
- // ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k
- // kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k
- //
- // a = ka(1) + ka(2) + ... + ka(k) + 1
- // b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N
- //
- // We use this insight to unroll the main loop and process k=4 bytes at a time.
- // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups
- // stem from increased pipeline parallelism rather than auto-vectorization.
- //
- // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\
- // en/develop/articles/fast-computation-of-fletcher-checksums.html]
-
- const MOD: u32 = 65521;
- const CHUNK_SIZE: usize = 5552 * 4;
-
- let mut a = u32::from(self.a);
- let mut b = u32::from(self.b);
- let mut a_vec = U32X4([0; 4]);
- let mut b_vec = a_vec;
-
- let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4);
-
- // iterate over 4 bytes at a time
- let chunk_iter = bytes.chunks_exact(CHUNK_SIZE);
- let remainder_chunk = chunk_iter.remainder();
- for chunk in chunk_iter {
- for byte_vec in chunk.chunks_exact(4) {
- let val = U32X4::from(byte_vec);
- a_vec += val;
- b_vec += a_vec;
- }
- b += CHUNK_SIZE as u32 * a;
- a_vec %= MOD;
- b_vec %= MOD;
- b %= MOD;
- }
- // special-case the final chunk because it may be shorter than the rest
- for byte_vec in remainder_chunk.chunks_exact(4) {
- let val = U32X4::from(byte_vec);
- a_vec += val;
- b_vec += a_vec;
- }
- b += remainder_chunk.len() as u32 * a;
- a_vec %= MOD;
- b_vec %= MOD;
- b %= MOD;
-
- // combine the sub-sum results into the main sum
- b_vec *= 4;
- b_vec.0[1] += MOD - a_vec.0[1];
- b_vec.0[2] += (MOD - a_vec.0[2]) * 2;
- b_vec.0[3] += (MOD - a_vec.0[3]) * 3;
- for &av in a_vec.0.iter() {
- a += av;
- }
- for &bv in b_vec.0.iter() {
- b += bv;
- }
-
- // iterate over the remaining few bytes in serial
- for &byte in remainder.iter() {
- a += u32::from(byte);
- b += a;
- }
-
- self.a = (a % MOD) as u16;
- self.b = (b % MOD) as u16;
- }
-}
-
-#[derive(Copy, Clone)]
-struct U32X4([u32; 4]);
-
-impl U32X4 {
- fn from(bytes: &[u8]) -> Self {
- U32X4([
- u32::from(bytes[0]),
- u32::from(bytes[1]),
- u32::from(bytes[2]),
- u32::from(bytes[3]),
- ])
- }
-}
-
-impl AddAssign<Self> for U32X4 {
- fn add_assign(&mut self, other: Self) {
- for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
- *s += o;
- }
- }
-}
-
-impl RemAssign<u32> for U32X4 {
- fn rem_assign(&mut self, quotient: u32) {
- for s in self.0.iter_mut() {
- *s %= quotient;
- }
- }
-}
-
-impl MulAssign<u32> for U32X4 {
- fn mul_assign(&mut self, rhs: u32) {
- for s in self.0.iter_mut() {
- *s *= rhs;
- }
- }
-}
diff --git a/vendor/adler/src/lib.rs b/vendor/adler/src/lib.rs
deleted file mode 100644
index c7aa380..0000000
--- a/vendor/adler/src/lib.rs
+++ /dev/null
@@ -1,287 +0,0 @@
-//! Adler-32 checksum implementation.
-//!
-//! This implementation features:
-//!
-//! - Permissively licensed (0BSD) clean-room implementation.
-//! - Zero dependencies.
-//! - Zero `unsafe`.
-//! - Decent performance (3-4 GB/s).
-//! - `#![no_std]` support (with `default-features = false`).
-
-#![doc(html_root_url = "https://docs.rs/adler/1.0.2")]
-// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
-#![doc(test(attr(deny(unused_imports, unused_must_use))))]
-#![cfg_attr(docsrs, feature(doc_cfg))]
-#![warn(missing_debug_implementations)]
-#![forbid(unsafe_code)]
-#![cfg_attr(not(feature = "std"), no_std)]
-
-#[cfg(not(feature = "std"))]
-extern crate core as std;
-
-mod algo;
-
-use std::hash::Hasher;
-
-#[cfg(feature = "std")]
-use std::io::{self, BufRead};
-
-/// Adler-32 checksum calculator.
-///
-/// An instance of this type is equivalent to an Adler-32 checksum: It can be created in the default
-/// state via [`new`] (or the provided `Default` impl), or from a precalculated checksum via
-/// [`from_checksum`], and the currently stored checksum can be fetched via [`checksum`].
-///
-/// This type also implements `Hasher`, which makes it easy to calculate Adler-32 checksums of any
-/// type that implements or derives `Hash`. This also allows using Adler-32 in a `HashMap`, although
-/// that is not recommended (while every checksum is a hash function, they are not necessarily a
-/// good one).
-///
-/// # Examples
-///
-/// Basic, piecewise checksum calculation:
-///
-/// ```
-/// use adler::Adler32;
-///
-/// let mut adler = Adler32::new();
-///
-/// adler.write_slice(&[0, 1, 2]);
-/// adler.write_slice(&[3, 4, 5]);
-///
-/// assert_eq!(adler.checksum(), 0x00290010);
-/// ```
-///
-/// Using `Hash` to process structures:
-///
-/// ```
-/// use std::hash::Hash;
-/// use adler::Adler32;
-///
-/// #[derive(Hash)]
-/// struct Data {
-/// byte: u8,
-/// word: u16,
-/// big: u64,
-/// }
-///
-/// let mut adler = Adler32::new();
-///
-/// let data = Data { byte: 0x1F, word: 0xABCD, big: !0 };
-/// data.hash(&mut adler);
-///
-/// // hash value depends on architecture endianness
-/// if cfg!(target_endian = "little") {
-/// assert_eq!(adler.checksum(), 0x33410990);
-/// }
-/// if cfg!(target_endian = "big") {
-/// assert_eq!(adler.checksum(), 0x331F0990);
-/// }
-///
-/// ```
-///
-/// [`new`]: #method.new
-/// [`from_checksum`]: #method.from_checksum
-/// [`checksum`]: #method.checksum
-#[derive(Debug, Copy, Clone)]
-pub struct Adler32 {
- a: u16,
- b: u16,
-}
-
-impl Adler32 {
- /// Creates a new Adler-32 instance with default state.
- #[inline]
- pub fn new() -> Self {
- Self::default()
- }
-
- /// Creates an `Adler32` instance from a precomputed Adler-32 checksum.
- ///
- /// This allows resuming checksum calculation without having to keep the `Adler32` instance
- /// around.
- ///
- /// # Example
- ///
- /// ```
- /// # use adler::Adler32;
- /// let parts = [
- /// "rust",
- /// "acean",
- /// ];
- /// let whole = adler::adler32_slice(b"rustacean");
- ///
- /// let mut sum = Adler32::new();
- /// sum.write_slice(parts[0].as_bytes());
- /// let partial = sum.checksum();
- ///
- /// // ...later
- ///
- /// let mut sum = Adler32::from_checksum(partial);
- /// sum.write_slice(parts[1].as_bytes());
- /// assert_eq!(sum.checksum(), whole);
- /// ```
- #[inline]
- pub fn from_checksum(sum: u32) -> Self {
- Adler32 {
- a: sum as u16,
- b: (sum >> 16) as u16,
- }
- }
-
- /// Returns the calculated checksum at this point in time.
- #[inline]
- pub fn checksum(&self) -> u32 {
- (u32::from(self.b) << 16) | u32::from(self.a)
- }
-
- /// Adds `bytes` to the checksum calculation.
- ///
- /// If efficiency matters, this should be called with Byte slices that contain at least a few
- /// thousand Bytes.
- pub fn write_slice(&mut self, bytes: &[u8]) {
- self.compute(bytes);
- }
-}
-
-impl Default for Adler32 {
- #[inline]
- fn default() -> Self {
- Adler32 { a: 1, b: 0 }
- }
-}
-
-impl Hasher for Adler32 {
- #[inline]
- fn finish(&self) -> u64 {
- u64::from(self.checksum())
- }
-
- fn write(&mut self, bytes: &[u8]) {
- self.write_slice(bytes);
- }
-}
-
-/// Calculates the Adler-32 checksum of a byte slice.
-///
-/// This is a convenience function around the [`Adler32`] type.
-///
-/// [`Adler32`]: struct.Adler32.html
-pub fn adler32_slice(data: &[u8]) -> u32 {
- let mut h = Adler32::new();
- h.write_slice(data);
- h.checksum()
-}
-
-/// Calculates the Adler-32 checksum of a `BufRead`'s contents.
-///
-/// The passed `BufRead` implementor will be read until it reaches EOF (or until it reports an
-/// error).
-///
-/// If you only have a `Read` implementor, you can wrap it in `std::io::BufReader` before calling
-/// this function.
-///
-/// # Errors
-///
-/// Any error returned by the reader are bubbled up by this function.
-///
-/// # Examples
-///
-/// ```no_run
-/// # fn run() -> Result<(), Box<dyn std::error::Error>> {
-/// use adler::adler32;
-///
-/// use std::fs::File;
-/// use std::io::BufReader;
-///
-/// let file = File::open("input.txt")?;
-/// let mut file = BufReader::new(file);
-///
-/// adler32(&mut file)?;
-/// # Ok(()) }
-/// # fn main() { run().unwrap() }
-/// ```
-#[cfg(feature = "std")]
-#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
-pub fn adler32<R: BufRead>(mut reader: R) -> io::Result<u32> {
- let mut h = Adler32::new();
- loop {
- let len = {
- let buf = reader.fill_buf()?;
- if buf.is_empty() {
- return Ok(h.checksum());
- }
-
- h.write_slice(buf);
- buf.len()
- };
- reader.consume(len);
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn zeroes() {
- assert_eq!(adler32_slice(&[]), 1);
- assert_eq!(adler32_slice(&[0]), 1 | 1 << 16);
- assert_eq!(adler32_slice(&[0, 0]), 1 | 2 << 16);
- assert_eq!(adler32_slice(&[0; 100]), 0x00640001);
- assert_eq!(adler32_slice(&[0; 1024]), 0x04000001);
- assert_eq!(adler32_slice(&[0; 1024 * 1024]), 0x00f00001);
- }
-
- #[test]
- fn ones() {
- assert_eq!(adler32_slice(&[0xff; 1024]), 0x79a6fc2e);
- assert_eq!(adler32_slice(&[0xff; 1024 * 1024]), 0x8e88ef11);
- }
-
- #[test]
- fn mixed() {
- assert_eq!(adler32_slice(&[1]), 2 | 2 << 16);
- assert_eq!(adler32_slice(&[40]), 41 | 41 << 16);
-
- assert_eq!(adler32_slice(&[0xA5; 1024 * 1024]), 0xd5009ab1);
- }
-
- /// Example calculation from https://en.wikipedia.org/wiki/Adler-32.
- #[test]
- fn wiki() {
- assert_eq!(adler32_slice(b"Wikipedia"), 0x11E60398);
- }
-
- #[test]
- fn resume() {
- let mut adler = Adler32::new();
- adler.write_slice(&[0xff; 1024]);
- let partial = adler.checksum();
- assert_eq!(partial, 0x79a6fc2e); // from above
- adler.write_slice(&[0xff; 1024 * 1024 - 1024]);
- assert_eq!(adler.checksum(), 0x8e88ef11); // from above
-
- // Make sure that we can resume computing from the partial checksum via `from_checksum`.
- let mut adler = Adler32::from_checksum(partial);
- adler.write_slice(&[0xff; 1024 * 1024 - 1024]);
- assert_eq!(adler.checksum(), 0x8e88ef11); // from above
- }
-
- #[cfg(feature = "std")]
- #[test]
- fn bufread() {
- use std::io::BufReader;
- fn test(data: &[u8], checksum: u32) {
- // `BufReader` uses an 8 KB buffer, so this will test buffer refilling.
- let mut buf = BufReader::new(data);
- let real_sum = adler32(&mut buf).unwrap();
- assert_eq!(checksum, real_sum);
- }
-
- test(&[], 1);
- test(&[0; 1024], 0x04000001);
- test(&[0; 1024 * 1024], 0x00f00001);
- test(&[0xA5; 1024 * 1024], 0xd5009ab1);
- }
-}