aboutsummaryrefslogtreecommitdiff
path: root/vendor/color_quant/src
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/color_quant/src
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/color_quant/src')
-rw-r--r--vendor/color_quant/src/lib.rs480
-rw-r--r--vendor/color_quant/src/math.rs10
2 files changed, 490 insertions, 0 deletions
diff --git a/vendor/color_quant/src/lib.rs b/vendor/color_quant/src/lib.rs
new file mode 100644
index 0000000..afd0d93
--- /dev/null
+++ b/vendor/color_quant/src/lib.rs
@@ -0,0 +1,480 @@
+/*
+NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994.
+See "Kohonen neural networks for optimal colour quantization"
+in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
+for a discussion of the algorithm.
+See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
+
+Incorporated bugfixes and alpha channel handling from pngnq
+http://pngnq.sourceforge.net
+
+Copyright (c) 2014 The Piston Developers
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
+
+NeuQuant Neural-Net Quantization Algorithm
+------------------------------------------
+
+Copyright (c) 1994 Anthony Dekker
+
+NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
+See "Kohonen neural networks for optimal colour quantization"
+in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
+for a discussion of the algorithm.
+See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
+
+Any party obtaining a copy of these files from the author, directly or
+indirectly, is granted, free of charge, a full and unrestricted irrevocable,
+world-wide, paid up, royalty-free, nonexclusive right and license to deal
+in this software and documentation files (the "Software"), including without
+limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
+and/or sell copies of the Software, and to permit persons who receive
+copies from any such party to do so, with the only requirement being
+that this copyright notice remain intact.
+
+*/
+
+//! # Color quantization library
+//!
+//! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML)
+//!
+//! Original literature: Dekker, A. H. (1994). Kohonen neural networks for
+//! optimal colour quantization. *Network: Computation in Neural Systems*, 5(3), 351-367.
+//! [doi: 10.1088/0954-898X_5_3_003](https://doi.org/10.1088/0954-898X_5_3_003)
+//!
+//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/>
+//!
+//! ## Usage
+//!
+//! ```
+//! let data = vec![0; 40];
+//! let nq = color_quant::NeuQuant::new(10, 256, &data);
+//! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect();
+//! let color_map = nq.color_map_rgba();
+//! ```
+
+mod math;
+use crate::math::clamp;
+
+use std::cmp::{max, min};
+
+const CHANNELS: usize = 4;
+
+const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle
+
+const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1
+const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits
+
+const GAMMA: f64 = 1024.0;
+const BETA: f64 = 1.0 / GAMMA;
+const BETAGAMMA: f64 = BETA * GAMMA;
+
+// four primes near 500 - assume no image has a length so large
+// that it is divisible by all four primes
+const PRIMES: [usize; 4] = [499, 491, 478, 503];
+
+#[derive(Clone, Copy)]
+struct Quad<T> {
+ r: T,
+ g: T,
+ b: T,
+ a: T,
+}
+
+type Neuron = Quad<f64>;
+type Color = Quad<i32>;
+
+pub struct NeuQuant {
+ network: Vec<Neuron>,
+ colormap: Vec<Color>,
+ netindex: Vec<usize>,
+ bias: Vec<f64>, // bias and freq arrays for learning
+ freq: Vec<f64>,
+ samplefac: i32,
+ netsize: usize,
+}
+
+impl NeuQuant {
+ /// Creates a new neuronal network and trains it with the supplied data.
+ ///
+ /// Pixels are assumed to be in RGBA format.
+ /// `colors` should be $>=64$. `samplefac` determines the faction of
+ /// the sample that will be used to train the network. Its value must be in the
+ /// range $[1, 30]$. A value of $1$ thus produces the best result but is also
+ /// slowest. $10$ is a good compromise between speed and quality.
+ pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
+ let netsize = colors;
+ let mut this = NeuQuant {
+ network: Vec::with_capacity(netsize),
+ colormap: Vec::with_capacity(netsize),
+ netindex: vec![0; 256],
+ bias: Vec::with_capacity(netsize),
+ freq: Vec::with_capacity(netsize),
+ samplefac: samplefac,
+ netsize: colors,
+ };
+ this.init(pixels);
+ this
+ }
+
+ /// Initializes the neuronal network and trains it with the supplied data.
+ ///
+ /// This method gets called by `Self::new`.
+ pub fn init(&mut self, pixels: &[u8]) {
+ self.network.clear();
+ self.colormap.clear();
+ self.bias.clear();
+ self.freq.clear();
+ let freq = (self.netsize as f64).recip();
+ for i in 0..self.netsize {
+ let tmp = (i as f64) * 256.0 / (self.netsize as f64);
+ // Sets alpha values at 0 for dark pixels.
+ let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
+ self.network.push(Neuron {
+ r: tmp,
+ g: tmp,
+ b: tmp,
+ a: a,
+ });
+ self.colormap.push(Color {
+ r: 0,
+ g: 0,
+ b: 0,
+ a: 255,
+ });
+ self.freq.push(freq);
+ self.bias.push(0.0);
+ }
+ self.learn(pixels);
+ self.build_colormap();
+ self.build_netindex();
+ }
+
+ /// Maps the rgba-pixel in-place to the best-matching color in the color map.
+ #[inline(always)]
+ pub fn map_pixel(&self, pixel: &mut [u8]) {
+ assert!(pixel.len() == 4);
+ let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
+ let i = self.search_netindex(b, g, r, a);
+ pixel[0] = self.colormap[i].r as u8;
+ pixel[1] = self.colormap[i].g as u8;
+ pixel[2] = self.colormap[i].b as u8;
+ pixel[3] = self.colormap[i].a as u8;
+ }
+
+ /// Finds the best-matching index in the color map.
+ ///
+ /// `pixel` is assumed to be in RGBA format.
+ #[inline(always)]
+ pub fn index_of(&self, pixel: &[u8]) -> usize {
+ assert!(pixel.len() == 4);
+ let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
+ self.search_netindex(b, g, r, a)
+ }
+
+ /// Lookup pixel values for color at `idx` in the colormap.
+ pub fn lookup(&self, idx: usize) -> Option<[u8; 4]> {
+ self.colormap
+ .get(idx)
+ .map(|p| [p.r as u8, p.g as u8, p.b as u8, p.a as u8])
+ }
+
+ /// Returns the RGBA color map calculated from the sample.
+ pub fn color_map_rgba(&self) -> Vec<u8> {
+ let mut map = Vec::with_capacity(self.netsize * 4);
+ for entry in &self.colormap {
+ map.push(entry.r as u8);
+ map.push(entry.g as u8);
+ map.push(entry.b as u8);
+ map.push(entry.a as u8);
+ }
+ map
+ }
+
+ /// Returns the RGBA color map calculated from the sample.
+ pub fn color_map_rgb(&self) -> Vec<u8> {
+ let mut map = Vec::with_capacity(self.netsize * 3);
+ for entry in &self.colormap {
+ map.push(entry.r as u8);
+ map.push(entry.g as u8);
+ map.push(entry.b as u8);
+ }
+ map
+ }
+
+ /// Move neuron i towards biased (a,b,g,r) by factor alpha
+ fn salter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
+ let n = &mut self.network[i as usize];
+ n.b -= alpha * (n.b - quad.b);
+ n.g -= alpha * (n.g - quad.g);
+ n.r -= alpha * (n.r - quad.r);
+ n.a -= alpha * (n.a - quad.a);
+ }
+
+ /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha
+ fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
+ let lo = max(i - rad, 0);
+ let hi = min(i + rad, self.netsize as i32);
+ let mut j = i + 1;
+ let mut k = i - 1;
+ let mut q = 0;
+
+ while (j < hi) || (k > lo) {
+ let rad_sq = rad as f64 * rad as f64;
+ let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq;
+ q += 1;
+ if j < hi {
+ let p = &mut self.network[j as usize];
+ p.b -= alpha * (p.b - quad.b);
+ p.g -= alpha * (p.g - quad.g);
+ p.r -= alpha * (p.r - quad.r);
+ p.a -= alpha * (p.a - quad.a);
+ j += 1;
+ }
+ if k > lo {
+ let p = &mut self.network[k as usize];
+ p.b -= alpha * (p.b - quad.b);
+ p.g -= alpha * (p.g - quad.g);
+ p.r -= alpha * (p.r - quad.r);
+ p.a -= alpha * (p.a - quad.a);
+ k -= 1;
+ }
+ }
+ }
+
+ /// Search for biased BGR values
+ /// finds closest neuron (min dist) and updates freq
+ /// finds best neuron (min dist-bias) and returns position
+ /// for frequently chosen neurons, freq[i] is high and bias[i] is negative
+ /// bias[i] = gamma*((1/self.netsize)-freq[i])
+ fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
+ use std::f64;
+
+ let mut bestd = f64::MAX;
+ let mut bestbiasd: f64 = bestd;
+ let mut bestpos = -1;
+ let mut bestbiaspos: i32 = bestpos;
+
+ for i in 0..self.netsize {
+ let bestbiasd_biased = bestbiasd + self.bias[i];
+ let mut dist;
+ let n = &self.network[i];
+ dist = (n.b - b).abs();
+ dist += (n.r - r).abs();
+ if dist < bestd || dist < bestbiasd_biased {
+ dist += (n.g - g).abs();
+ dist += (n.a - a).abs();
+ if dist < bestd {
+ bestd = dist;
+ bestpos = i as i32;
+ }
+ let biasdist = dist - self.bias[i];
+ if biasdist < bestbiasd {
+ bestbiasd = biasdist;
+ bestbiaspos = i as i32;
+ }
+ }
+ self.freq[i] -= BETA * self.freq[i];
+ self.bias[i] += BETAGAMMA * self.freq[i];
+ }
+ self.freq[bestpos as usize] += BETA;
+ self.bias[bestpos as usize] -= BETAGAMMA;
+ return bestbiaspos;
+ }
+
+ /// Main learning loop
+ /// Note: the number of learning cycles is crucial and the parameters are not
+ /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine
+ fn learn(&mut self, pixels: &[u8]) {
+ let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32
+ let radiusbiasshift: i32 = 6;
+ let radiusbias: i32 = 1 << radiusbiasshift;
+ let init_bias_radius: i32 = initrad * radiusbias;
+ let mut bias_radius = init_bias_radius;
+ let alphadec = 30 + ((self.samplefac - 1) / 3);
+ let lengthcount = pixels.len() / CHANNELS;
+ let samplepixels = lengthcount / self.samplefac as usize;
+ // learning cycles
+ let n_cycles = match self.netsize >> 1 {
+ n if n <= 100 => 100,
+ n => n,
+ };
+ let delta = match samplepixels / n_cycles {
+ 0 => 1,
+ n => n,
+ };
+ let mut alpha = INIT_ALPHA;
+
+ let mut rad = bias_radius >> radiusbiasshift;
+ if rad <= 1 {
+ rad = 0
+ };
+
+ let mut pos = 0;
+ let step = *PRIMES
+ .iter()
+ .find(|&&prime| lengthcount % prime != 0)
+ .unwrap_or(&PRIMES[3]);
+
+ let mut i = 0;
+ while i < samplepixels {
+ let (r, g, b, a) = {
+ let p = &pixels[CHANNELS * pos..][..CHANNELS];
+ (p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64)
+ };
+
+ let j = self.contest(b, g, r, a);
+
+ let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64;
+ self.salter_single(alpha_, j, Quad { b, g, r, a });
+ if rad > 0 {
+ self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a })
+ };
+
+ pos += step;
+ while pos >= lengthcount {
+ pos -= lengthcount
+ }
+
+ i += 1;
+ if i % delta == 0 {
+ alpha -= alpha / alphadec;
+ bias_radius -= bias_radius / RADIUS_DEC;
+ rad = bias_radius >> radiusbiasshift;
+ if rad <= 1 {
+ rad = 0
+ };
+ }
+ }
+ }
+
+ /// initializes the color map
+ fn build_colormap(&mut self) {
+ for i in 0usize..self.netsize {
+ self.colormap[i].b = clamp(self.network[i].b.round() as i32);
+ self.colormap[i].g = clamp(self.network[i].g.round() as i32);
+ self.colormap[i].r = clamp(self.network[i].r.round() as i32);
+ self.colormap[i].a = clamp(self.network[i].a.round() as i32);
+ }
+ }
+
+ /// Insertion sort of network and building of netindex[0..255]
+ fn build_netindex(&mut self) {
+ let mut previouscol = 0;
+ let mut startpos = 0;
+
+ for i in 0..self.netsize {
+ let mut p = self.colormap[i];
+ let mut q;
+ let mut smallpos = i;
+ let mut smallval = p.g as usize; // index on g
+ // find smallest in i..netsize-1
+ for j in (i + 1)..self.netsize {
+ q = self.colormap[j];
+ if (q.g as usize) < smallval {
+ // index on g
+ smallpos = j;
+ smallval = q.g as usize; // index on g
+ }
+ }
+ q = self.colormap[smallpos];
+ // swap p (i) and q (smallpos) entries
+ if i != smallpos {
+ ::std::mem::swap(&mut p, &mut q);
+ self.colormap[i] = p;
+ self.colormap[smallpos] = q;
+ }
+ // smallval entry is now in position i
+ if smallval != previouscol {
+ self.netindex[previouscol] = (startpos + i) >> 1;
+ for j in (previouscol + 1)..smallval {
+ self.netindex[j] = i
+ }
+ previouscol = smallval;
+ startpos = i;
+ }
+ }
+ let max_netpos = self.netsize - 1;
+ self.netindex[previouscol] = (startpos + max_netpos) >> 1;
+ for j in (previouscol + 1)..256 {
+ self.netindex[j] = max_netpos
+ } // really 256
+ }
+
+ /// Search for best matching color
+ fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
+ let mut bestd = 1 << 30; // ~ 1_000_000
+ let mut best = 0;
+ // start at netindex[g] and work outwards
+ let mut i = self.netindex[g as usize];
+ let mut j = if i > 0 { i - 1 } else { 0 };
+
+ while (i < self.netsize) || (j > 0) {
+ if i < self.netsize {
+ let p = self.colormap[i];
+ let mut e = p.g - g as i32;
+ let mut dist = e * e; // inx key
+ if dist >= bestd {
+ break;
+ } else {
+ e = p.b - b as i32;
+ dist += e * e;
+ if dist < bestd {
+ e = p.r - r as i32;
+ dist += e * e;
+ if dist < bestd {
+ e = p.a - a as i32;
+ dist += e * e;
+ if dist < bestd {
+ bestd = dist;
+ best = i;
+ }
+ }
+ }
+ i += 1;
+ }
+ }
+ if j > 0 {
+ let p = self.colormap[j];
+ let mut e = p.g - g as i32;
+ let mut dist = e * e; // inx key
+ if dist >= bestd {
+ break;
+ } else {
+ e = p.b - b as i32;
+ dist += e * e;
+ if dist < bestd {
+ e = p.r - r as i32;
+ dist += e * e;
+ if dist < bestd {
+ e = p.a - a as i32;
+ dist += e * e;
+ if dist < bestd {
+ bestd = dist;
+ best = j;
+ }
+ }
+ }
+ j -= 1;
+ }
+ }
+ }
+ best
+ }
+}
diff --git a/vendor/color_quant/src/math.rs b/vendor/color_quant/src/math.rs
new file mode 100644
index 0000000..369c2ad
--- /dev/null
+++ b/vendor/color_quant/src/math.rs
@@ -0,0 +1,10 @@
+#[inline]
+pub(crate) fn clamp(a: i32) -> i32 {
+ if a < 0 {
+ 0
+ } else if a > 255 {
+ 255
+ } else {
+ a
+ }
+}