aboutsummaryrefslogtreecommitdiff
path: root/vendor/crossbeam-deque/src/deque.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/crossbeam-deque/src/deque.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/crossbeam-deque/src/deque.rs')
-rw-r--r--vendor/crossbeam-deque/src/deque.rs2195
1 files changed, 0 insertions, 2195 deletions
diff --git a/vendor/crossbeam-deque/src/deque.rs b/vendor/crossbeam-deque/src/deque.rs
deleted file mode 100644
index c37de2d..0000000
--- a/vendor/crossbeam-deque/src/deque.rs
+++ /dev/null
@@ -1,2195 +0,0 @@
-use std::cell::{Cell, UnsafeCell};
-use std::cmp;
-use std::fmt;
-use std::iter::FromIterator;
-use std::marker::PhantomData;
-use std::mem::{self, ManuallyDrop, MaybeUninit};
-use std::ptr;
-use std::sync::atomic::{self, AtomicIsize, AtomicPtr, AtomicUsize, Ordering};
-use std::sync::Arc;
-
-use crate::epoch::{self, Atomic, Owned};
-use crate::utils::{Backoff, CachePadded};
-
-// Minimum buffer capacity.
-const MIN_CAP: usize = 64;
-// Maximum number of tasks that can be stolen in `steal_batch()` and `steal_batch_and_pop()`.
-const MAX_BATCH: usize = 32;
-// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets
-// deallocated as soon as possible.
-const FLUSH_THRESHOLD_BYTES: usize = 1 << 10;
-
-/// A buffer that holds tasks in a worker queue.
-///
-/// This is just a pointer to the buffer and its length - dropping an instance of this struct will
-/// *not* deallocate the buffer.
-struct Buffer<T> {
- /// Pointer to the allocated memory.
- ptr: *mut T,
-
- /// Capacity of the buffer. Always a power of two.
- cap: usize,
-}
-
-unsafe impl<T> Send for Buffer<T> {}
-
-impl<T> Buffer<T> {
- /// Allocates a new buffer with the specified capacity.
- fn alloc(cap: usize) -> Buffer<T> {
- debug_assert_eq!(cap, cap.next_power_of_two());
-
- let mut v = ManuallyDrop::new(Vec::with_capacity(cap));
- let ptr = v.as_mut_ptr();
-
- Buffer { ptr, cap }
- }
-
- /// Deallocates the buffer.
- unsafe fn dealloc(self) {
- drop(Vec::from_raw_parts(self.ptr, 0, self.cap));
- }
-
- /// Returns a pointer to the task at the specified `index`.
- unsafe fn at(&self, index: isize) -> *mut T {
- // `self.cap` is always a power of two.
- // We do all the loads at `MaybeUninit` because we might realize, after loading, that we
- // don't actually have the right to access this memory.
- self.ptr.offset(index & (self.cap - 1) as isize)
- }
-
- /// Writes `task` into the specified `index`.
- ///
- /// This method might be concurrently called with another `read` at the same index, which is
- /// technically speaking a data race and therefore UB. We should use an atomic store here, but
- /// that would be more expensive and difficult to implement generically for all types `T`.
- /// Hence, as a hack, we use a volatile write instead.
- unsafe fn write(&self, index: isize, task: MaybeUninit<T>) {
- ptr::write_volatile(self.at(index).cast::<MaybeUninit<T>>(), task)
- }
-
- /// Reads a task from the specified `index`.
- ///
- /// This method might be concurrently called with another `write` at the same index, which is
- /// technically speaking a data race and therefore UB. We should use an atomic load here, but
- /// that would be more expensive and difficult to implement generically for all types `T`.
- /// Hence, as a hack, we use a volatile load instead.
- unsafe fn read(&self, index: isize) -> MaybeUninit<T> {
- ptr::read_volatile(self.at(index).cast::<MaybeUninit<T>>())
- }
-}
-
-impl<T> Clone for Buffer<T> {
- fn clone(&self) -> Buffer<T> {
- *self
- }
-}
-
-impl<T> Copy for Buffer<T> {}
-
-/// Internal queue data shared between the worker and stealers.
-///
-/// The implementation is based on the following work:
-///
-/// 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev]
-/// 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models.
-/// PPoPP 2013.][weak-mem]
-/// 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++
-/// atomics. OOPSLA 2013.][checker]
-///
-/// [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974
-/// [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524
-/// [checker]: https://dl.acm.org/citation.cfm?id=2509514
-struct Inner<T> {
- /// The front index.
- front: AtomicIsize,
-
- /// The back index.
- back: AtomicIsize,
-
- /// The underlying buffer.
- buffer: CachePadded<Atomic<Buffer<T>>>,
-}
-
-impl<T> Drop for Inner<T> {
- fn drop(&mut self) {
- // Load the back index, front index, and buffer.
- let b = *self.back.get_mut();
- let f = *self.front.get_mut();
-
- unsafe {
- let buffer = self.buffer.load(Ordering::Relaxed, epoch::unprotected());
-
- // Go through the buffer from front to back and drop all tasks in the queue.
- let mut i = f;
- while i != b {
- buffer.deref().at(i).drop_in_place();
- i = i.wrapping_add(1);
- }
-
- // Free the memory allocated by the buffer.
- buffer.into_owned().into_box().dealloc();
- }
- }
-}
-
-/// Worker queue flavor: FIFO or LIFO.
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-enum Flavor {
- /// The first-in first-out flavor.
- Fifo,
-
- /// The last-in first-out flavor.
- Lifo,
-}
-
-/// A worker queue.
-///
-/// This is a FIFO or LIFO queue that is owned by a single thread, but other threads may steal
-/// tasks from it. Task schedulers typically create a single worker queue per thread.
-///
-/// # Examples
-///
-/// A FIFO worker:
-///
-/// ```
-/// use crossbeam_deque::{Steal, Worker};
-///
-/// let w = Worker::new_fifo();
-/// let s = w.stealer();
-///
-/// w.push(1);
-/// w.push(2);
-/// w.push(3);
-///
-/// assert_eq!(s.steal(), Steal::Success(1));
-/// assert_eq!(w.pop(), Some(2));
-/// assert_eq!(w.pop(), Some(3));
-/// ```
-///
-/// A LIFO worker:
-///
-/// ```
-/// use crossbeam_deque::{Steal, Worker};
-///
-/// let w = Worker::new_lifo();
-/// let s = w.stealer();
-///
-/// w.push(1);
-/// w.push(2);
-/// w.push(3);
-///
-/// assert_eq!(s.steal(), Steal::Success(1));
-/// assert_eq!(w.pop(), Some(3));
-/// assert_eq!(w.pop(), Some(2));
-/// ```
-pub struct Worker<T> {
- /// A reference to the inner representation of the queue.
- inner: Arc<CachePadded<Inner<T>>>,
-
- /// A copy of `inner.buffer` for quick access.
- buffer: Cell<Buffer<T>>,
-
- /// The flavor of the queue.
- flavor: Flavor,
-
- /// Indicates that the worker cannot be shared among threads.
- _marker: PhantomData<*mut ()>, // !Send + !Sync
-}
-
-unsafe impl<T: Send> Send for Worker<T> {}
-
-impl<T> Worker<T> {
- /// Creates a FIFO worker queue.
- ///
- /// Tasks are pushed and popped from opposite ends.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::<i32>::new_fifo();
- /// ```
- pub fn new_fifo() -> Worker<T> {
- let buffer = Buffer::alloc(MIN_CAP);
-
- let inner = Arc::new(CachePadded::new(Inner {
- front: AtomicIsize::new(0),
- back: AtomicIsize::new(0),
- buffer: CachePadded::new(Atomic::new(buffer)),
- }));
-
- Worker {
- inner,
- buffer: Cell::new(buffer),
- flavor: Flavor::Fifo,
- _marker: PhantomData,
- }
- }
-
- /// Creates a LIFO worker queue.
- ///
- /// Tasks are pushed and popped from the same end.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::<i32>::new_lifo();
- /// ```
- pub fn new_lifo() -> Worker<T> {
- let buffer = Buffer::alloc(MIN_CAP);
-
- let inner = Arc::new(CachePadded::new(Inner {
- front: AtomicIsize::new(0),
- back: AtomicIsize::new(0),
- buffer: CachePadded::new(Atomic::new(buffer)),
- }));
-
- Worker {
- inner,
- buffer: Cell::new(buffer),
- flavor: Flavor::Lifo,
- _marker: PhantomData,
- }
- }
-
- /// Creates a stealer for this queue.
- ///
- /// The returned stealer can be shared among threads and cloned.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::<i32>::new_lifo();
- /// let s = w.stealer();
- /// ```
- pub fn stealer(&self) -> Stealer<T> {
- Stealer {
- inner: self.inner.clone(),
- flavor: self.flavor,
- }
- }
-
- /// Resizes the internal buffer to the new capacity of `new_cap`.
- #[cold]
- unsafe fn resize(&self, new_cap: usize) {
- // Load the back index, front index, and buffer.
- let b = self.inner.back.load(Ordering::Relaxed);
- let f = self.inner.front.load(Ordering::Relaxed);
- let buffer = self.buffer.get();
-
- // Allocate a new buffer and copy data from the old buffer to the new one.
- let new = Buffer::alloc(new_cap);
- let mut i = f;
- while i != b {
- ptr::copy_nonoverlapping(buffer.at(i), new.at(i), 1);
- i = i.wrapping_add(1);
- }
-
- let guard = &epoch::pin();
-
- // Replace the old buffer with the new one.
- self.buffer.replace(new);
- let old =
- self.inner
- .buffer
- .swap(Owned::new(new).into_shared(guard), Ordering::Release, guard);
-
- // Destroy the old buffer later.
- guard.defer_unchecked(move || old.into_owned().into_box().dealloc());
-
- // If the buffer is very large, then flush the thread-local garbage in order to deallocate
- // it as soon as possible.
- if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES {
- guard.flush();
- }
- }
-
- /// Reserves enough capacity so that `reserve_cap` tasks can be pushed without growing the
- /// buffer.
- fn reserve(&self, reserve_cap: usize) {
- if reserve_cap > 0 {
- // Compute the current length.
- let b = self.inner.back.load(Ordering::Relaxed);
- let f = self.inner.front.load(Ordering::SeqCst);
- let len = b.wrapping_sub(f) as usize;
-
- // The current capacity.
- let cap = self.buffer.get().cap;
-
- // Is there enough capacity to push `reserve_cap` tasks?
- if cap - len < reserve_cap {
- // Keep doubling the capacity as much as is needed.
- let mut new_cap = cap * 2;
- while new_cap - len < reserve_cap {
- new_cap *= 2;
- }
-
- // Resize the buffer.
- unsafe {
- self.resize(new_cap);
- }
- }
- }
- }
-
- /// Returns `true` if the queue is empty.
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::new_lifo();
- ///
- /// assert!(w.is_empty());
- /// w.push(1);
- /// assert!(!w.is_empty());
- /// ```
- pub fn is_empty(&self) -> bool {
- let b = self.inner.back.load(Ordering::Relaxed);
- let f = self.inner.front.load(Ordering::SeqCst);
- b.wrapping_sub(f) <= 0
- }
-
- /// Returns the number of tasks in the deque.
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::new_lifo();
- ///
- /// assert_eq!(w.len(), 0);
- /// w.push(1);
- /// assert_eq!(w.len(), 1);
- /// w.push(1);
- /// assert_eq!(w.len(), 2);
- /// ```
- pub fn len(&self) -> usize {
- let b = self.inner.back.load(Ordering::Relaxed);
- let f = self.inner.front.load(Ordering::SeqCst);
- b.wrapping_sub(f).max(0) as usize
- }
-
- /// Pushes a task into the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::new_lifo();
- /// w.push(1);
- /// w.push(2);
- /// ```
- pub fn push(&self, task: T) {
- // Load the back index, front index, and buffer.
- let b = self.inner.back.load(Ordering::Relaxed);
- let f = self.inner.front.load(Ordering::Acquire);
- let mut buffer = self.buffer.get();
-
- // Calculate the length of the queue.
- let len = b.wrapping_sub(f);
-
- // Is the queue full?
- if len >= buffer.cap as isize {
- // Yes. Grow the underlying buffer.
- unsafe {
- self.resize(2 * buffer.cap);
- }
- buffer = self.buffer.get();
- }
-
- // Write `task` into the slot.
- unsafe {
- buffer.write(b, MaybeUninit::new(task));
- }
-
- atomic::fence(Ordering::Release);
-
- // Increment the back index.
- //
- // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
- // races because it doesn't understand fences.
- self.inner.back.store(b.wrapping_add(1), Ordering::Release);
- }
-
- /// Pops a task from the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::new_fifo();
- /// w.push(1);
- /// w.push(2);
- ///
- /// assert_eq!(w.pop(), Some(1));
- /// assert_eq!(w.pop(), Some(2));
- /// assert_eq!(w.pop(), None);
- /// ```
- pub fn pop(&self) -> Option<T> {
- // Load the back and front index.
- let b = self.inner.back.load(Ordering::Relaxed);
- let f = self.inner.front.load(Ordering::Relaxed);
-
- // Calculate the length of the queue.
- let len = b.wrapping_sub(f);
-
- // Is the queue empty?
- if len <= 0 {
- return None;
- }
-
- match self.flavor {
- // Pop from the front of the queue.
- Flavor::Fifo => {
- // Try incrementing the front index to pop the task.
- let f = self.inner.front.fetch_add(1, Ordering::SeqCst);
- let new_f = f.wrapping_add(1);
-
- if b.wrapping_sub(new_f) < 0 {
- self.inner.front.store(f, Ordering::Relaxed);
- return None;
- }
-
- unsafe {
- // Read the popped task.
- let buffer = self.buffer.get();
- let task = buffer.read(f).assume_init();
-
- // Shrink the buffer if `len - 1` is less than one fourth of the capacity.
- if buffer.cap > MIN_CAP && len <= buffer.cap as isize / 4 {
- self.resize(buffer.cap / 2);
- }
-
- Some(task)
- }
- }
-
- // Pop from the back of the queue.
- Flavor::Lifo => {
- // Decrement the back index.
- let b = b.wrapping_sub(1);
- self.inner.back.store(b, Ordering::Relaxed);
-
- atomic::fence(Ordering::SeqCst);
-
- // Load the front index.
- let f = self.inner.front.load(Ordering::Relaxed);
-
- // Compute the length after the back index was decremented.
- let len = b.wrapping_sub(f);
-
- if len < 0 {
- // The queue is empty. Restore the back index to the original task.
- self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
- None
- } else {
- // Read the task to be popped.
- let buffer = self.buffer.get();
- let mut task = unsafe { Some(buffer.read(b)) };
-
- // Are we popping the last task from the queue?
- if len == 0 {
- // Try incrementing the front index.
- if self
- .inner
- .front
- .compare_exchange(
- f,
- f.wrapping_add(1),
- Ordering::SeqCst,
- Ordering::Relaxed,
- )
- .is_err()
- {
- // Failed. We didn't pop anything. Reset to `None`.
- task.take();
- }
-
- // Restore the back index to the original task.
- self.inner.back.store(b.wrapping_add(1), Ordering::Relaxed);
- } else {
- // Shrink the buffer if `len` is less than one fourth of the capacity.
- if buffer.cap > MIN_CAP && len < buffer.cap as isize / 4 {
- unsafe {
- self.resize(buffer.cap / 2);
- }
- }
- }
-
- task.map(|t| unsafe { t.assume_init() })
- }
- }
- }
- }
-}
-
-impl<T> fmt::Debug for Worker<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.pad("Worker { .. }")
- }
-}
-
-/// A stealer handle of a worker queue.
-///
-/// Stealers can be shared among threads.
-///
-/// Task schedulers typically have a single worker queue per worker thread.
-///
-/// # Examples
-///
-/// ```
-/// use crossbeam_deque::{Steal, Worker};
-///
-/// let w = Worker::new_lifo();
-/// w.push(1);
-/// w.push(2);
-///
-/// let s = w.stealer();
-/// assert_eq!(s.steal(), Steal::Success(1));
-/// assert_eq!(s.steal(), Steal::Success(2));
-/// assert_eq!(s.steal(), Steal::Empty);
-/// ```
-pub struct Stealer<T> {
- /// A reference to the inner representation of the queue.
- inner: Arc<CachePadded<Inner<T>>>,
-
- /// The flavor of the queue.
- flavor: Flavor,
-}
-
-unsafe impl<T: Send> Send for Stealer<T> {}
-unsafe impl<T: Send> Sync for Stealer<T> {}
-
-impl<T> Stealer<T> {
- /// Returns `true` if the queue is empty.
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::new_lifo();
- /// let s = w.stealer();
- ///
- /// assert!(s.is_empty());
- /// w.push(1);
- /// assert!(!s.is_empty());
- /// ```
- pub fn is_empty(&self) -> bool {
- let f = self.inner.front.load(Ordering::Acquire);
- atomic::fence(Ordering::SeqCst);
- let b = self.inner.back.load(Ordering::Acquire);
- b.wrapping_sub(f) <= 0
- }
-
- /// Returns the number of tasks in the deque.
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w = Worker::new_lifo();
- /// let s = w.stealer();
- ///
- /// assert_eq!(s.len(), 0);
- /// w.push(1);
- /// assert_eq!(s.len(), 1);
- /// w.push(2);
- /// assert_eq!(s.len(), 2);
- /// ```
- pub fn len(&self) -> usize {
- let f = self.inner.front.load(Ordering::Acquire);
- atomic::fence(Ordering::SeqCst);
- let b = self.inner.back.load(Ordering::Acquire);
- b.wrapping_sub(f).max(0) as usize
- }
-
- /// Steals a task from the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Steal, Worker};
- ///
- /// let w = Worker::new_lifo();
- /// w.push(1);
- /// w.push(2);
- ///
- /// let s = w.stealer();
- /// assert_eq!(s.steal(), Steal::Success(1));
- /// assert_eq!(s.steal(), Steal::Success(2));
- /// ```
- pub fn steal(&self) -> Steal<T> {
- // Load the front index.
- let f = self.inner.front.load(Ordering::Acquire);
-
- // A SeqCst fence is needed here.
- //
- // If the current thread is already pinned (reentrantly), we must manually issue the
- // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
- // have to.
- if epoch::is_pinned() {
- atomic::fence(Ordering::SeqCst);
- }
-
- let guard = &epoch::pin();
-
- // Load the back index.
- let b = self.inner.back.load(Ordering::Acquire);
-
- // Is the queue empty?
- if b.wrapping_sub(f) <= 0 {
- return Steal::Empty;
- }
-
- // Load the buffer and read the task at the front.
- let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
- let task = unsafe { buffer.deref().read(f) };
-
- // Try incrementing the front index to steal the task.
- // If the buffer has been swapped or the increment fails, we retry.
- if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
- || self
- .inner
- .front
- .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
- .is_err()
- {
- // We didn't steal this task, forget it.
- return Steal::Retry;
- }
-
- // Return the stolen task.
- Steal::Success(unsafe { task.assume_init() })
- }
-
- /// Steals a batch of tasks and pushes them into another worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than some constant limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w1 = Worker::new_fifo();
- /// w1.push(1);
- /// w1.push(2);
- /// w1.push(3);
- /// w1.push(4);
- ///
- /// let s = w1.stealer();
- /// let w2 = Worker::new_fifo();
- ///
- /// let _ = s.steal_batch(&w2);
- /// assert_eq!(w2.pop(), Some(1));
- /// assert_eq!(w2.pop(), Some(2));
- /// ```
- pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> {
- self.steal_batch_with_limit(dest, MAX_BATCH)
- }
-
- /// Steals no more than `limit` of tasks and pushes them into another worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than the given limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Worker;
- ///
- /// let w1 = Worker::new_fifo();
- /// w1.push(1);
- /// w1.push(2);
- /// w1.push(3);
- /// w1.push(4);
- /// w1.push(5);
- /// w1.push(6);
- ///
- /// let s = w1.stealer();
- /// let w2 = Worker::new_fifo();
- ///
- /// let _ = s.steal_batch_with_limit(&w2, 2);
- /// assert_eq!(w2.pop(), Some(1));
- /// assert_eq!(w2.pop(), Some(2));
- /// assert_eq!(w2.pop(), None);
- ///
- /// w1.push(7);
- /// w1.push(8);
- /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
- /// // half of the elements are currently popped, but the number of popped elements is considered
- /// // an implementation detail that may be changed in the future.
- /// let _ = s.steal_batch_with_limit(&w2, std::usize::MAX);
- /// assert_eq!(w2.len(), 3);
- /// ```
- pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> {
- assert!(limit > 0);
- if Arc::ptr_eq(&self.inner, &dest.inner) {
- if dest.is_empty() {
- return Steal::Empty;
- } else {
- return Steal::Success(());
- }
- }
-
- // Load the front index.
- let mut f = self.inner.front.load(Ordering::Acquire);
-
- // A SeqCst fence is needed here.
- //
- // If the current thread is already pinned (reentrantly), we must manually issue the
- // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
- // have to.
- if epoch::is_pinned() {
- atomic::fence(Ordering::SeqCst);
- }
-
- let guard = &epoch::pin();
-
- // Load the back index.
- let b = self.inner.back.load(Ordering::Acquire);
-
- // Is the queue empty?
- let len = b.wrapping_sub(f);
- if len <= 0 {
- return Steal::Empty;
- }
-
- // Reserve capacity for the stolen batch.
- let batch_size = cmp::min((len as usize + 1) / 2, limit);
- dest.reserve(batch_size);
- let mut batch_size = batch_size as isize;
-
- // Get the destination buffer and back index.
- let dest_buffer = dest.buffer.get();
- let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
-
- // Load the buffer.
- let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
-
- match self.flavor {
- // Steal a batch of tasks from the front at once.
- Flavor::Fifo => {
- // Copy the batch from the source to the destination buffer.
- match dest.flavor {
- Flavor::Fifo => {
- for i in 0..batch_size {
- unsafe {
- let task = buffer.deref().read(f.wrapping_add(i));
- dest_buffer.write(dest_b.wrapping_add(i), task);
- }
- }
- }
- Flavor::Lifo => {
- for i in 0..batch_size {
- unsafe {
- let task = buffer.deref().read(f.wrapping_add(i));
- dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
- }
- }
- }
- }
-
- // Try incrementing the front index to steal the batch.
- // If the buffer has been swapped or the increment fails, we retry.
- if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
- || self
- .inner
- .front
- .compare_exchange(
- f,
- f.wrapping_add(batch_size),
- Ordering::SeqCst,
- Ordering::Relaxed,
- )
- .is_err()
- {
- return Steal::Retry;
- }
-
- dest_b = dest_b.wrapping_add(batch_size);
- }
-
- // Steal a batch of tasks from the front one by one.
- Flavor::Lifo => {
- // This loop may modify the batch_size, which triggers a clippy lint warning.
- // Use a new variable to avoid the warning, and to make it clear we aren't
- // modifying the loop exit condition during iteration.
- let original_batch_size = batch_size;
-
- for i in 0..original_batch_size {
- // If this is not the first steal, check whether the queue is empty.
- if i > 0 {
- // We've already got the current front index. Now execute the fence to
- // synchronize with other threads.
- atomic::fence(Ordering::SeqCst);
-
- // Load the back index.
- let b = self.inner.back.load(Ordering::Acquire);
-
- // Is the queue empty?
- if b.wrapping_sub(f) <= 0 {
- batch_size = i;
- break;
- }
- }
-
- // Read the task at the front.
- let task = unsafe { buffer.deref().read(f) };
-
- // Try incrementing the front index to steal the task.
- // If the buffer has been swapped or the increment fails, we retry.
- if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
- || self
- .inner
- .front
- .compare_exchange(
- f,
- f.wrapping_add(1),
- Ordering::SeqCst,
- Ordering::Relaxed,
- )
- .is_err()
- {
- // We didn't steal this task, forget it and break from the loop.
- batch_size = i;
- break;
- }
-
- // Write the stolen task into the destination buffer.
- unsafe {
- dest_buffer.write(dest_b, task);
- }
-
- // Move the source front index and the destination back index one step forward.
- f = f.wrapping_add(1);
- dest_b = dest_b.wrapping_add(1);
- }
-
- // If we didn't steal anything, the operation needs to be retried.
- if batch_size == 0 {
- return Steal::Retry;
- }
-
- // If stealing into a FIFO queue, stolen tasks need to be reversed.
- if dest.flavor == Flavor::Fifo {
- for i in 0..batch_size / 2 {
- unsafe {
- let i1 = dest_b.wrapping_sub(batch_size - i);
- let i2 = dest_b.wrapping_sub(i + 1);
- let t1 = dest_buffer.read(i1);
- let t2 = dest_buffer.read(i2);
- dest_buffer.write(i1, t2);
- dest_buffer.write(i2, t1);
- }
- }
- }
- }
- }
-
- atomic::fence(Ordering::Release);
-
- // Update the back index in the destination queue.
- //
- // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
- // races because it doesn't understand fences.
- dest.inner.back.store(dest_b, Ordering::Release);
-
- // Return with success.
- Steal::Success(())
- }
-
- /// Steals a batch of tasks, pushes them into another worker, and pops a task from that worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than some constant limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Steal, Worker};
- ///
- /// let w1 = Worker::new_fifo();
- /// w1.push(1);
- /// w1.push(2);
- /// w1.push(3);
- /// w1.push(4);
- ///
- /// let s = w1.stealer();
- /// let w2 = Worker::new_fifo();
- ///
- /// assert_eq!(s.steal_batch_and_pop(&w2), Steal::Success(1));
- /// assert_eq!(w2.pop(), Some(2));
- /// ```
- pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> {
- self.steal_batch_with_limit_and_pop(dest, MAX_BATCH)
- }
-
- /// Steals no more than `limit` of tasks, pushes them into another worker, and pops a task from
- /// that worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than the given limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Steal, Worker};
- ///
- /// let w1 = Worker::new_fifo();
- /// w1.push(1);
- /// w1.push(2);
- /// w1.push(3);
- /// w1.push(4);
- /// w1.push(5);
- /// w1.push(6);
- ///
- /// let s = w1.stealer();
- /// let w2 = Worker::new_fifo();
- ///
- /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, 2), Steal::Success(1));
- /// assert_eq!(w2.pop(), Some(2));
- /// assert_eq!(w2.pop(), None);
- ///
- /// w1.push(7);
- /// w1.push(8);
- /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
- /// // half of the elements are currently popped, but the number of popped elements is considered
- /// // an implementation detail that may be changed in the future.
- /// assert_eq!(s.steal_batch_with_limit_and_pop(&w2, std::usize::MAX), Steal::Success(3));
- /// assert_eq!(w2.pop(), Some(4));
- /// assert_eq!(w2.pop(), Some(5));
- /// assert_eq!(w2.pop(), None);
- /// ```
- pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> {
- assert!(limit > 0);
- if Arc::ptr_eq(&self.inner, &dest.inner) {
- match dest.pop() {
- None => return Steal::Empty,
- Some(task) => return Steal::Success(task),
- }
- }
-
- // Load the front index.
- let mut f = self.inner.front.load(Ordering::Acquire);
-
- // A SeqCst fence is needed here.
- //
- // If the current thread is already pinned (reentrantly), we must manually issue the
- // fence. Otherwise, the following pinning will issue the fence anyway, so we don't
- // have to.
- if epoch::is_pinned() {
- atomic::fence(Ordering::SeqCst);
- }
-
- let guard = &epoch::pin();
-
- // Load the back index.
- let b = self.inner.back.load(Ordering::Acquire);
-
- // Is the queue empty?
- let len = b.wrapping_sub(f);
- if len <= 0 {
- return Steal::Empty;
- }
-
- // Reserve capacity for the stolen batch.
- let batch_size = cmp::min((len as usize - 1) / 2, limit - 1);
- dest.reserve(batch_size);
- let mut batch_size = batch_size as isize;
-
- // Get the destination buffer and back index.
- let dest_buffer = dest.buffer.get();
- let mut dest_b = dest.inner.back.load(Ordering::Relaxed);
-
- // Load the buffer
- let buffer = self.inner.buffer.load(Ordering::Acquire, guard);
-
- // Read the task at the front.
- let mut task = unsafe { buffer.deref().read(f) };
-
- match self.flavor {
- // Steal a batch of tasks from the front at once.
- Flavor::Fifo => {
- // Copy the batch from the source to the destination buffer.
- match dest.flavor {
- Flavor::Fifo => {
- for i in 0..batch_size {
- unsafe {
- let task = buffer.deref().read(f.wrapping_add(i + 1));
- dest_buffer.write(dest_b.wrapping_add(i), task);
- }
- }
- }
- Flavor::Lifo => {
- for i in 0..batch_size {
- unsafe {
- let task = buffer.deref().read(f.wrapping_add(i + 1));
- dest_buffer.write(dest_b.wrapping_add(batch_size - 1 - i), task);
- }
- }
- }
- }
-
- // Try incrementing the front index to steal the task.
- // If the buffer has been swapped or the increment fails, we retry.
- if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
- || self
- .inner
- .front
- .compare_exchange(
- f,
- f.wrapping_add(batch_size + 1),
- Ordering::SeqCst,
- Ordering::Relaxed,
- )
- .is_err()
- {
- // We didn't steal this task, forget it.
- return Steal::Retry;
- }
-
- dest_b = dest_b.wrapping_add(batch_size);
- }
-
- // Steal a batch of tasks from the front one by one.
- Flavor::Lifo => {
- // Try incrementing the front index to steal the task.
- if self
- .inner
- .front
- .compare_exchange(f, f.wrapping_add(1), Ordering::SeqCst, Ordering::Relaxed)
- .is_err()
- {
- // We didn't steal this task, forget it.
- return Steal::Retry;
- }
-
- // Move the front index one step forward.
- f = f.wrapping_add(1);
-
- // Repeat the same procedure for the batch steals.
- //
- // This loop may modify the batch_size, which triggers a clippy lint warning.
- // Use a new variable to avoid the warning, and to make it clear we aren't
- // modifying the loop exit condition during iteration.
- let original_batch_size = batch_size;
- for i in 0..original_batch_size {
- // We've already got the current front index. Now execute the fence to
- // synchronize with other threads.
- atomic::fence(Ordering::SeqCst);
-
- // Load the back index.
- let b = self.inner.back.load(Ordering::Acquire);
-
- // Is the queue empty?
- if b.wrapping_sub(f) <= 0 {
- batch_size = i;
- break;
- }
-
- // Read the task at the front.
- let tmp = unsafe { buffer.deref().read(f) };
-
- // Try incrementing the front index to steal the task.
- // If the buffer has been swapped or the increment fails, we retry.
- if self.inner.buffer.load(Ordering::Acquire, guard) != buffer
- || self
- .inner
- .front
- .compare_exchange(
- f,
- f.wrapping_add(1),
- Ordering::SeqCst,
- Ordering::Relaxed,
- )
- .is_err()
- {
- // We didn't steal this task, forget it and break from the loop.
- batch_size = i;
- break;
- }
-
- // Write the previously stolen task into the destination buffer.
- unsafe {
- dest_buffer.write(dest_b, mem::replace(&mut task, tmp));
- }
-
- // Move the source front index and the destination back index one step forward.
- f = f.wrapping_add(1);
- dest_b = dest_b.wrapping_add(1);
- }
-
- // If stealing into a FIFO queue, stolen tasks need to be reversed.
- if dest.flavor == Flavor::Fifo {
- for i in 0..batch_size / 2 {
- unsafe {
- let i1 = dest_b.wrapping_sub(batch_size - i);
- let i2 = dest_b.wrapping_sub(i + 1);
- let t1 = dest_buffer.read(i1);
- let t2 = dest_buffer.read(i2);
- dest_buffer.write(i1, t2);
- dest_buffer.write(i2, t1);
- }
- }
- }
- }
- }
-
- atomic::fence(Ordering::Release);
-
- // Update the back index in the destination queue.
- //
- // This ordering could be `Relaxed`, but then thread sanitizer would falsely report data
- // races because it doesn't understand fences.
- dest.inner.back.store(dest_b, Ordering::Release);
-
- // Return with success.
- Steal::Success(unsafe { task.assume_init() })
- }
-}
-
-impl<T> Clone for Stealer<T> {
- fn clone(&self) -> Stealer<T> {
- Stealer {
- inner: self.inner.clone(),
- flavor: self.flavor,
- }
- }
-}
-
-impl<T> fmt::Debug for Stealer<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.pad("Stealer { .. }")
- }
-}
-
-// Bits indicating the state of a slot:
-// * If a task has been written into the slot, `WRITE` is set.
-// * If a task has been read from the slot, `READ` is set.
-// * If the block is being destroyed, `DESTROY` is set.
-const WRITE: usize = 1;
-const READ: usize = 2;
-const DESTROY: usize = 4;
-
-// Each block covers one "lap" of indices.
-const LAP: usize = 64;
-// The maximum number of values a block can hold.
-const BLOCK_CAP: usize = LAP - 1;
-// How many lower bits are reserved for metadata.
-const SHIFT: usize = 1;
-// Indicates that the block is not the last one.
-const HAS_NEXT: usize = 1;
-
-/// A slot in a block.
-struct Slot<T> {
- /// The task.
- task: UnsafeCell<MaybeUninit<T>>,
-
- /// The state of the slot.
- state: AtomicUsize,
-}
-
-impl<T> Slot<T> {
- const UNINIT: Self = Self {
- task: UnsafeCell::new(MaybeUninit::uninit()),
- state: AtomicUsize::new(0),
- };
-
- /// Waits until a task is written into the slot.
- fn wait_write(&self) {
- let backoff = Backoff::new();
- while self.state.load(Ordering::Acquire) & WRITE == 0 {
- backoff.snooze();
- }
- }
-}
-
-/// A block in a linked list.
-///
-/// Each block in the list can hold up to `BLOCK_CAP` values.
-struct Block<T> {
- /// The next block in the linked list.
- next: AtomicPtr<Block<T>>,
-
- /// Slots for values.
- slots: [Slot<T>; BLOCK_CAP],
-}
-
-impl<T> Block<T> {
- /// Creates an empty block that starts at `start_index`.
- fn new() -> Block<T> {
- Self {
- next: AtomicPtr::new(ptr::null_mut()),
- slots: [Slot::UNINIT; BLOCK_CAP],
- }
- }
-
- /// Waits until the next pointer is set.
- fn wait_next(&self) -> *mut Block<T> {
- let backoff = Backoff::new();
- loop {
- let next = self.next.load(Ordering::Acquire);
- if !next.is_null() {
- return next;
- }
- backoff.snooze();
- }
- }
-
- /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
- unsafe fn destroy(this: *mut Block<T>, count: usize) {
- // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
- // begun destruction of the block.
- for i in (0..count).rev() {
- let slot = (*this).slots.get_unchecked(i);
-
- // Mark the `DESTROY` bit if a thread is still using the slot.
- if slot.state.load(Ordering::Acquire) & READ == 0
- && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
- {
- // If a thread is still using the slot, it will continue destruction of the block.
- return;
- }
- }
-
- // No thread is using the block, now it is safe to destroy it.
- drop(Box::from_raw(this));
- }
-}
-
-/// A position in a queue.
-struct Position<T> {
- /// The index in the queue.
- index: AtomicUsize,
-
- /// The block in the linked list.
- block: AtomicPtr<Block<T>>,
-}
-
-/// An injector queue.
-///
-/// This is a FIFO queue that can be shared among multiple threads. Task schedulers typically have
-/// a single injector queue, which is the entry point for new tasks.
-///
-/// # Examples
-///
-/// ```
-/// use crossbeam_deque::{Injector, Steal};
-///
-/// let q = Injector::new();
-/// q.push(1);
-/// q.push(2);
-///
-/// assert_eq!(q.steal(), Steal::Success(1));
-/// assert_eq!(q.steal(), Steal::Success(2));
-/// assert_eq!(q.steal(), Steal::Empty);
-/// ```
-pub struct Injector<T> {
- /// The head of the queue.
- head: CachePadded<Position<T>>,
-
- /// The tail of the queue.
- tail: CachePadded<Position<T>>,
-
- /// Indicates that dropping a `Injector<T>` may drop values of type `T`.
- _marker: PhantomData<T>,
-}
-
-unsafe impl<T: Send> Send for Injector<T> {}
-unsafe impl<T: Send> Sync for Injector<T> {}
-
-impl<T> Default for Injector<T> {
- fn default() -> Self {
- let block = Box::into_raw(Box::new(Block::<T>::new()));
- Self {
- head: CachePadded::new(Position {
- block: AtomicPtr::new(block),
- index: AtomicUsize::new(0),
- }),
- tail: CachePadded::new(Position {
- block: AtomicPtr::new(block),
- index: AtomicUsize::new(0),
- }),
- _marker: PhantomData,
- }
- }
-}
-
-impl<T> Injector<T> {
- /// Creates a new injector queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Injector;
- ///
- /// let q = Injector::<i32>::new();
- /// ```
- pub fn new() -> Injector<T> {
- Self::default()
- }
-
- /// Pushes a task into the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Injector;
- ///
- /// let w = Injector::new();
- /// w.push(1);
- /// w.push(2);
- /// ```
- pub fn push(&self, task: T) {
- let backoff = Backoff::new();
- let mut tail = self.tail.index.load(Ordering::Acquire);
- let mut block = self.tail.block.load(Ordering::Acquire);
- let mut next_block = None;
-
- loop {
- // Calculate the offset of the index into the block.
- let offset = (tail >> SHIFT) % LAP;
-
- // If we reached the end of the block, wait until the next one is installed.
- if offset == BLOCK_CAP {
- backoff.snooze();
- tail = self.tail.index.load(Ordering::Acquire);
- block = self.tail.block.load(Ordering::Acquire);
- continue;
- }
-
- // If we're going to have to install the next block, allocate it in advance in order to
- // make the wait for other threads as short as possible.
- if offset + 1 == BLOCK_CAP && next_block.is_none() {
- next_block = Some(Box::new(Block::<T>::new()));
- }
-
- let new_tail = tail + (1 << SHIFT);
-
- // Try advancing the tail forward.
- match self.tail.index.compare_exchange_weak(
- tail,
- new_tail,
- Ordering::SeqCst,
- Ordering::Acquire,
- ) {
- Ok(_) => unsafe {
- // If we've reached the end of the block, install the next one.
- if offset + 1 == BLOCK_CAP {
- let next_block = Box::into_raw(next_block.unwrap());
- let next_index = new_tail.wrapping_add(1 << SHIFT);
-
- self.tail.block.store(next_block, Ordering::Release);
- self.tail.index.store(next_index, Ordering::Release);
- (*block).next.store(next_block, Ordering::Release);
- }
-
- // Write the task into the slot.
- let slot = (*block).slots.get_unchecked(offset);
- slot.task.get().write(MaybeUninit::new(task));
- slot.state.fetch_or(WRITE, Ordering::Release);
-
- return;
- },
- Err(t) => {
- tail = t;
- block = self.tail.block.load(Ordering::Acquire);
- backoff.spin();
- }
- }
- }
- }
-
- /// Steals a task from the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Injector, Steal};
- ///
- /// let q = Injector::new();
- /// q.push(1);
- /// q.push(2);
- ///
- /// assert_eq!(q.steal(), Steal::Success(1));
- /// assert_eq!(q.steal(), Steal::Success(2));
- /// assert_eq!(q.steal(), Steal::Empty);
- /// ```
- pub fn steal(&self) -> Steal<T> {
- let mut head;
- let mut block;
- let mut offset;
-
- let backoff = Backoff::new();
- loop {
- head = self.head.index.load(Ordering::Acquire);
- block = self.head.block.load(Ordering::Acquire);
-
- // Calculate the offset of the index into the block.
- offset = (head >> SHIFT) % LAP;
-
- // If we reached the end of the block, wait until the next one is installed.
- if offset == BLOCK_CAP {
- backoff.snooze();
- } else {
- break;
- }
- }
-
- let mut new_head = head + (1 << SHIFT);
-
- if new_head & HAS_NEXT == 0 {
- atomic::fence(Ordering::SeqCst);
- let tail = self.tail.index.load(Ordering::Relaxed);
-
- // If the tail equals the head, that means the queue is empty.
- if head >> SHIFT == tail >> SHIFT {
- return Steal::Empty;
- }
-
- // If head and tail are not in the same block, set `HAS_NEXT` in head.
- if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
- new_head |= HAS_NEXT;
- }
- }
-
- // Try moving the head index forward.
- if self
- .head
- .index
- .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
- .is_err()
- {
- return Steal::Retry;
- }
-
- unsafe {
- // If we've reached the end of the block, move to the next one.
- if offset + 1 == BLOCK_CAP {
- let next = (*block).wait_next();
- let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
- if !(*next).next.load(Ordering::Relaxed).is_null() {
- next_index |= HAS_NEXT;
- }
-
- self.head.block.store(next, Ordering::Release);
- self.head.index.store(next_index, Ordering::Release);
- }
-
- // Read the task.
- let slot = (*block).slots.get_unchecked(offset);
- slot.wait_write();
- let task = slot.task.get().read().assume_init();
-
- // Destroy the block if we've reached the end, or if another thread wanted to destroy
- // but couldn't because we were busy reading from the slot.
- if (offset + 1 == BLOCK_CAP)
- || (slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0)
- {
- Block::destroy(block, offset);
- }
-
- Steal::Success(task)
- }
- }
-
- /// Steals a batch of tasks and pushes them into a worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than some constant limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Injector, Worker};
- ///
- /// let q = Injector::new();
- /// q.push(1);
- /// q.push(2);
- /// q.push(3);
- /// q.push(4);
- ///
- /// let w = Worker::new_fifo();
- /// let _ = q.steal_batch(&w);
- /// assert_eq!(w.pop(), Some(1));
- /// assert_eq!(w.pop(), Some(2));
- /// ```
- pub fn steal_batch(&self, dest: &Worker<T>) -> Steal<()> {
- self.steal_batch_with_limit(dest, MAX_BATCH)
- }
-
- /// Steals no more than of tasks and pushes them into a worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than some constant limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Injector, Worker};
- ///
- /// let q = Injector::new();
- /// q.push(1);
- /// q.push(2);
- /// q.push(3);
- /// q.push(4);
- /// q.push(5);
- /// q.push(6);
- ///
- /// let w = Worker::new_fifo();
- /// let _ = q.steal_batch_with_limit(&w, 2);
- /// assert_eq!(w.pop(), Some(1));
- /// assert_eq!(w.pop(), Some(2));
- /// assert_eq!(w.pop(), None);
- ///
- /// q.push(7);
- /// q.push(8);
- /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
- /// // half of the elements are currently popped, but the number of popped elements is considered
- /// // an implementation detail that may be changed in the future.
- /// let _ = q.steal_batch_with_limit(&w, std::usize::MAX);
- /// assert_eq!(w.len(), 3);
- /// ```
- pub fn steal_batch_with_limit(&self, dest: &Worker<T>, limit: usize) -> Steal<()> {
- assert!(limit > 0);
- let mut head;
- let mut block;
- let mut offset;
-
- let backoff = Backoff::new();
- loop {
- head = self.head.index.load(Ordering::Acquire);
- block = self.head.block.load(Ordering::Acquire);
-
- // Calculate the offset of the index into the block.
- offset = (head >> SHIFT) % LAP;
-
- // If we reached the end of the block, wait until the next one is installed.
- if offset == BLOCK_CAP {
- backoff.snooze();
- } else {
- break;
- }
- }
-
- let mut new_head = head;
- let advance;
-
- if new_head & HAS_NEXT == 0 {
- atomic::fence(Ordering::SeqCst);
- let tail = self.tail.index.load(Ordering::Relaxed);
-
- // If the tail equals the head, that means the queue is empty.
- if head >> SHIFT == tail >> SHIFT {
- return Steal::Empty;
- }
-
- // If head and tail are not in the same block, set `HAS_NEXT` in head. Also, calculate
- // the right batch size to steal.
- if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
- new_head |= HAS_NEXT;
- // We can steal all tasks till the end of the block.
- advance = (BLOCK_CAP - offset).min(limit);
- } else {
- let len = (tail - head) >> SHIFT;
- // Steal half of the available tasks.
- advance = ((len + 1) / 2).min(limit);
- }
- } else {
- // We can steal all tasks till the end of the block.
- advance = (BLOCK_CAP - offset).min(limit);
- }
-
- new_head += advance << SHIFT;
- let new_offset = offset + advance;
-
- // Try moving the head index forward.
- if self
- .head
- .index
- .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
- .is_err()
- {
- return Steal::Retry;
- }
-
- // Reserve capacity for the stolen batch.
- let batch_size = new_offset - offset;
- dest.reserve(batch_size);
-
- // Get the destination buffer and back index.
- let dest_buffer = dest.buffer.get();
- let dest_b = dest.inner.back.load(Ordering::Relaxed);
-
- unsafe {
- // If we've reached the end of the block, move to the next one.
- if new_offset == BLOCK_CAP {
- let next = (*block).wait_next();
- let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
- if !(*next).next.load(Ordering::Relaxed).is_null() {
- next_index |= HAS_NEXT;
- }
-
- self.head.block.store(next, Ordering::Release);
- self.head.index.store(next_index, Ordering::Release);
- }
-
- // Copy values from the injector into the destination queue.
- match dest.flavor {
- Flavor::Fifo => {
- for i in 0..batch_size {
- // Read the task.
- let slot = (*block).slots.get_unchecked(offset + i);
- slot.wait_write();
- let task = slot.task.get().read();
-
- // Write it into the destination queue.
- dest_buffer.write(dest_b.wrapping_add(i as isize), task);
- }
- }
-
- Flavor::Lifo => {
- for i in 0..batch_size {
- // Read the task.
- let slot = (*block).slots.get_unchecked(offset + i);
- slot.wait_write();
- let task = slot.task.get().read();
-
- // Write it into the destination queue.
- dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
- }
- }
- }
-
- atomic::fence(Ordering::Release);
-
- // Update the back index in the destination queue.
- //
- // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
- // data races because it doesn't understand fences.
- dest.inner
- .back
- .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);
-
- // Destroy the block if we've reached the end, or if another thread wanted to destroy
- // but couldn't because we were busy reading from the slot.
- if new_offset == BLOCK_CAP {
- Block::destroy(block, offset);
- } else {
- for i in offset..new_offset {
- let slot = (*block).slots.get_unchecked(i);
-
- if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
- Block::destroy(block, offset);
- break;
- }
- }
- }
-
- Steal::Success(())
- }
- }
-
- /// Steals a batch of tasks, pushes them into a worker, and pops a task from that worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than some constant limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Injector, Steal, Worker};
- ///
- /// let q = Injector::new();
- /// q.push(1);
- /// q.push(2);
- /// q.push(3);
- /// q.push(4);
- ///
- /// let w = Worker::new_fifo();
- /// assert_eq!(q.steal_batch_and_pop(&w), Steal::Success(1));
- /// assert_eq!(w.pop(), Some(2));
- /// ```
- pub fn steal_batch_and_pop(&self, dest: &Worker<T>) -> Steal<T> {
- // TODO: we use `MAX_BATCH + 1` as the hard limit for Injecter as the performance is slightly
- // better, but we may change it in the future to be compatible with the same method in Stealer.
- self.steal_batch_with_limit_and_pop(dest, MAX_BATCH + 1)
- }
-
- /// Steals no more than `limit` of tasks, pushes them into a worker, and pops a task from that worker.
- ///
- /// How many tasks exactly will be stolen is not specified. That said, this method will try to
- /// steal around half of the tasks in the queue, but also not more than the given limit.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::{Injector, Steal, Worker};
- ///
- /// let q = Injector::new();
- /// q.push(1);
- /// q.push(2);
- /// q.push(3);
- /// q.push(4);
- /// q.push(5);
- /// q.push(6);
- ///
- /// let w = Worker::new_fifo();
- /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, 2), Steal::Success(1));
- /// assert_eq!(w.pop(), Some(2));
- /// assert_eq!(w.pop(), None);
- ///
- /// q.push(7);
- /// // Setting a large limit does not guarantee that all elements will be popped. In this case,
- /// // half of the elements are currently popped, but the number of popped elements is considered
- /// // an implementation detail that may be changed in the future.
- /// assert_eq!(q.steal_batch_with_limit_and_pop(&w, std::usize::MAX), Steal::Success(3));
- /// assert_eq!(w.pop(), Some(4));
- /// assert_eq!(w.pop(), Some(5));
- /// assert_eq!(w.pop(), None);
- /// ```
- pub fn steal_batch_with_limit_and_pop(&self, dest: &Worker<T>, limit: usize) -> Steal<T> {
- assert!(limit > 0);
- let mut head;
- let mut block;
- let mut offset;
-
- let backoff = Backoff::new();
- loop {
- head = self.head.index.load(Ordering::Acquire);
- block = self.head.block.load(Ordering::Acquire);
-
- // Calculate the offset of the index into the block.
- offset = (head >> SHIFT) % LAP;
-
- // If we reached the end of the block, wait until the next one is installed.
- if offset == BLOCK_CAP {
- backoff.snooze();
- } else {
- break;
- }
- }
-
- let mut new_head = head;
- let advance;
-
- if new_head & HAS_NEXT == 0 {
- atomic::fence(Ordering::SeqCst);
- let tail = self.tail.index.load(Ordering::Relaxed);
-
- // If the tail equals the head, that means the queue is empty.
- if head >> SHIFT == tail >> SHIFT {
- return Steal::Empty;
- }
-
- // If head and tail are not in the same block, set `HAS_NEXT` in head.
- if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
- new_head |= HAS_NEXT;
- // We can steal all tasks till the end of the block.
- advance = (BLOCK_CAP - offset).min(limit);
- } else {
- let len = (tail - head) >> SHIFT;
- // Steal half of the available tasks.
- advance = ((len + 1) / 2).min(limit);
- }
- } else {
- // We can steal all tasks till the end of the block.
- advance = (BLOCK_CAP - offset).min(limit);
- }
-
- new_head += advance << SHIFT;
- let new_offset = offset + advance;
-
- // Try moving the head index forward.
- if self
- .head
- .index
- .compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Acquire)
- .is_err()
- {
- return Steal::Retry;
- }
-
- // Reserve capacity for the stolen batch.
- let batch_size = new_offset - offset - 1;
- dest.reserve(batch_size);
-
- // Get the destination buffer and back index.
- let dest_buffer = dest.buffer.get();
- let dest_b = dest.inner.back.load(Ordering::Relaxed);
-
- unsafe {
- // If we've reached the end of the block, move to the next one.
- if new_offset == BLOCK_CAP {
- let next = (*block).wait_next();
- let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
- if !(*next).next.load(Ordering::Relaxed).is_null() {
- next_index |= HAS_NEXT;
- }
-
- self.head.block.store(next, Ordering::Release);
- self.head.index.store(next_index, Ordering::Release);
- }
-
- // Read the task.
- let slot = (*block).slots.get_unchecked(offset);
- slot.wait_write();
- let task = slot.task.get().read();
-
- match dest.flavor {
- Flavor::Fifo => {
- // Copy values from the injector into the destination queue.
- for i in 0..batch_size {
- // Read the task.
- let slot = (*block).slots.get_unchecked(offset + i + 1);
- slot.wait_write();
- let task = slot.task.get().read();
-
- // Write it into the destination queue.
- dest_buffer.write(dest_b.wrapping_add(i as isize), task);
- }
- }
-
- Flavor::Lifo => {
- // Copy values from the injector into the destination queue.
- for i in 0..batch_size {
- // Read the task.
- let slot = (*block).slots.get_unchecked(offset + i + 1);
- slot.wait_write();
- let task = slot.task.get().read();
-
- // Write it into the destination queue.
- dest_buffer.write(dest_b.wrapping_add((batch_size - 1 - i) as isize), task);
- }
- }
- }
-
- atomic::fence(Ordering::Release);
-
- // Update the back index in the destination queue.
- //
- // This ordering could be `Relaxed`, but then thread sanitizer would falsely report
- // data races because it doesn't understand fences.
- dest.inner
- .back
- .store(dest_b.wrapping_add(batch_size as isize), Ordering::Release);
-
- // Destroy the block if we've reached the end, or if another thread wanted to destroy
- // but couldn't because we were busy reading from the slot.
- if new_offset == BLOCK_CAP {
- Block::destroy(block, offset);
- } else {
- for i in offset..new_offset {
- let slot = (*block).slots.get_unchecked(i);
-
- if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
- Block::destroy(block, offset);
- break;
- }
- }
- }
-
- Steal::Success(task.assume_init())
- }
- }
-
- /// Returns `true` if the queue is empty.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Injector;
- ///
- /// let q = Injector::new();
- ///
- /// assert!(q.is_empty());
- /// q.push(1);
- /// assert!(!q.is_empty());
- /// ```
- pub fn is_empty(&self) -> bool {
- let head = self.head.index.load(Ordering::SeqCst);
- let tail = self.tail.index.load(Ordering::SeqCst);
- head >> SHIFT == tail >> SHIFT
- }
-
- /// Returns the number of tasks in the queue.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Injector;
- ///
- /// let q = Injector::new();
- ///
- /// assert_eq!(q.len(), 0);
- /// q.push(1);
- /// assert_eq!(q.len(), 1);
- /// q.push(1);
- /// assert_eq!(q.len(), 2);
- /// ```
- pub fn len(&self) -> usize {
- loop {
- // Load the tail index, then load the head index.
- let mut tail = self.tail.index.load(Ordering::SeqCst);
- let mut head = self.head.index.load(Ordering::SeqCst);
-
- // If the tail index didn't change, we've got consistent indices to work with.
- if self.tail.index.load(Ordering::SeqCst) == tail {
- // Erase the lower bits.
- tail &= !((1 << SHIFT) - 1);
- head &= !((1 << SHIFT) - 1);
-
- // Fix up indices if they fall onto block ends.
- if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
- tail = tail.wrapping_add(1 << SHIFT);
- }
- if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
- head = head.wrapping_add(1 << SHIFT);
- }
-
- // Rotate indices so that head falls into the first block.
- let lap = (head >> SHIFT) / LAP;
- tail = tail.wrapping_sub((lap * LAP) << SHIFT);
- head = head.wrapping_sub((lap * LAP) << SHIFT);
-
- // Remove the lower bits.
- tail >>= SHIFT;
- head >>= SHIFT;
-
- // Return the difference minus the number of blocks between tail and head.
- return tail - head - tail / LAP;
- }
- }
- }
-}
-
-impl<T> Drop for Injector<T> {
- fn drop(&mut self) {
- let mut head = *self.head.index.get_mut();
- let mut tail = *self.tail.index.get_mut();
- let mut block = *self.head.block.get_mut();
-
- // Erase the lower bits.
- head &= !((1 << SHIFT) - 1);
- tail &= !((1 << SHIFT) - 1);
-
- unsafe {
- // Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
- while head != tail {
- let offset = (head >> SHIFT) % LAP;
-
- if offset < BLOCK_CAP {
- // Drop the task in the slot.
- let slot = (*block).slots.get_unchecked(offset);
- let p = &mut *slot.task.get();
- p.as_mut_ptr().drop_in_place();
- } else {
- // Deallocate the block and move to the next one.
- let next = *(*block).next.get_mut();
- drop(Box::from_raw(block));
- block = next;
- }
-
- head = head.wrapping_add(1 << SHIFT);
- }
-
- // Deallocate the last remaining block.
- drop(Box::from_raw(block));
- }
- }
-}
-
-impl<T> fmt::Debug for Injector<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.pad("Worker { .. }")
- }
-}
-
-/// Possible outcomes of a steal operation.
-///
-/// # Examples
-///
-/// There are lots of ways to chain results of steal operations together:
-///
-/// ```
-/// use crossbeam_deque::Steal::{self, Empty, Retry, Success};
-///
-/// let collect = |v: Vec<Steal<i32>>| v.into_iter().collect::<Steal<i32>>();
-///
-/// assert_eq!(collect(vec![Empty, Empty, Empty]), Empty);
-/// assert_eq!(collect(vec![Empty, Retry, Empty]), Retry);
-/// assert_eq!(collect(vec![Retry, Success(1), Empty]), Success(1));
-///
-/// assert_eq!(collect(vec![Empty, Empty]).or_else(|| Retry), Retry);
-/// assert_eq!(collect(vec![Retry, Empty]).or_else(|| Success(1)), Success(1));
-/// ```
-#[must_use]
-#[derive(PartialEq, Eq, Copy, Clone)]
-pub enum Steal<T> {
- /// The queue was empty at the time of stealing.
- Empty,
-
- /// At least one task was successfully stolen.
- Success(T),
-
- /// The steal operation needs to be retried.
- Retry,
-}
-
-impl<T> Steal<T> {
- /// Returns `true` if the queue was empty at the time of stealing.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Steal::{Empty, Retry, Success};
- ///
- /// assert!(!Success(7).is_empty());
- /// assert!(!Retry::<i32>.is_empty());
- ///
- /// assert!(Empty::<i32>.is_empty());
- /// ```
- pub fn is_empty(&self) -> bool {
- match self {
- Steal::Empty => true,
- _ => false,
- }
- }
-
- /// Returns `true` if at least one task was stolen.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Steal::{Empty, Retry, Success};
- ///
- /// assert!(!Empty::<i32>.is_success());
- /// assert!(!Retry::<i32>.is_success());
- ///
- /// assert!(Success(7).is_success());
- /// ```
- pub fn is_success(&self) -> bool {
- match self {
- Steal::Success(_) => true,
- _ => false,
- }
- }
-
- /// Returns `true` if the steal operation needs to be retried.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Steal::{Empty, Retry, Success};
- ///
- /// assert!(!Empty::<i32>.is_retry());
- /// assert!(!Success(7).is_retry());
- ///
- /// assert!(Retry::<i32>.is_retry());
- /// ```
- pub fn is_retry(&self) -> bool {
- match self {
- Steal::Retry => true,
- _ => false,
- }
- }
-
- /// Returns the result of the operation, if successful.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Steal::{Empty, Retry, Success};
- ///
- /// assert_eq!(Empty::<i32>.success(), None);
- /// assert_eq!(Retry::<i32>.success(), None);
- ///
- /// assert_eq!(Success(7).success(), Some(7));
- /// ```
- pub fn success(self) -> Option<T> {
- match self {
- Steal::Success(res) => Some(res),
- _ => None,
- }
- }
-
- /// If no task was stolen, attempts another steal operation.
- ///
- /// Returns this steal result if it is `Success`. Otherwise, closure `f` is invoked and then:
- ///
- /// * If the second steal resulted in `Success`, it is returned.
- /// * If both steals were unsuccessful but any resulted in `Retry`, then `Retry` is returned.
- /// * If both resulted in `None`, then `None` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use crossbeam_deque::Steal::{Empty, Retry, Success};
- ///
- /// assert_eq!(Success(1).or_else(|| Success(2)), Success(1));
- /// assert_eq!(Retry.or_else(|| Success(2)), Success(2));
- ///
- /// assert_eq!(Retry.or_else(|| Empty), Retry::<i32>);
- /// assert_eq!(Empty.or_else(|| Retry), Retry::<i32>);
- ///
- /// assert_eq!(Empty.or_else(|| Empty), Empty::<i32>);
- /// ```
- pub fn or_else<F>(self, f: F) -> Steal<T>
- where
- F: FnOnce() -> Steal<T>,
- {
- match self {
- Steal::Empty => f(),
- Steal::Success(_) => self,
- Steal::Retry => {
- if let Steal::Success(res) = f() {
- Steal::Success(res)
- } else {
- Steal::Retry
- }
- }
- }
- }
-}
-
-impl<T> fmt::Debug for Steal<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- match self {
- Steal::Empty => f.pad("Empty"),
- Steal::Success(_) => f.pad("Success(..)"),
- Steal::Retry => f.pad("Retry"),
- }
- }
-}
-
-impl<T> FromIterator<Steal<T>> for Steal<T> {
- /// Consumes items until a `Success` is found and returns it.
- ///
- /// If no `Success` was found, but there was at least one `Retry`, then returns `Retry`.
- /// Otherwise, `Empty` is returned.
- fn from_iter<I>(iter: I) -> Steal<T>
- where
- I: IntoIterator<Item = Steal<T>>,
- {
- let mut retry = false;
- for s in iter {
- match &s {
- Steal::Empty => {}
- Steal::Success(_) => return s,
- Steal::Retry => retry = true,
- }
- }
-
- if retry {
- Steal::Retry
- } else {
- Steal::Empty
- }
- }
-}