diff options
author | Valentin Popov <valentin@popov.link> | 2024-01-08 00:21:28 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-01-08 00:21:28 +0300 |
commit | 1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch) | |
tree | 7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/color_quant/src | |
parent | 5ecd8cf2cba827454317368b68571df0d13d7842 (diff) | |
download | fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip |
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/color_quant/src')
-rw-r--r-- | vendor/color_quant/src/lib.rs | 480 | ||||
-rw-r--r-- | vendor/color_quant/src/math.rs | 10 |
2 files changed, 490 insertions, 0 deletions
diff --git a/vendor/color_quant/src/lib.rs b/vendor/color_quant/src/lib.rs new file mode 100644 index 0000000..afd0d93 --- /dev/null +++ b/vendor/color_quant/src/lib.rs @@ -0,0 +1,480 @@ +/* +NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994. +See "Kohonen neural networks for optimal colour quantization" +in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. +for a discussion of the algorithm. +See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML + +Incorporated bugfixes and alpha channel handling from pngnq +http://pngnq.sourceforge.net + +Copyright (c) 2014 The Piston Developers + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +NeuQuant Neural-Net Quantization Algorithm +------------------------------------------ + +Copyright (c) 1994 Anthony Dekker + +NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. +See "Kohonen neural networks for optimal colour quantization" +in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. +for a discussion of the algorithm. +See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML + +Any party obtaining a copy of these files from the author, directly or +indirectly, is granted, free of charge, a full and unrestricted irrevocable, +world-wide, paid up, royalty-free, nonexclusive right and license to deal +in this software and documentation files (the "Software"), including without +limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, +and/or sell copies of the Software, and to permit persons who receive +copies from any such party to do so, with the only requirement being +that this copyright notice remain intact. + +*/ + +//! # Color quantization library +//! +//! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML) +//! +//! Original literature: Dekker, A. H. (1994). Kohonen neural networks for +//! optimal colour quantization. *Network: Computation in Neural Systems*, 5(3), 351-367. +//! [doi: 10.1088/0954-898X_5_3_003](https://doi.org/10.1088/0954-898X_5_3_003) +//! +//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/> +//! +//! ## Usage +//! +//! ``` +//! let data = vec![0; 40]; +//! let nq = color_quant::NeuQuant::new(10, 256, &data); +//! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect(); +//! let color_map = nq.color_map_rgba(); +//! ``` + +mod math; +use crate::math::clamp; + +use std::cmp::{max, min}; + +const CHANNELS: usize = 4; + +const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle + +const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1 +const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits + +const GAMMA: f64 = 1024.0; +const BETA: f64 = 1.0 / GAMMA; +const BETAGAMMA: f64 = BETA * GAMMA; + +// four primes near 500 - assume no image has a length so large +// that it is divisible by all four primes +const PRIMES: [usize; 4] = [499, 491, 478, 503]; + +#[derive(Clone, Copy)] +struct Quad<T> { + r: T, + g: T, + b: T, + a: T, +} + +type Neuron = Quad<f64>; +type Color = Quad<i32>; + +pub struct NeuQuant { + network: Vec<Neuron>, + colormap: Vec<Color>, + netindex: Vec<usize>, + bias: Vec<f64>, // bias and freq arrays for learning + freq: Vec<f64>, + samplefac: i32, + netsize: usize, +} + +impl NeuQuant { + /// Creates a new neuronal network and trains it with the supplied data. + /// + /// Pixels are assumed to be in RGBA format. + /// `colors` should be $>=64$. `samplefac` determines the faction of + /// the sample that will be used to train the network. Its value must be in the + /// range $[1, 30]$. A value of $1$ thus produces the best result but is also + /// slowest. $10$ is a good compromise between speed and quality. + pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self { + let netsize = colors; + let mut this = NeuQuant { + network: Vec::with_capacity(netsize), + colormap: Vec::with_capacity(netsize), + netindex: vec![0; 256], + bias: Vec::with_capacity(netsize), + freq: Vec::with_capacity(netsize), + samplefac: samplefac, + netsize: colors, + }; + this.init(pixels); + this + } + + /// Initializes the neuronal network and trains it with the supplied data. + /// + /// This method gets called by `Self::new`. + pub fn init(&mut self, pixels: &[u8]) { + self.network.clear(); + self.colormap.clear(); + self.bias.clear(); + self.freq.clear(); + let freq = (self.netsize as f64).recip(); + for i in 0..self.netsize { + let tmp = (i as f64) * 256.0 / (self.netsize as f64); + // Sets alpha values at 0 for dark pixels. + let a = if i < 16 { i as f64 * 16.0 } else { 255.0 }; + self.network.push(Neuron { + r: tmp, + g: tmp, + b: tmp, + a: a, + }); + self.colormap.push(Color { + r: 0, + g: 0, + b: 0, + a: 255, + }); + self.freq.push(freq); + self.bias.push(0.0); + } + self.learn(pixels); + self.build_colormap(); + self.build_netindex(); + } + + /// Maps the rgba-pixel in-place to the best-matching color in the color map. + #[inline(always)] + pub fn map_pixel(&self, pixel: &mut [u8]) { + assert!(pixel.len() == 4); + let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]); + let i = self.search_netindex(b, g, r, a); + pixel[0] = self.colormap[i].r as u8; + pixel[1] = self.colormap[i].g as u8; + pixel[2] = self.colormap[i].b as u8; + pixel[3] = self.colormap[i].a as u8; + } + + /// Finds the best-matching index in the color map. + /// + /// `pixel` is assumed to be in RGBA format. + #[inline(always)] + pub fn index_of(&self, pixel: &[u8]) -> usize { + assert!(pixel.len() == 4); + let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]); + self.search_netindex(b, g, r, a) + } + + /// Lookup pixel values for color at `idx` in the colormap. + pub fn lookup(&self, idx: usize) -> Option<[u8; 4]> { + self.colormap + .get(idx) + .map(|p| [p.r as u8, p.g as u8, p.b as u8, p.a as u8]) + } + + /// Returns the RGBA color map calculated from the sample. + pub fn color_map_rgba(&self) -> Vec<u8> { + let mut map = Vec::with_capacity(self.netsize * 4); + for entry in &self.colormap { + map.push(entry.r as u8); + map.push(entry.g as u8); + map.push(entry.b as u8); + map.push(entry.a as u8); + } + map + } + + /// Returns the RGBA color map calculated from the sample. + pub fn color_map_rgb(&self) -> Vec<u8> { + let mut map = Vec::with_capacity(self.netsize * 3); + for entry in &self.colormap { + map.push(entry.r as u8); + map.push(entry.g as u8); + map.push(entry.b as u8); + } + map + } + + /// Move neuron i towards biased (a,b,g,r) by factor alpha + fn salter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) { + let n = &mut self.network[i as usize]; + n.b -= alpha * (n.b - quad.b); + n.g -= alpha * (n.g - quad.g); + n.r -= alpha * (n.r - quad.r); + n.a -= alpha * (n.a - quad.a); + } + + /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha + fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) { + let lo = max(i - rad, 0); + let hi = min(i + rad, self.netsize as i32); + let mut j = i + 1; + let mut k = i - 1; + let mut q = 0; + + while (j < hi) || (k > lo) { + let rad_sq = rad as f64 * rad as f64; + let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq; + q += 1; + if j < hi { + let p = &mut self.network[j as usize]; + p.b -= alpha * (p.b - quad.b); + p.g -= alpha * (p.g - quad.g); + p.r -= alpha * (p.r - quad.r); + p.a -= alpha * (p.a - quad.a); + j += 1; + } + if k > lo { + let p = &mut self.network[k as usize]; + p.b -= alpha * (p.b - quad.b); + p.g -= alpha * (p.g - quad.g); + p.r -= alpha * (p.r - quad.r); + p.a -= alpha * (p.a - quad.a); + k -= 1; + } + } + } + + /// Search for biased BGR values + /// finds closest neuron (min dist) and updates freq + /// finds best neuron (min dist-bias) and returns position + /// for frequently chosen neurons, freq[i] is high and bias[i] is negative + /// bias[i] = gamma*((1/self.netsize)-freq[i]) + fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 { + use std::f64; + + let mut bestd = f64::MAX; + let mut bestbiasd: f64 = bestd; + let mut bestpos = -1; + let mut bestbiaspos: i32 = bestpos; + + for i in 0..self.netsize { + let bestbiasd_biased = bestbiasd + self.bias[i]; + let mut dist; + let n = &self.network[i]; + dist = (n.b - b).abs(); + dist += (n.r - r).abs(); + if dist < bestd || dist < bestbiasd_biased { + dist += (n.g - g).abs(); + dist += (n.a - a).abs(); + if dist < bestd { + bestd = dist; + bestpos = i as i32; + } + let biasdist = dist - self.bias[i]; + if biasdist < bestbiasd { + bestbiasd = biasdist; + bestbiaspos = i as i32; + } + } + self.freq[i] -= BETA * self.freq[i]; + self.bias[i] += BETAGAMMA * self.freq[i]; + } + self.freq[bestpos as usize] += BETA; + self.bias[bestpos as usize] -= BETAGAMMA; + return bestbiaspos; + } + + /// Main learning loop + /// Note: the number of learning cycles is crucial and the parameters are not + /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine + fn learn(&mut self, pixels: &[u8]) { + let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32 + let radiusbiasshift: i32 = 6; + let radiusbias: i32 = 1 << radiusbiasshift; + let init_bias_radius: i32 = initrad * radiusbias; + let mut bias_radius = init_bias_radius; + let alphadec = 30 + ((self.samplefac - 1) / 3); + let lengthcount = pixels.len() / CHANNELS; + let samplepixels = lengthcount / self.samplefac as usize; + // learning cycles + let n_cycles = match self.netsize >> 1 { + n if n <= 100 => 100, + n => n, + }; + let delta = match samplepixels / n_cycles { + 0 => 1, + n => n, + }; + let mut alpha = INIT_ALPHA; + + let mut rad = bias_radius >> radiusbiasshift; + if rad <= 1 { + rad = 0 + }; + + let mut pos = 0; + let step = *PRIMES + .iter() + .find(|&&prime| lengthcount % prime != 0) + .unwrap_or(&PRIMES[3]); + + let mut i = 0; + while i < samplepixels { + let (r, g, b, a) = { + let p = &pixels[CHANNELS * pos..][..CHANNELS]; + (p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64) + }; + + let j = self.contest(b, g, r, a); + + let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64; + self.salter_single(alpha_, j, Quad { b, g, r, a }); + if rad > 0 { + self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a }) + }; + + pos += step; + while pos >= lengthcount { + pos -= lengthcount + } + + i += 1; + if i % delta == 0 { + alpha -= alpha / alphadec; + bias_radius -= bias_radius / RADIUS_DEC; + rad = bias_radius >> radiusbiasshift; + if rad <= 1 { + rad = 0 + }; + } + } + } + + /// initializes the color map + fn build_colormap(&mut self) { + for i in 0usize..self.netsize { + self.colormap[i].b = clamp(self.network[i].b.round() as i32); + self.colormap[i].g = clamp(self.network[i].g.round() as i32); + self.colormap[i].r = clamp(self.network[i].r.round() as i32); + self.colormap[i].a = clamp(self.network[i].a.round() as i32); + } + } + + /// Insertion sort of network and building of netindex[0..255] + fn build_netindex(&mut self) { + let mut previouscol = 0; + let mut startpos = 0; + + for i in 0..self.netsize { + let mut p = self.colormap[i]; + let mut q; + let mut smallpos = i; + let mut smallval = p.g as usize; // index on g + // find smallest in i..netsize-1 + for j in (i + 1)..self.netsize { + q = self.colormap[j]; + if (q.g as usize) < smallval { + // index on g + smallpos = j; + smallval = q.g as usize; // index on g + } + } + q = self.colormap[smallpos]; + // swap p (i) and q (smallpos) entries + if i != smallpos { + ::std::mem::swap(&mut p, &mut q); + self.colormap[i] = p; + self.colormap[smallpos] = q; + } + // smallval entry is now in position i + if smallval != previouscol { + self.netindex[previouscol] = (startpos + i) >> 1; + for j in (previouscol + 1)..smallval { + self.netindex[j] = i + } + previouscol = smallval; + startpos = i; + } + } + let max_netpos = self.netsize - 1; + self.netindex[previouscol] = (startpos + max_netpos) >> 1; + for j in (previouscol + 1)..256 { + self.netindex[j] = max_netpos + } // really 256 + } + + /// Search for best matching color + fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize { + let mut bestd = 1 << 30; // ~ 1_000_000 + let mut best = 0; + // start at netindex[g] and work outwards + let mut i = self.netindex[g as usize]; + let mut j = if i > 0 { i - 1 } else { 0 }; + + while (i < self.netsize) || (j > 0) { + if i < self.netsize { + let p = self.colormap[i]; + let mut e = p.g - g as i32; + let mut dist = e * e; // inx key + if dist >= bestd { + break; + } else { + e = p.b - b as i32; + dist += e * e; + if dist < bestd { + e = p.r - r as i32; + dist += e * e; + if dist < bestd { + e = p.a - a as i32; + dist += e * e; + if dist < bestd { + bestd = dist; + best = i; + } + } + } + i += 1; + } + } + if j > 0 { + let p = self.colormap[j]; + let mut e = p.g - g as i32; + let mut dist = e * e; // inx key + if dist >= bestd { + break; + } else { + e = p.b - b as i32; + dist += e * e; + if dist < bestd { + e = p.r - r as i32; + dist += e * e; + if dist < bestd { + e = p.a - a as i32; + dist += e * e; + if dist < bestd { + bestd = dist; + best = j; + } + } + } + j -= 1; + } + } + } + best + } +} diff --git a/vendor/color_quant/src/math.rs b/vendor/color_quant/src/math.rs new file mode 100644 index 0000000..369c2ad --- /dev/null +++ b/vendor/color_quant/src/math.rs @@ -0,0 +1,10 @@ +#[inline] +pub(crate) fn clamp(a: i32) -> i32 { + if a < 0 { + 0 + } else if a > 255 { + 255 + } else { + a + } +} |