diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/adler/src | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/adler/src')
-rw-r--r-- | vendor/adler/src/algo.rs | 146 | ||||
-rw-r--r-- | vendor/adler/src/lib.rs | 287 |
2 files changed, 0 insertions, 433 deletions
diff --git a/vendor/adler/src/algo.rs b/vendor/adler/src/algo.rs deleted file mode 100644 index 650cffa..0000000 --- a/vendor/adler/src/algo.rs +++ /dev/null @@ -1,146 +0,0 @@ -use crate::Adler32; -use std::ops::{AddAssign, MulAssign, RemAssign}; - -impl Adler32 { - pub(crate) fn compute(&mut self, bytes: &[u8]) { - // The basic algorithm is, for every byte: - // a = (a + byte) % MOD - // b = (b + a) % MOD - // where MOD = 65521. - // - // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows: - // - Between calls to `write`, we ensure that a and b are always in range 0..MOD. - // - We use 32-bit arithmetic in this function. - // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD` - // operation. - // - // According to Wikipedia, b is calculated as follows for non-incremental checksumming: - // b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521) - // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account - // for the previous values of a and b, as well as treat every input Byte as being 255: - // b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520 - // Or in other words: - // b_inc = n*65520 + n(n+1)/2*255 - // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521. - // 2^32-65521 = n*65520 + n(n+1)/2*255 - // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552. - // - // On top of the optimization outlined above, the algorithm can also be parallelized with a - // bit more work: - // - // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn). - // - // If we fix some value k<N and rewrite indices 1, ..., N as - // - // 1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k, - // - // then we can express a and b in terms of sums of smaller sequences kb and ka: - // - // ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k - // kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k - // - // a = ka(1) + ka(2) + ... + ka(k) + 1 - // b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ... - (k-1)*ka(k) + N - // - // We use this insight to unroll the main loop and process k=4 bytes at a time. - // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups - // stem from increased pipeline parallelism rather than auto-vectorization. - // - // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\ - // en/develop/articles/fast-computation-of-fletcher-checksums.html] - - const MOD: u32 = 65521; - const CHUNK_SIZE: usize = 5552 * 4; - - let mut a = u32::from(self.a); - let mut b = u32::from(self.b); - let mut a_vec = U32X4([0; 4]); - let mut b_vec = a_vec; - - let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4); - - // iterate over 4 bytes at a time - let chunk_iter = bytes.chunks_exact(CHUNK_SIZE); - let remainder_chunk = chunk_iter.remainder(); - for chunk in chunk_iter { - for byte_vec in chunk.chunks_exact(4) { - let val = U32X4::from(byte_vec); - a_vec += val; - b_vec += a_vec; - } - b += CHUNK_SIZE as u32 * a; - a_vec %= MOD; - b_vec %= MOD; - b %= MOD; - } - // special-case the final chunk because it may be shorter than the rest - for byte_vec in remainder_chunk.chunks_exact(4) { - let val = U32X4::from(byte_vec); - a_vec += val; - b_vec += a_vec; - } - b += remainder_chunk.len() as u32 * a; - a_vec %= MOD; - b_vec %= MOD; - b %= MOD; - - // combine the sub-sum results into the main sum - b_vec *= 4; - b_vec.0[1] += MOD - a_vec.0[1]; - b_vec.0[2] += (MOD - a_vec.0[2]) * 2; - b_vec.0[3] += (MOD - a_vec.0[3]) * 3; - for &av in a_vec.0.iter() { - a += av; - } - for &bv in b_vec.0.iter() { - b += bv; - } - - // iterate over the remaining few bytes in serial - for &byte in remainder.iter() { - a += u32::from(byte); - b += a; - } - - self.a = (a % MOD) as u16; - self.b = (b % MOD) as u16; - } -} - -#[derive(Copy, Clone)] -struct U32X4([u32; 4]); - -impl U32X4 { - fn from(bytes: &[u8]) -> Self { - U32X4([ - u32::from(bytes[0]), - u32::from(bytes[1]), - u32::from(bytes[2]), - u32::from(bytes[3]), - ]) - } -} - -impl AddAssign<Self> for U32X4 { - fn add_assign(&mut self, other: Self) { - for (s, o) in self.0.iter_mut().zip(other.0.iter()) { - *s += o; - } - } -} - -impl RemAssign<u32> for U32X4 { - fn rem_assign(&mut self, quotient: u32) { - for s in self.0.iter_mut() { - *s %= quotient; - } - } -} - -impl MulAssign<u32> for U32X4 { - fn mul_assign(&mut self, rhs: u32) { - for s in self.0.iter_mut() { - *s *= rhs; - } - } -} diff --git a/vendor/adler/src/lib.rs b/vendor/adler/src/lib.rs deleted file mode 100644 index c7aa380..0000000 --- a/vendor/adler/src/lib.rs +++ /dev/null @@ -1,287 +0,0 @@ -//! Adler-32 checksum implementation. -//! -//! This implementation features: -//! -//! - Permissively licensed (0BSD) clean-room implementation. -//! - Zero dependencies. -//! - Zero `unsafe`. -//! - Decent performance (3-4 GB/s). -//! - `#![no_std]` support (with `default-features = false`). - -#![doc(html_root_url = "https://docs.rs/adler/1.0.2")] -// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default -#![doc(test(attr(deny(unused_imports, unused_must_use))))] -#![cfg_attr(docsrs, feature(doc_cfg))] -#![warn(missing_debug_implementations)] -#![forbid(unsafe_code)] -#![cfg_attr(not(feature = "std"), no_std)] - -#[cfg(not(feature = "std"))] -extern crate core as std; - -mod algo; - -use std::hash::Hasher; - -#[cfg(feature = "std")] -use std::io::{self, BufRead}; - -/// Adler-32 checksum calculator. -/// -/// An instance of this type is equivalent to an Adler-32 checksum: It can be created in the default -/// state via [`new`] (or the provided `Default` impl), or from a precalculated checksum via -/// [`from_checksum`], and the currently stored checksum can be fetched via [`checksum`]. -/// -/// This type also implements `Hasher`, which makes it easy to calculate Adler-32 checksums of any -/// type that implements or derives `Hash`. This also allows using Adler-32 in a `HashMap`, although -/// that is not recommended (while every checksum is a hash function, they are not necessarily a -/// good one). -/// -/// # Examples -/// -/// Basic, piecewise checksum calculation: -/// -/// ``` -/// use adler::Adler32; -/// -/// let mut adler = Adler32::new(); -/// -/// adler.write_slice(&[0, 1, 2]); -/// adler.write_slice(&[3, 4, 5]); -/// -/// assert_eq!(adler.checksum(), 0x00290010); -/// ``` -/// -/// Using `Hash` to process structures: -/// -/// ``` -/// use std::hash::Hash; -/// use adler::Adler32; -/// -/// #[derive(Hash)] -/// struct Data { -/// byte: u8, -/// word: u16, -/// big: u64, -/// } -/// -/// let mut adler = Adler32::new(); -/// -/// let data = Data { byte: 0x1F, word: 0xABCD, big: !0 }; -/// data.hash(&mut adler); -/// -/// // hash value depends on architecture endianness -/// if cfg!(target_endian = "little") { -/// assert_eq!(adler.checksum(), 0x33410990); -/// } -/// if cfg!(target_endian = "big") { -/// assert_eq!(adler.checksum(), 0x331F0990); -/// } -/// -/// ``` -/// -/// [`new`]: #method.new -/// [`from_checksum`]: #method.from_checksum -/// [`checksum`]: #method.checksum -#[derive(Debug, Copy, Clone)] -pub struct Adler32 { - a: u16, - b: u16, -} - -impl Adler32 { - /// Creates a new Adler-32 instance with default state. - #[inline] - pub fn new() -> Self { - Self::default() - } - - /// Creates an `Adler32` instance from a precomputed Adler-32 checksum. - /// - /// This allows resuming checksum calculation without having to keep the `Adler32` instance - /// around. - /// - /// # Example - /// - /// ``` - /// # use adler::Adler32; - /// let parts = [ - /// "rust", - /// "acean", - /// ]; - /// let whole = adler::adler32_slice(b"rustacean"); - /// - /// let mut sum = Adler32::new(); - /// sum.write_slice(parts[0].as_bytes()); - /// let partial = sum.checksum(); - /// - /// // ...later - /// - /// let mut sum = Adler32::from_checksum(partial); - /// sum.write_slice(parts[1].as_bytes()); - /// assert_eq!(sum.checksum(), whole); - /// ``` - #[inline] - pub fn from_checksum(sum: u32) -> Self { - Adler32 { - a: sum as u16, - b: (sum >> 16) as u16, - } - } - - /// Returns the calculated checksum at this point in time. - #[inline] - pub fn checksum(&self) -> u32 { - (u32::from(self.b) << 16) | u32::from(self.a) - } - - /// Adds `bytes` to the checksum calculation. - /// - /// If efficiency matters, this should be called with Byte slices that contain at least a few - /// thousand Bytes. - pub fn write_slice(&mut self, bytes: &[u8]) { - self.compute(bytes); - } -} - -impl Default for Adler32 { - #[inline] - fn default() -> Self { - Adler32 { a: 1, b: 0 } - } -} - -impl Hasher for Adler32 { - #[inline] - fn finish(&self) -> u64 { - u64::from(self.checksum()) - } - - fn write(&mut self, bytes: &[u8]) { - self.write_slice(bytes); - } -} - -/// Calculates the Adler-32 checksum of a byte slice. -/// -/// This is a convenience function around the [`Adler32`] type. -/// -/// [`Adler32`]: struct.Adler32.html -pub fn adler32_slice(data: &[u8]) -> u32 { - let mut h = Adler32::new(); - h.write_slice(data); - h.checksum() -} - -/// Calculates the Adler-32 checksum of a `BufRead`'s contents. -/// -/// The passed `BufRead` implementor will be read until it reaches EOF (or until it reports an -/// error). -/// -/// If you only have a `Read` implementor, you can wrap it in `std::io::BufReader` before calling -/// this function. -/// -/// # Errors -/// -/// Any error returned by the reader are bubbled up by this function. -/// -/// # Examples -/// -/// ```no_run -/// # fn run() -> Result<(), Box<dyn std::error::Error>> { -/// use adler::adler32; -/// -/// use std::fs::File; -/// use std::io::BufReader; -/// -/// let file = File::open("input.txt")?; -/// let mut file = BufReader::new(file); -/// -/// adler32(&mut file)?; -/// # Ok(()) } -/// # fn main() { run().unwrap() } -/// ``` -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -pub fn adler32<R: BufRead>(mut reader: R) -> io::Result<u32> { - let mut h = Adler32::new(); - loop { - let len = { - let buf = reader.fill_buf()?; - if buf.is_empty() { - return Ok(h.checksum()); - } - - h.write_slice(buf); - buf.len() - }; - reader.consume(len); - } -} - -#[cfg(test)] -mod tests { - use super::*; - - #[test] - fn zeroes() { - assert_eq!(adler32_slice(&[]), 1); - assert_eq!(adler32_slice(&[0]), 1 | 1 << 16); - assert_eq!(adler32_slice(&[0, 0]), 1 | 2 << 16); - assert_eq!(adler32_slice(&[0; 100]), 0x00640001); - assert_eq!(adler32_slice(&[0; 1024]), 0x04000001); - assert_eq!(adler32_slice(&[0; 1024 * 1024]), 0x00f00001); - } - - #[test] - fn ones() { - assert_eq!(adler32_slice(&[0xff; 1024]), 0x79a6fc2e); - assert_eq!(adler32_slice(&[0xff; 1024 * 1024]), 0x8e88ef11); - } - - #[test] - fn mixed() { - assert_eq!(adler32_slice(&[1]), 2 | 2 << 16); - assert_eq!(adler32_slice(&[40]), 41 | 41 << 16); - - assert_eq!(adler32_slice(&[0xA5; 1024 * 1024]), 0xd5009ab1); - } - - /// Example calculation from https://en.wikipedia.org/wiki/Adler-32. - #[test] - fn wiki() { - assert_eq!(adler32_slice(b"Wikipedia"), 0x11E60398); - } - - #[test] - fn resume() { - let mut adler = Adler32::new(); - adler.write_slice(&[0xff; 1024]); - let partial = adler.checksum(); - assert_eq!(partial, 0x79a6fc2e); // from above - adler.write_slice(&[0xff; 1024 * 1024 - 1024]); - assert_eq!(adler.checksum(), 0x8e88ef11); // from above - - // Make sure that we can resume computing from the partial checksum via `from_checksum`. - let mut adler = Adler32::from_checksum(partial); - adler.write_slice(&[0xff; 1024 * 1024 - 1024]); - assert_eq!(adler.checksum(), 0x8e88ef11); // from above - } - - #[cfg(feature = "std")] - #[test] - fn bufread() { - use std::io::BufReader; - fn test(data: &[u8], checksum: u32) { - // `BufReader` uses an 8 KB buffer, so this will test buffer refilling. - let mut buf = BufReader::new(data); - let real_sum = adler32(&mut buf).unwrap(); - assert_eq!(checksum, real_sum); - } - - test(&[], 1); - test(&[0; 1024], 0x04000001); - test(&[0; 1024 * 1024], 0x00f00001); - test(&[0xA5; 1024 * 1024], 0xd5009ab1); - } -} |