aboutsummaryrefslogtreecommitdiff
path: root/vendor/bytemuck/src/allocation.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/bytemuck/src/allocation.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/bytemuck/src/allocation.rs')
-rw-r--r--vendor/bytemuck/src/allocation.rs689
1 files changed, 0 insertions, 689 deletions
diff --git a/vendor/bytemuck/src/allocation.rs b/vendor/bytemuck/src/allocation.rs
deleted file mode 100644
index a2633b5..0000000
--- a/vendor/bytemuck/src/allocation.rs
+++ /dev/null
@@ -1,689 +0,0 @@
-#![cfg(feature = "extern_crate_alloc")]
-
-//! Stuff to boost things in the `alloc` crate.
-//!
-//! * You must enable the `extern_crate_alloc` feature of `bytemuck` or you will
-//! not be able to use this module! This is generally done by adding the
-//! feature to the dependency in Cargo.toml like so:
-//!
-//! `bytemuck = { version = "VERSION_YOU_ARE_USING", features =
-//! ["extern_crate_alloc"]}`
-
-use super::*;
-#[cfg(target_has_atomic = "ptr")]
-use alloc::sync::Arc;
-use alloc::{
- alloc::{alloc_zeroed, Layout},
- boxed::Box,
- rc::Rc,
- vec,
- vec::Vec,
-};
-
-/// As [`try_cast_box`](try_cast_box), but unwraps for you.
-#[inline]
-pub fn cast_box<A: NoUninit, B: AnyBitPattern>(input: Box<A>) -> Box<B> {
- try_cast_box(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a [`Box`](alloc::boxed::Box).
-///
-/// On failure you get back an error along with the starting `Box`.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Box` must have the exact same
-/// alignment.
-/// * The start and end size of the `Box` must have the exact same size.
-#[inline]
-pub fn try_cast_box<A: NoUninit, B: AnyBitPattern>(
- input: Box<A>,
-) -> Result<Box<B>, (PodCastError, Box<A>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Note(Lokathor): This is much simpler than with the Vec casting!
- let ptr: *mut B = Box::into_raw(input) as *mut B;
- Ok(unsafe { Box::from_raw(ptr) })
- }
-}
-
-/// Allocates a `Box<T>` with all of the contents being zeroed out.
-///
-/// This uses the global allocator to create a zeroed allocation and _then_
-/// turns it into a Box. In other words, it's 100% assured that the zeroed data
-/// won't be put temporarily on the stack. You can make a box of any size
-/// without fear of a stack overflow.
-///
-/// ## Failure
-///
-/// This fails if the allocation fails.
-#[inline]
-pub fn try_zeroed_box<T: Zeroable>() -> Result<Box<T>, ()> {
- if size_of::<T>() == 0 {
- // This will not allocate but simply create a dangling pointer.
- let dangling = core::ptr::NonNull::dangling().as_ptr();
- return Ok(unsafe { Box::from_raw(dangling) });
- }
- let layout = Layout::new::<T>();
- let ptr = unsafe { alloc_zeroed(layout) };
- if ptr.is_null() {
- // we don't know what the error is because `alloc_zeroed` is a dumb API
- Err(())
- } else {
- Ok(unsafe { Box::<T>::from_raw(ptr as *mut T) })
- }
-}
-
-/// As [`try_zeroed_box`], but unwraps for you.
-#[inline]
-pub fn zeroed_box<T: Zeroable>() -> Box<T> {
- try_zeroed_box().unwrap()
-}
-
-/// Allocates a `Vec<T>` of length and capacity exactly equal to `length` and
-/// all elements zeroed.
-///
-/// ## Failure
-///
-/// This fails if the allocation fails, or if a layout cannot be calculated for
-/// the allocation.
-pub fn try_zeroed_vec<T: Zeroable>(length: usize) -> Result<Vec<T>, ()> {
- if length == 0 {
- Ok(Vec::new())
- } else {
- let boxed_slice = try_zeroed_slice_box(length)?;
- Ok(boxed_slice.into_vec())
- }
-}
-
-/// As [`try_zeroed_vec`] but unwraps for you
-pub fn zeroed_vec<T: Zeroable>(length: usize) -> Vec<T> {
- try_zeroed_vec(length).unwrap()
-}
-
-/// Allocates a `Box<[T]>` with all contents being zeroed out.
-///
-/// This uses the global allocator to create a zeroed allocation and _then_
-/// turns it into a Box. In other words, it's 100% assured that the zeroed data
-/// won't be put temporarily on the stack. You can make a box of any size
-/// without fear of a stack overflow.
-///
-/// ## Failure
-///
-/// This fails if the allocation fails, or if a layout cannot be calculated for
-/// the allocation.
-#[inline]
-pub fn try_zeroed_slice_box<T: Zeroable>(
- length: usize,
-) -> Result<Box<[T]>, ()> {
- if size_of::<T>() == 0 || length == 0 {
- // This will not allocate but simply create a dangling slice pointer.
- let dangling = core::ptr::NonNull::dangling().as_ptr();
- let dangling_slice = core::ptr::slice_from_raw_parts_mut(dangling, length);
- return Ok(unsafe { Box::from_raw(dangling_slice) });
- }
- let layout = core::alloc::Layout::array::<T>(length).map_err(|_| ())?;
- let ptr = unsafe { alloc_zeroed(layout) };
- if ptr.is_null() {
- // we don't know what the error is because `alloc_zeroed` is a dumb API
- Err(())
- } else {
- let slice =
- unsafe { core::slice::from_raw_parts_mut(ptr as *mut T, length) };
- Ok(unsafe { Box::<[T]>::from_raw(slice) })
- }
-}
-
-/// As [`try_zeroed_slice_box`](try_zeroed_slice_box), but unwraps for you.
-pub fn zeroed_slice_box<T: Zeroable>(length: usize) -> Box<[T]> {
- try_zeroed_slice_box(length).unwrap()
-}
-
-/// As [`try_cast_slice_box`](try_cast_slice_box), but unwraps for you.
-#[inline]
-pub fn cast_slice_box<A: NoUninit, B: AnyBitPattern>(
- input: Box<[A]>,
-) -> Box<[B]> {
- try_cast_slice_box(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a `Box<[T]>`.
-///
-/// On failure you get back an error along with the starting `Box<[T]>`.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Box<[T]>` must have the exact same
-/// alignment.
-/// * The start and end content size in bytes of the `Box<[T]>` must be the
-/// exact same.
-#[inline]
-pub fn try_cast_slice_box<A: NoUninit, B: AnyBitPattern>(
- input: Box<[A]>,
-) -> Result<Box<[B]>, (PodCastError, Box<[A]>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- if size_of::<A>() * input.len() % size_of::<B>() != 0 {
- // If the size in bytes of the underlying buffer does not match an exact
- // multiple of the size of B, we cannot cast between them.
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Because the size is an exact multiple, we can now change the length
- // of the slice and recreate the Box
- // NOTE: This is a valid operation because according to the docs of
- // std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
- // the block must be the same Layout that is used to dealloc the block.
- // Luckily, Layout only stores two things, the alignment, and the size in
- // bytes. So as long as both of those stay the same, the Layout will
- // remain a valid input to dealloc.
- let length = size_of::<A>() * input.len() / size_of::<B>();
- let box_ptr: *mut A = Box::into_raw(input) as *mut A;
- let ptr: *mut [B] =
- unsafe { core::slice::from_raw_parts_mut(box_ptr as *mut B, length) };
- Ok(unsafe { Box::<[B]>::from_raw(ptr) })
- }
- } else {
- let box_ptr: *mut [A] = Box::into_raw(input);
- let ptr: *mut [B] = box_ptr as *mut [B];
- Ok(unsafe { Box::<[B]>::from_raw(ptr) })
- }
-}
-
-/// As [`try_cast_vec`](try_cast_vec), but unwraps for you.
-#[inline]
-pub fn cast_vec<A: NoUninit, B: AnyBitPattern>(input: Vec<A>) -> Vec<B> {
- try_cast_vec(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a [`Vec`](alloc::vec::Vec).
-///
-/// On failure you get back an error along with the starting `Vec`.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Vec` must have the exact same
-/// alignment.
-/// * The start and end content size in bytes of the `Vec` must be the exact
-/// same.
-/// * The start and end capacity in bytes of the `Vec` must be the exact same.
-#[inline]
-pub fn try_cast_vec<A: NoUninit, B: AnyBitPattern>(
- input: Vec<A>,
-) -> Result<Vec<B>, (PodCastError, Vec<A>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- if size_of::<A>() * input.len() % size_of::<B>() != 0
- || size_of::<A>() * input.capacity() % size_of::<B>() != 0
- {
- // If the size in bytes of the underlying buffer does not match an exact
- // multiple of the size of B, we cannot cast between them.
- // Note that we have to pay special attention to make sure that both
- // length and capacity are valid under B, as we do not want to
- // change which bytes are considered part of the initialized slice
- // of the Vec
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Because the size is an exact multiple, we can now change the length and
- // capacity and recreate the Vec
- // NOTE: This is a valid operation because according to the docs of
- // std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
- // the block must be the same Layout that is used to dealloc the block.
- // Luckily, Layout only stores two things, the alignment, and the size in
- // bytes. So as long as both of those stay the same, the Layout will
- // remain a valid input to dealloc.
-
- // Note(Lokathor): First we record the length and capacity, which don't
- // have any secret provenance metadata.
- let length: usize = size_of::<A>() * input.len() / size_of::<B>();
- let capacity: usize = size_of::<A>() * input.capacity() / size_of::<B>();
- // Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
- // ManuallyDrop, because if we used `core::mem::forget` after taking the
- // pointer then that would invalidate our pointer. In nightly there's a
- // "into raw parts" method, which we can switch this too eventually.
- let mut manual_drop_vec = ManuallyDrop::new(input);
- let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
- let ptr: *mut B = vec_ptr as *mut B;
- Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
- }
- } else {
- // Note(Lokathor): First we record the length and capacity, which don't have
- // any secret provenance metadata.
- let length: usize = input.len();
- let capacity: usize = input.capacity();
- // Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
- // ManuallyDrop, because if we used `core::mem::forget` after taking the
- // pointer then that would invalidate our pointer. In nightly there's a
- // "into raw parts" method, which we can switch this too eventually.
- let mut manual_drop_vec = ManuallyDrop::new(input);
- let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
- let ptr: *mut B = vec_ptr as *mut B;
- Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
- }
-}
-
-/// This "collects" a slice of pod data into a vec of a different pod type.
-///
-/// Unlike with [`cast_slice`] and [`cast_slice_mut`], this will always work.
-///
-/// The output vec will be of a minimal size/capacity to hold the slice given.
-///
-/// ```rust
-/// # use bytemuck::*;
-/// let halfwords: [u16; 4] = [5, 6, 7, 8];
-/// let vec_of_words: Vec<u32> = pod_collect_to_vec(&halfwords);
-/// if cfg!(target_endian = "little") {
-/// assert_eq!(&vec_of_words[..], &[0x0006_0005, 0x0008_0007][..])
-/// } else {
-/// assert_eq!(&vec_of_words[..], &[0x0005_0006, 0x0007_0008][..])
-/// }
-/// ```
-pub fn pod_collect_to_vec<A: NoUninit, B: NoUninit + AnyBitPattern>(
- src: &[A],
-) -> Vec<B> {
- let src_size = size_of_val(src);
- // Note(Lokathor): dst_count is rounded up so that the dest will always be at
- // least as many bytes as the src.
- let dst_count = src_size / size_of::<B>()
- + if src_size % size_of::<B>() != 0 { 1 } else { 0 };
- let mut dst = vec![B::zeroed(); dst_count];
-
- let src_bytes: &[u8] = cast_slice(src);
- let dst_bytes: &mut [u8] = cast_slice_mut(&mut dst[..]);
- dst_bytes[..src_size].copy_from_slice(src_bytes);
- dst
-}
-
-/// As [`try_cast_rc`](try_cast_rc), but unwraps for you.
-#[inline]
-pub fn cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
- input: Rc<A>,
-) -> Rc<B> {
- try_cast_rc(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a [`Rc`](alloc::rc::Rc).
-///
-/// On failure you get back an error along with the starting `Rc`.
-///
-/// The bounds on this function are the same as [`cast_mut`], because a user
-/// could call `Rc::get_unchecked_mut` on the output, which could be observable
-/// in the input.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Rc` must have the exact same
-/// alignment.
-/// * The start and end size of the `Rc` must have the exact same size.
-#[inline]
-pub fn try_cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
- input: Rc<A>,
-) -> Result<Rc<B>, (PodCastError, Rc<A>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Safety: Rc::from_raw requires size and alignment match, which is met.
- let ptr: *const B = Rc::into_raw(input) as *const B;
- Ok(unsafe { Rc::from_raw(ptr) })
- }
-}
-
-/// As [`try_cast_arc`](try_cast_arc), but unwraps for you.
-#[inline]
-#[cfg(target_has_atomic = "ptr")]
-pub fn cast_arc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
- input: Arc<A>,
-) -> Arc<B> {
- try_cast_arc(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a [`Arc`](alloc::sync::Arc).
-///
-/// On failure you get back an error along with the starting `Arc`.
-///
-/// The bounds on this function are the same as [`cast_mut`], because a user
-/// could call `Rc::get_unchecked_mut` on the output, which could be observable
-/// in the input.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Arc` must have the exact same
-/// alignment.
-/// * The start and end size of the `Arc` must have the exact same size.
-#[inline]
-#[cfg(target_has_atomic = "ptr")]
-pub fn try_cast_arc<
- A: NoUninit + AnyBitPattern,
- B: NoUninit + AnyBitPattern,
->(
- input: Arc<A>,
-) -> Result<Arc<B>, (PodCastError, Arc<A>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Safety: Arc::from_raw requires size and alignment match, which is met.
- let ptr: *const B = Arc::into_raw(input) as *const B;
- Ok(unsafe { Arc::from_raw(ptr) })
- }
-}
-
-/// As [`try_cast_slice_rc`](try_cast_slice_rc), but unwraps for you.
-#[inline]
-pub fn cast_slice_rc<
- A: NoUninit + AnyBitPattern,
- B: NoUninit + AnyBitPattern,
->(
- input: Rc<[A]>,
-) -> Rc<[B]> {
- try_cast_slice_rc(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a `Rc<[T]>`.
-///
-/// On failure you get back an error along with the starting `Rc<[T]>`.
-///
-/// The bounds on this function are the same as [`cast_mut`], because a user
-/// could call `Rc::get_unchecked_mut` on the output, which could be observable
-/// in the input.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Rc<[T]>` must have the exact same
-/// alignment.
-/// * The start and end content size in bytes of the `Rc<[T]>` must be the exact
-/// same.
-#[inline]
-pub fn try_cast_slice_rc<
- A: NoUninit + AnyBitPattern,
- B: NoUninit + AnyBitPattern,
->(
- input: Rc<[A]>,
-) -> Result<Rc<[B]>, (PodCastError, Rc<[A]>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- if size_of::<A>() * input.len() % size_of::<B>() != 0 {
- // If the size in bytes of the underlying buffer does not match an exact
- // multiple of the size of B, we cannot cast between them.
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Because the size is an exact multiple, we can now change the length
- // of the slice and recreate the Rc
- // NOTE: This is a valid operation because according to the docs of
- // std::rc::Rc::from_raw(), the type U that was in the original Rc<U>
- // acquired from Rc::into_raw() must have the same size alignment and
- // size of the type T in the new Rc<T>. So as long as both the size
- // and alignment stay the same, the Rc will remain a valid Rc.
- let length = size_of::<A>() * input.len() / size_of::<B>();
- let rc_ptr: *const A = Rc::into_raw(input) as *const A;
- // Must use ptr::slice_from_raw_parts, because we cannot make an
- // intermediate const reference, because it has mutable provenance,
- // nor an intermediate mutable reference, because it could be aliased.
- let ptr = core::ptr::slice_from_raw_parts(rc_ptr as *const B, length);
- Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
- }
- } else {
- let rc_ptr: *const [A] = Rc::into_raw(input);
- let ptr: *const [B] = rc_ptr as *const [B];
- Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
- }
-}
-
-/// As [`try_cast_slice_arc`](try_cast_slice_arc), but unwraps for you.
-#[inline]
-#[cfg(target_has_atomic = "ptr")]
-pub fn cast_slice_arc<
- A: NoUninit + AnyBitPattern,
- B: NoUninit + AnyBitPattern,
->(
- input: Arc<[A]>,
-) -> Arc<[B]> {
- try_cast_slice_arc(input).map_err(|(e, _v)| e).unwrap()
-}
-
-/// Attempts to cast the content type of a `Arc<[T]>`.
-///
-/// On failure you get back an error along with the starting `Arc<[T]>`.
-///
-/// The bounds on this function are the same as [`cast_mut`], because a user
-/// could call `Rc::get_unchecked_mut` on the output, which could be observable
-/// in the input.
-///
-/// ## Failure
-///
-/// * The start and end content type of the `Arc<[T]>` must have the exact same
-/// alignment.
-/// * The start and end content size in bytes of the `Arc<[T]>` must be the
-/// exact same.
-#[inline]
-#[cfg(target_has_atomic = "ptr")]
-pub fn try_cast_slice_arc<
- A: NoUninit + AnyBitPattern,
- B: NoUninit + AnyBitPattern,
->(
- input: Arc<[A]>,
-) -> Result<Arc<[B]>, (PodCastError, Arc<[A]>)> {
- if align_of::<A>() != align_of::<B>() {
- Err((PodCastError::AlignmentMismatch, input))
- } else if size_of::<A>() != size_of::<B>() {
- if size_of::<A>() * input.len() % size_of::<B>() != 0 {
- // If the size in bytes of the underlying buffer does not match an exact
- // multiple of the size of B, we cannot cast between them.
- Err((PodCastError::SizeMismatch, input))
- } else {
- // Because the size is an exact multiple, we can now change the length
- // of the slice and recreate the Arc
- // NOTE: This is a valid operation because according to the docs of
- // std::sync::Arc::from_raw(), the type U that was in the original Arc<U>
- // acquired from Arc::into_raw() must have the same size alignment and
- // size of the type T in the new Arc<T>. So as long as both the size
- // and alignment stay the same, the Arc will remain a valid Arc.
- let length = size_of::<A>() * input.len() / size_of::<B>();
- let arc_ptr: *const A = Arc::into_raw(input) as *const A;
- // Must use ptr::slice_from_raw_parts, because we cannot make an
- // intermediate const reference, because it has mutable provenance,
- // nor an intermediate mutable reference, because it could be aliased.
- let ptr = core::ptr::slice_from_raw_parts(arc_ptr as *const B, length);
- Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
- }
- } else {
- let arc_ptr: *const [A] = Arc::into_raw(input);
- let ptr: *const [B] = arc_ptr as *const [B];
- Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
- }
-}
-
-/// An extension trait for `TransparentWrapper` and alloc types.
-pub trait TransparentWrapperAlloc<Inner: ?Sized>:
- TransparentWrapper<Inner>
-{
- /// Convert a vec of the inner type into a vec of the wrapper type.
- fn wrap_vec(s: Vec<Inner>) -> Vec<Self>
- where
- Self: Sized,
- Inner: Sized,
- {
- let mut s = core::mem::ManuallyDrop::new(s);
-
- let length = s.len();
- let capacity = s.capacity();
- let ptr = s.as_mut_ptr();
-
- unsafe {
- // SAFETY:
- // * ptr comes from Vec (and will not be double-dropped)
- // * the two types have the identical representation
- // * the len and capacity fields are valid
- Vec::from_raw_parts(ptr as *mut Self, length, capacity)
- }
- }
-
- /// Convert a box to the inner type into a box to the wrapper
- /// type.
- #[inline]
- fn wrap_box(s: Box<Inner>) -> Box<Self> {
- assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
-
- unsafe {
- // A pointer cast doesn't work here because rustc can't tell that
- // the vtables match (because of the `?Sized` restriction relaxation).
- // A `transmute` doesn't work because the sizes are unspecified.
- //
- // SAFETY:
- // * The unsafe contract requires that pointers to Inner and Self have
- // identical representations
- // * Box is guaranteed to have representation identical to a (non-null)
- // pointer
- // * The pointer comes from a box (and thus satisfies all safety
- // requirements of Box)
- let inner_ptr: *mut Inner = Box::into_raw(s);
- let wrapper_ptr: *mut Self = transmute!(inner_ptr);
- Box::from_raw(wrapper_ptr)
- }
- }
-
- /// Convert an [`Rc`](alloc::rc::Rc) to the inner type into an `Rc` to the
- /// wrapper type.
- #[inline]
- fn wrap_rc(s: Rc<Inner>) -> Rc<Self> {
- assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
-
- unsafe {
- // A pointer cast doesn't work here because rustc can't tell that
- // the vtables match (because of the `?Sized` restriction relaxation).
- // A `transmute` doesn't work because the layout of Rc is unspecified.
- //
- // SAFETY:
- // * The unsafe contract requires that pointers to Inner and Self have
- // identical representations, and that the size and alignment of Inner
- // and Self are the same, which meets the safety requirements of
- // Rc::from_raw
- let inner_ptr: *const Inner = Rc::into_raw(s);
- let wrapper_ptr: *const Self = transmute!(inner_ptr);
- Rc::from_raw(wrapper_ptr)
- }
- }
-
- /// Convert an [`Arc`](alloc::sync::Arc) to the inner type into an `Arc` to
- /// the wrapper type.
- #[inline]
- #[cfg(target_has_atomic = "ptr")]
- fn wrap_arc(s: Arc<Inner>) -> Arc<Self> {
- assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
-
- unsafe {
- // A pointer cast doesn't work here because rustc can't tell that
- // the vtables match (because of the `?Sized` restriction relaxation).
- // A `transmute` doesn't work because the layout of Arc is unspecified.
- //
- // SAFETY:
- // * The unsafe contract requires that pointers to Inner and Self have
- // identical representations, and that the size and alignment of Inner
- // and Self are the same, which meets the safety requirements of
- // Arc::from_raw
- let inner_ptr: *const Inner = Arc::into_raw(s);
- let wrapper_ptr: *const Self = transmute!(inner_ptr);
- Arc::from_raw(wrapper_ptr)
- }
- }
-
- /// Convert a vec of the wrapper type into a vec of the inner type.
- fn peel_vec(s: Vec<Self>) -> Vec<Inner>
- where
- Self: Sized,
- Inner: Sized,
- {
- let mut s = core::mem::ManuallyDrop::new(s);
-
- let length = s.len();
- let capacity = s.capacity();
- let ptr = s.as_mut_ptr();
-
- unsafe {
- // SAFETY:
- // * ptr comes from Vec (and will not be double-dropped)
- // * the two types have the identical representation
- // * the len and capacity fields are valid
- Vec::from_raw_parts(ptr as *mut Inner, length, capacity)
- }
- }
-
- /// Convert a box to the wrapper type into a box to the inner
- /// type.
- #[inline]
- fn peel_box(s: Box<Self>) -> Box<Inner> {
- assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
-
- unsafe {
- // A pointer cast doesn't work here because rustc can't tell that
- // the vtables match (because of the `?Sized` restriction relaxation).
- // A `transmute` doesn't work because the sizes are unspecified.
- //
- // SAFETY:
- // * The unsafe contract requires that pointers to Inner and Self have
- // identical representations
- // * Box is guaranteed to have representation identical to a (non-null)
- // pointer
- // * The pointer comes from a box (and thus satisfies all safety
- // requirements of Box)
- let wrapper_ptr: *mut Self = Box::into_raw(s);
- let inner_ptr: *mut Inner = transmute!(wrapper_ptr);
- Box::from_raw(inner_ptr)
- }
- }
-
- /// Convert an [`Rc`](alloc::rc::Rc) to the wrapper type into an `Rc` to the
- /// inner type.
- #[inline]
- fn peel_rc(s: Rc<Self>) -> Rc<Inner> {
- assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
-
- unsafe {
- // A pointer cast doesn't work here because rustc can't tell that
- // the vtables match (because of the `?Sized` restriction relaxation).
- // A `transmute` doesn't work because the layout of Rc is unspecified.
- //
- // SAFETY:
- // * The unsafe contract requires that pointers to Inner and Self have
- // identical representations, and that the size and alignment of Inner
- // and Self are the same, which meets the safety requirements of
- // Rc::from_raw
- let wrapper_ptr: *const Self = Rc::into_raw(s);
- let inner_ptr: *const Inner = transmute!(wrapper_ptr);
- Rc::from_raw(inner_ptr)
- }
- }
-
- /// Convert an [`Arc`](alloc::sync::Arc) to the wrapper type into an `Arc` to
- /// the inner type.
- #[inline]
- #[cfg(target_has_atomic = "ptr")]
- fn peel_arc(s: Arc<Self>) -> Arc<Inner> {
- assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
-
- unsafe {
- // A pointer cast doesn't work here because rustc can't tell that
- // the vtables match (because of the `?Sized` restriction relaxation).
- // A `transmute` doesn't work because the layout of Arc is unspecified.
- //
- // SAFETY:
- // * The unsafe contract requires that pointers to Inner and Self have
- // identical representations, and that the size and alignment of Inner
- // and Self are the same, which meets the safety requirements of
- // Arc::from_raw
- let wrapper_ptr: *const Self = Arc::into_raw(s);
- let inner_ptr: *const Inner = transmute!(wrapper_ptr);
- Arc::from_raw(inner_ptr)
- }
- }
-}
-
-impl<I: ?Sized, T: ?Sized + TransparentWrapper<I>> TransparentWrapperAlloc<I> for T {}