diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/half/src/bfloat.rs | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/half/src/bfloat.rs')
-rw-r--r-- | vendor/half/src/bfloat.rs | 1841 |
1 files changed, 0 insertions, 1841 deletions
diff --git a/vendor/half/src/bfloat.rs b/vendor/half/src/bfloat.rs deleted file mode 100644 index 8b23863..0000000 --- a/vendor/half/src/bfloat.rs +++ /dev/null @@ -1,1841 +0,0 @@ -#[cfg(feature = "bytemuck")] -use bytemuck::{Pod, Zeroable}; -use core::{ - cmp::Ordering, - iter::{Product, Sum}, - num::FpCategory, - ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, -}; -#[cfg(not(target_arch = "spirv"))] -use core::{ - fmt::{ - Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, - }, - num::ParseFloatError, - str::FromStr, -}; -#[cfg(feature = "serde")] -use serde::{Deserialize, Serialize}; -#[cfg(feature = "zerocopy")] -use zerocopy::{AsBytes, FromBytes}; - -pub(crate) mod convert; - -/// A 16-bit floating point type implementing the [`bfloat16`] format. -/// -/// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard -/// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by -/// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of -/// 11 bits, [`bf16`] has a precision of only 8 bits. -/// -/// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for -/// compact storage rather than calculations. Operations should be performed with [`f32`] or -/// higher-precision types and converted to/from [`bf16`] as necessary. -/// -/// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format -#[allow(non_camel_case_types)] -#[derive(Clone, Copy, Default)] -#[repr(transparent)] -#[cfg_attr(feature = "serde", derive(Serialize))] -#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] -#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))] -pub struct bf16(u16); - -impl bf16 { - /// Constructs a [`bf16`] value from the raw bits. - #[inline] - #[must_use] - pub const fn from_bits(bits: u16) -> bf16 { - bf16(bits) - } - - /// Constructs a [`bf16`] value from a 32-bit floating point value. - /// - /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. - /// Subnormal values that are too tiny to be represented will result in ±0. All other values - /// are truncated and rounded to the nearest representable value. - #[inline] - #[must_use] - pub fn from_f32(value: f32) -> bf16 { - Self::from_f32_const(value) - } - - /// Constructs a [`bf16`] value from a 32-bit floating point value. - /// - /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware - /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred - /// in any non-`const` context. - /// - /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved. - /// Subnormal values that are too tiny to be represented will result in ±0. All other values - /// are truncated and rounded to the nearest representable value. - #[inline] - #[must_use] - pub const fn from_f32_const(value: f32) -> bf16 { - bf16(convert::f32_to_bf16(value)) - } - - /// Constructs a [`bf16`] value from a 64-bit floating point value. - /// - /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. - /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that - /// underflow the minimum exponent will result in subnormals or ±0. All other values are - /// truncated and rounded to the nearest representable value. - #[inline] - #[must_use] - pub fn from_f64(value: f64) -> bf16 { - Self::from_f64_const(value) - } - - /// Constructs a [`bf16`] value from a 64-bit floating point value. - /// - /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware - /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred - /// in any non-`const` context. - /// - /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved. - /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that - /// underflow the minimum exponent will result in subnormals or ±0. All other values are - /// truncated and rounded to the nearest representable value. - #[inline] - #[must_use] - pub const fn from_f64_const(value: f64) -> bf16 { - bf16(convert::f64_to_bf16(value)) - } - - /// Converts a [`bf16`] into the underlying bit representation. - #[inline] - #[must_use] - pub const fn to_bits(self) -> u16 { - self.0 - } - - /// Returns the memory representation of the underlying bit representation as a byte array in - /// little-endian byte order. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// let bytes = bf16::from_f32(12.5).to_le_bytes(); - /// assert_eq!(bytes, [0x48, 0x41]); - /// ``` - #[inline] - #[must_use] - pub const fn to_le_bytes(self) -> [u8; 2] { - self.0.to_le_bytes() - } - - /// Returns the memory representation of the underlying bit representation as a byte array in - /// big-endian (network) byte order. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// let bytes = bf16::from_f32(12.5).to_be_bytes(); - /// assert_eq!(bytes, [0x41, 0x48]); - /// ``` - #[inline] - #[must_use] - pub const fn to_be_bytes(self) -> [u8; 2] { - self.0.to_be_bytes() - } - - /// Returns the memory representation of the underlying bit representation as a byte array in - /// native byte order. - /// - /// As the target platform's native endianness is used, portable code should use - /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate, - /// instead. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// let bytes = bf16::from_f32(12.5).to_ne_bytes(); - /// assert_eq!(bytes, if cfg!(target_endian = "big") { - /// [0x41, 0x48] - /// } else { - /// [0x48, 0x41] - /// }); - /// ``` - #[inline] - #[must_use] - pub const fn to_ne_bytes(self) -> [u8; 2] { - self.0.to_ne_bytes() - } - - /// Creates a floating point value from its representation as a byte array in little endian. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// let value = bf16::from_le_bytes([0x48, 0x41]); - /// assert_eq!(value, bf16::from_f32(12.5)); - /// ``` - #[inline] - #[must_use] - pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 { - bf16::from_bits(u16::from_le_bytes(bytes)) - } - - /// Creates a floating point value from its representation as a byte array in big endian. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// let value = bf16::from_be_bytes([0x41, 0x48]); - /// assert_eq!(value, bf16::from_f32(12.5)); - /// ``` - #[inline] - #[must_use] - pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 { - bf16::from_bits(u16::from_be_bytes(bytes)) - } - - /// Creates a floating point value from its representation as a byte array in native endian. - /// - /// As the target platform's native endianness is used, portable code likely wants to use - /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as - /// appropriate instead. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") { - /// [0x41, 0x48] - /// } else { - /// [0x48, 0x41] - /// }); - /// assert_eq!(value, bf16::from_f32(12.5)); - /// ``` - #[inline] - #[must_use] - pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 { - bf16::from_bits(u16::from_ne_bytes(bytes)) - } - - /// Converts a [`bf16`] value into an [`f32`] value. - /// - /// This conversion is lossless as all values can be represented exactly in [`f32`]. - #[inline] - #[must_use] - pub fn to_f32(self) -> f32 { - self.to_f32_const() - } - - /// Converts a [`bf16`] value into an [`f32`] value. - /// - /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware - /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred - /// in any non-`const` context. - /// - /// This conversion is lossless as all values can be represented exactly in [`f32`]. - #[inline] - #[must_use] - pub const fn to_f32_const(self) -> f32 { - convert::bf16_to_f32(self.0) - } - - /// Converts a [`bf16`] value into an [`f64`] value. - /// - /// This conversion is lossless as all values can be represented exactly in [`f64`]. - #[inline] - #[must_use] - pub fn to_f64(self) -> f64 { - self.to_f64_const() - } - - /// Converts a [`bf16`] value into an [`f64`] value. - /// - /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware - /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred - /// in any non-`const` context. - /// - /// This conversion is lossless as all values can be represented exactly in [`f64`]. - #[inline] - #[must_use] - pub const fn to_f64_const(self) -> f64 { - convert::bf16_to_f64(self.0) - } - - /// Returns `true` if this value is NaN and `false` otherwise. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let nan = bf16::NAN; - /// let f = bf16::from_f32(7.0_f32); - /// - /// assert!(nan.is_nan()); - /// assert!(!f.is_nan()); - /// ``` - #[inline] - #[must_use] - pub const fn is_nan(self) -> bool { - self.0 & 0x7FFFu16 > 0x7F80u16 - } - - /// Returns `true` if this value is ±∞ and `false` otherwise. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let f = bf16::from_f32(7.0f32); - /// let inf = bf16::INFINITY; - /// let neg_inf = bf16::NEG_INFINITY; - /// let nan = bf16::NAN; - /// - /// assert!(!f.is_infinite()); - /// assert!(!nan.is_infinite()); - /// - /// assert!(inf.is_infinite()); - /// assert!(neg_inf.is_infinite()); - /// ``` - #[inline] - #[must_use] - pub const fn is_infinite(self) -> bool { - self.0 & 0x7FFFu16 == 0x7F80u16 - } - - /// Returns `true` if this number is neither infinite nor NaN. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let f = bf16::from_f32(7.0f32); - /// let inf = bf16::INFINITY; - /// let neg_inf = bf16::NEG_INFINITY; - /// let nan = bf16::NAN; - /// - /// assert!(f.is_finite()); - /// - /// assert!(!nan.is_finite()); - /// assert!(!inf.is_finite()); - /// assert!(!neg_inf.is_finite()); - /// ``` - #[inline] - #[must_use] - pub const fn is_finite(self) -> bool { - self.0 & 0x7F80u16 != 0x7F80u16 - } - - /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let min = bf16::MIN_POSITIVE; - /// let max = bf16::MAX; - /// let lower_than_min = bf16::from_f32(1.0e-39_f32); - /// let zero = bf16::from_f32(0.0_f32); - /// - /// assert!(min.is_normal()); - /// assert!(max.is_normal()); - /// - /// assert!(!zero.is_normal()); - /// assert!(!bf16::NAN.is_normal()); - /// assert!(!bf16::INFINITY.is_normal()); - /// // Values between 0 and `min` are subnormal. - /// assert!(!lower_than_min.is_normal()); - /// ``` - #[inline] - #[must_use] - pub const fn is_normal(self) -> bool { - let exp = self.0 & 0x7F80u16; - exp != 0x7F80u16 && exp != 0 - } - - /// Returns the floating point category of the number. - /// - /// If only one property is going to be tested, it is generally faster to use the specific - /// predicate instead. - /// - /// # Examples - /// - /// ```rust - /// use std::num::FpCategory; - /// # use half::prelude::*; - /// - /// let num = bf16::from_f32(12.4_f32); - /// let inf = bf16::INFINITY; - /// - /// assert_eq!(num.classify(), FpCategory::Normal); - /// assert_eq!(inf.classify(), FpCategory::Infinite); - /// ``` - #[must_use] - pub const fn classify(self) -> FpCategory { - let exp = self.0 & 0x7F80u16; - let man = self.0 & 0x007Fu16; - match (exp, man) { - (0, 0) => FpCategory::Zero, - (0, _) => FpCategory::Subnormal, - (0x7F80u16, 0) => FpCategory::Infinite, - (0x7F80u16, _) => FpCategory::Nan, - _ => FpCategory::Normal, - } - } - - /// Returns a number that represents the sign of `self`. - /// - /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY] - /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY] - /// * [`NAN`][bf16::NAN] if the number is NaN - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let f = bf16::from_f32(3.5_f32); - /// - /// assert_eq!(f.signum(), bf16::from_f32(1.0)); - /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0)); - /// - /// assert!(bf16::NAN.signum().is_nan()); - /// ``` - #[must_use] - pub const fn signum(self) -> bf16 { - if self.is_nan() { - self - } else if self.0 & 0x8000u16 != 0 { - Self::NEG_ONE - } else { - Self::ONE - } - } - - /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a - /// positive sign bit and +∞. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let nan = bf16::NAN; - /// let f = bf16::from_f32(7.0_f32); - /// let g = bf16::from_f32(-7.0_f32); - /// - /// assert!(f.is_sign_positive()); - /// assert!(!g.is_sign_positive()); - /// // NaN can be either positive or negative - /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); - /// ``` - #[inline] - #[must_use] - pub const fn is_sign_positive(self) -> bool { - self.0 & 0x8000u16 == 0 - } - - /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a - /// negative sign bit and −∞. - /// - /// # Examples - /// - /// ```rust - /// # use half::prelude::*; - /// - /// let nan = bf16::NAN; - /// let f = bf16::from_f32(7.0f32); - /// let g = bf16::from_f32(-7.0f32); - /// - /// assert!(!f.is_sign_negative()); - /// assert!(g.is_sign_negative()); - /// // NaN can be either positive or negative - /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); - /// ``` - #[inline] - #[must_use] - pub const fn is_sign_negative(self) -> bool { - self.0 & 0x8000u16 != 0 - } - - /// Returns a number composed of the magnitude of `self` and the sign of `sign`. - /// - /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. - /// If `self` is NaN, then NaN with the sign of `sign` is returned. - /// - /// # Examples - /// - /// ``` - /// # use half::prelude::*; - /// let f = bf16::from_f32(3.5); - /// - /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); - /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); - /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); - /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); - /// - /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan()); - /// ``` - #[inline] - #[must_use] - pub const fn copysign(self, sign: bf16) -> bf16 { - bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) - } - - /// Returns the maximum of the two numbers. - /// - /// If one of the arguments is NaN, then the other argument is returned. - /// - /// # Examples - /// - /// ``` - /// # use half::prelude::*; - /// let x = bf16::from_f32(1.0); - /// let y = bf16::from_f32(2.0); - /// - /// assert_eq!(x.max(y), y); - /// ``` - #[inline] - #[must_use] - pub fn max(self, other: bf16) -> bf16 { - if other > self && !other.is_nan() { - other - } else { - self - } - } - - /// Returns the minimum of the two numbers. - /// - /// If one of the arguments is NaN, then the other argument is returned. - /// - /// # Examples - /// - /// ``` - /// # use half::prelude::*; - /// let x = bf16::from_f32(1.0); - /// let y = bf16::from_f32(2.0); - /// - /// assert_eq!(x.min(y), x); - /// ``` - #[inline] - #[must_use] - pub fn min(self, other: bf16) -> bf16 { - if other < self && !other.is_nan() { - other - } else { - self - } - } - - /// Restrict a value to a certain interval unless it is NaN. - /// - /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. - /// Otherwise this returns `self`. - /// - /// Note that this function returns NaN if the initial value was NaN as well. - /// - /// # Panics - /// Panics if `min > max`, `min` is NaN, or `max` is NaN. - /// - /// # Examples - /// - /// ``` - /// # use half::prelude::*; - /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0)); - /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0)); - /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0)); - /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan()); - /// ``` - #[inline] - #[must_use] - pub fn clamp(self, min: bf16, max: bf16) -> bf16 { - assert!(min <= max); - let mut x = self; - if x < min { - x = min; - } - if x > max { - x = max; - } - x - } - - /// Returns the ordering between `self` and `other`. - /// - /// Unlike the standard partial comparison between floating point numbers, - /// this comparison always produces an ordering in accordance to - /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) - /// floating point standard. The values are ordered in the following sequence: - /// - /// - negative quiet NaN - /// - negative signaling NaN - /// - negative infinity - /// - negative numbers - /// - negative subnormal numbers - /// - negative zero - /// - positive zero - /// - positive subnormal numbers - /// - positive numbers - /// - positive infinity - /// - positive signaling NaN - /// - positive quiet NaN. - /// - /// The ordering established by this function does not always agree with the - /// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example, - /// they consider negative and positive zero equal, while `total_cmp` - /// doesn't. - /// - /// The interpretation of the signaling NaN bit follows the definition in - /// the IEEE 754 standard, which may not match the interpretation by some of - /// the older, non-conformant (e.g. MIPS) hardware implementations. - /// - /// # Examples - /// ``` - /// # use half::bf16; - /// let mut v: Vec<bf16> = vec![]; - /// v.push(bf16::ONE); - /// v.push(bf16::INFINITY); - /// v.push(bf16::NEG_INFINITY); - /// v.push(bf16::NAN); - /// v.push(bf16::MAX_SUBNORMAL); - /// v.push(-bf16::MAX_SUBNORMAL); - /// v.push(bf16::ZERO); - /// v.push(bf16::NEG_ZERO); - /// v.push(bf16::NEG_ONE); - /// v.push(bf16::MIN_POSITIVE); - /// - /// v.sort_by(|a, b| a.total_cmp(&b)); - /// - /// assert!(v - /// .into_iter() - /// .zip( - /// [ - /// bf16::NEG_INFINITY, - /// bf16::NEG_ONE, - /// -bf16::MAX_SUBNORMAL, - /// bf16::NEG_ZERO, - /// bf16::ZERO, - /// bf16::MAX_SUBNORMAL, - /// bf16::MIN_POSITIVE, - /// bf16::ONE, - /// bf16::INFINITY, - /// bf16::NAN - /// ] - /// .iter() - /// ) - /// .all(|(a, b)| a.to_bits() == b.to_bits())); - /// ``` - // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp - #[inline] - #[must_use] - pub fn total_cmp(&self, other: &Self) -> Ordering { - let mut left = self.to_bits() as i16; - let mut right = other.to_bits() as i16; - left ^= (((left >> 15) as u16) >> 1) as i16; - right ^= (((right >> 15) as u16) >> 1) as i16; - left.cmp(&right) - } - - /// Alternate serialize adapter for serializing as a float. - /// - /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize - /// implementation that serializes as an [`f32`] value. It is designed for use with - /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by - /// the default deserialize implementation. - /// - /// # Examples - /// - /// A demonstration on how to use this adapater: - /// - /// ``` - /// use serde::{Serialize, Deserialize}; - /// use half::bf16; - /// - /// #[derive(Serialize, Deserialize)] - /// struct MyStruct { - /// #[serde(serialize_with = "bf16::serialize_as_f32")] - /// value: bf16 // Will be serialized as f32 instead of u16 - /// } - /// ``` - #[cfg(feature = "serde")] - pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { - serializer.serialize_f32(self.to_f32()) - } - - /// Alternate serialize adapter for serializing as a string. - /// - /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize - /// implementation that serializes as a string value. It is designed for use with - /// `serialize_with` serde attributes. Deserialization from string values is already supported - /// by the default deserialize implementation. - /// - /// # Examples - /// - /// A demonstration on how to use this adapater: - /// - /// ``` - /// use serde::{Serialize, Deserialize}; - /// use half::bf16; - /// - /// #[derive(Serialize, Deserialize)] - /// struct MyStruct { - /// #[serde(serialize_with = "bf16::serialize_as_string")] - /// value: bf16 // Will be serialized as a string instead of u16 - /// } - /// ``` - #[cfg(feature = "serde")] - pub fn serialize_as_string<S: serde::Serializer>( - &self, - serializer: S, - ) -> Result<S::Ok, S::Error> { - serializer.serialize_str(&self.to_string()) - } - - /// Approximate number of [`bf16`] significant digits in base 10 - pub const DIGITS: u32 = 2; - /// [`bf16`] - /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value - /// - /// This is the difference between 1.0 and the next largest representable number. - pub const EPSILON: bf16 = bf16(0x3C00u16); - /// [`bf16`] positive Infinity (+∞) - pub const INFINITY: bf16 = bf16(0x7F80u16); - /// Number of [`bf16`] significant digits in base 2 - pub const MANTISSA_DIGITS: u32 = 8; - /// Largest finite [`bf16`] value - pub const MAX: bf16 = bf16(0x7F7F); - /// Maximum possible [`bf16`] power of 10 exponent - pub const MAX_10_EXP: i32 = 38; - /// Maximum possible [`bf16`] power of 2 exponent - pub const MAX_EXP: i32 = 128; - /// Smallest finite [`bf16`] value - pub const MIN: bf16 = bf16(0xFF7F); - /// Minimum possible normal [`bf16`] power of 10 exponent - pub const MIN_10_EXP: i32 = -37; - /// One greater than the minimum possible normal [`bf16`] power of 2 exponent - pub const MIN_EXP: i32 = -125; - /// Smallest positive normal [`bf16`] value - pub const MIN_POSITIVE: bf16 = bf16(0x0080u16); - /// [`bf16`] Not a Number (NaN) - pub const NAN: bf16 = bf16(0x7FC0u16); - /// [`bf16`] negative infinity (-∞). - pub const NEG_INFINITY: bf16 = bf16(0xFF80u16); - /// The radix or base of the internal representation of [`bf16`] - pub const RADIX: u32 = 2; - - /// Minimum positive subnormal [`bf16`] value - pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16); - /// Maximum subnormal [`bf16`] value - pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16); - - /// [`bf16`] 1 - pub const ONE: bf16 = bf16(0x3F80u16); - /// [`bf16`] 0 - pub const ZERO: bf16 = bf16(0x0000u16); - /// [`bf16`] -0 - pub const NEG_ZERO: bf16 = bf16(0x8000u16); - /// [`bf16`] -1 - pub const NEG_ONE: bf16 = bf16(0xBF80u16); - - /// [`bf16`] Euler's number (ℯ) - pub const E: bf16 = bf16(0x402Eu16); - /// [`bf16`] Archimedes' constant (π) - pub const PI: bf16 = bf16(0x4049u16); - /// [`bf16`] 1/π - pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16); - /// [`bf16`] 1/√2 - pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16); - /// [`bf16`] 2/π - pub const FRAC_2_PI: bf16 = bf16(0x3F23u16); - /// [`bf16`] 2/√π - pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16); - /// [`bf16`] π/2 - pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16); - /// [`bf16`] π/3 - pub const FRAC_PI_3: bf16 = bf16(0x3F86u16); - /// [`bf16`] π/4 - pub const FRAC_PI_4: bf16 = bf16(0x3F49u16); - /// [`bf16`] π/6 - pub const FRAC_PI_6: bf16 = bf16(0x3F06u16); - /// [`bf16`] π/8 - pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16); - /// [`bf16`] 𝗅𝗇 10 - pub const LN_10: bf16 = bf16(0x4013u16); - /// [`bf16`] 𝗅𝗇 2 - pub const LN_2: bf16 = bf16(0x3F31u16); - /// [`bf16`] 𝗅𝗈𝗀₁₀ℯ - pub const LOG10_E: bf16 = bf16(0x3EDEu16); - /// [`bf16`] 𝗅𝗈𝗀₁₀2 - pub const LOG10_2: bf16 = bf16(0x3E9Au16); - /// [`bf16`] 𝗅𝗈𝗀₂ℯ - pub const LOG2_E: bf16 = bf16(0x3FB9u16); - /// [`bf16`] 𝗅𝗈𝗀₂10 - pub const LOG2_10: bf16 = bf16(0x4055u16); - /// [`bf16`] √2 - pub const SQRT_2: bf16 = bf16(0x3FB5u16); -} - -impl From<bf16> for f32 { - #[inline] - fn from(x: bf16) -> f32 { - x.to_f32() - } -} - -impl From<bf16> for f64 { - #[inline] - fn from(x: bf16) -> f64 { - x.to_f64() - } -} - -impl From<i8> for bf16 { - #[inline] - fn from(x: i8) -> bf16 { - // Convert to f32, then to bf16 - bf16::from_f32(f32::from(x)) - } -} - -impl From<u8> for bf16 { - #[inline] - fn from(x: u8) -> bf16 { - // Convert to f32, then to f16 - bf16::from_f32(f32::from(x)) - } -} - -impl PartialEq for bf16 { - fn eq(&self, other: &bf16) -> bool { - if self.is_nan() || other.is_nan() { - false - } else { - (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) - } - } -} - -impl PartialOrd for bf16 { - fn partial_cmp(&self, other: &bf16) -> Option<Ordering> { - if self.is_nan() || other.is_nan() { - None - } else { - let neg = self.0 & 0x8000u16 != 0; - let other_neg = other.0 & 0x8000u16 != 0; - match (neg, other_neg) { - (false, false) => Some(self.0.cmp(&other.0)), - (false, true) => { - if (self.0 | other.0) & 0x7FFFu16 == 0 { - Some(Ordering::Equal) - } else { - Some(Ordering::Greater) - } - } - (true, false) => { - if (self.0 | other.0) & 0x7FFFu16 == 0 { - Some(Ordering::Equal) - } else { - Some(Ordering::Less) - } - } - (true, true) => Some(other.0.cmp(&self.0)), - } - } - } - - fn lt(&self, other: &bf16) -> bool { - if self.is_nan() || other.is_nan() { - false - } else { - let neg = self.0 & 0x8000u16 != 0; - let other_neg = other.0 & 0x8000u16 != 0; - match (neg, other_neg) { - (false, false) => self.0 < other.0, - (false, true) => false, - (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, - (true, true) => self.0 > other.0, - } - } - } - - fn le(&self, other: &bf16) -> bool { - if self.is_nan() || other.is_nan() { - false - } else { - let neg = self.0 & 0x8000u16 != 0; - let other_neg = other.0 & 0x8000u16 != 0; - match (neg, other_neg) { - (false, false) => self.0 <= other.0, - (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, - (true, false) => true, - (true, true) => self.0 >= other.0, - } - } - } - - fn gt(&self, other: &bf16) -> bool { - if self.is_nan() || other.is_nan() { - false - } else { - let neg = self.0 & 0x8000u16 != 0; - let other_neg = other.0 & 0x8000u16 != 0; - match (neg, other_neg) { - (false, false) => self.0 > other.0, - (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, - (true, false) => false, - (true, true) => self.0 < other.0, - } - } - } - - fn ge(&self, other: &bf16) -> bool { - if self.is_nan() || other.is_nan() { - false - } else { - let neg = self.0 & 0x8000u16 != 0; - let other_neg = other.0 & 0x8000u16 != 0; - match (neg, other_neg) { - (false, false) => self.0 >= other.0, - (false, true) => true, - (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, - (true, true) => self.0 <= other.0, - } - } - } -} - -#[cfg(not(target_arch = "spirv"))] -impl FromStr for bf16 { - type Err = ParseFloatError; - fn from_str(src: &str) -> Result<bf16, ParseFloatError> { - f32::from_str(src).map(bf16::from_f32) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl Debug for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:?}", self.to_f32()) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl Display for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{}", self.to_f32()) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl LowerExp for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:e}", self.to_f32()) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl UpperExp for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:E}", self.to_f32()) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl Binary for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:b}", self.0) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl Octal for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:o}", self.0) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl LowerHex for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:x}", self.0) - } -} - -#[cfg(not(target_arch = "spirv"))] -impl UpperHex for bf16 { - fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { - write!(f, "{:X}", self.0) - } -} - -impl Neg for bf16 { - type Output = Self; - - fn neg(self) -> Self::Output { - Self(self.0 ^ 0x8000) - } -} - -impl Neg for &bf16 { - type Output = <bf16 as Neg>::Output; - - #[inline] - fn neg(self) -> Self::Output { - Neg::neg(*self) - } -} - -impl Add for bf16 { - type Output = Self; - - fn add(self, rhs: Self) -> Self::Output { - Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) - } -} - -impl Add<&bf16> for bf16 { - type Output = <bf16 as Add<bf16>>::Output; - - #[inline] - fn add(self, rhs: &bf16) -> Self::Output { - self.add(*rhs) - } -} - -impl Add<&bf16> for &bf16 { - type Output = <bf16 as Add<bf16>>::Output; - - #[inline] - fn add(self, rhs: &bf16) -> Self::Output { - (*self).add(*rhs) - } -} - -impl Add<bf16> for &bf16 { - type Output = <bf16 as Add<bf16>>::Output; - - #[inline] - fn add(self, rhs: bf16) -> Self::Output { - (*self).add(rhs) - } -} - -impl AddAssign for bf16 { - #[inline] - fn add_assign(&mut self, rhs: Self) { - *self = (*self).add(rhs); - } -} - -impl AddAssign<&bf16> for bf16 { - #[inline] - fn add_assign(&mut self, rhs: &bf16) { - *self = (*self).add(rhs); - } -} - -impl Sub for bf16 { - type Output = Self; - - fn sub(self, rhs: Self) -> Self::Output { - Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) - } -} - -impl Sub<&bf16> for bf16 { - type Output = <bf16 as Sub<bf16>>::Output; - - #[inline] - fn sub(self, rhs: &bf16) -> Self::Output { - self.sub(*rhs) - } -} - -impl Sub<&bf16> for &bf16 { - type Output = <bf16 as Sub<bf16>>::Output; - - #[inline] - fn sub(self, rhs: &bf16) -> Self::Output { - (*self).sub(*rhs) - } -} - -impl Sub<bf16> for &bf16 { - type Output = <bf16 as Sub<bf16>>::Output; - - #[inline] - fn sub(self, rhs: bf16) -> Self::Output { - (*self).sub(rhs) - } -} - -impl SubAssign for bf16 { - #[inline] - fn sub_assign(&mut self, rhs: Self) { - *self = (*self).sub(rhs); - } -} - -impl SubAssign<&bf16> for bf16 { - #[inline] - fn sub_assign(&mut self, rhs: &bf16) { - *self = (*self).sub(rhs); - } -} - -impl Mul for bf16 { - type Output = Self; - - fn mul(self, rhs: Self) -> Self::Output { - Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) - } -} - -impl Mul<&bf16> for bf16 { - type Output = <bf16 as Mul<bf16>>::Output; - - #[inline] - fn mul(self, rhs: &bf16) -> Self::Output { - self.mul(*rhs) - } -} - -impl Mul<&bf16> for &bf16 { - type Output = <bf16 as Mul<bf16>>::Output; - - #[inline] - fn mul(self, rhs: &bf16) -> Self::Output { - (*self).mul(*rhs) - } -} - -impl Mul<bf16> for &bf16 { - type Output = <bf16 as Mul<bf16>>::Output; - - #[inline] - fn mul(self, rhs: bf16) -> Self::Output { - (*self).mul(rhs) - } -} - -impl MulAssign for bf16 { - #[inline] - fn mul_assign(&mut self, rhs: Self) { - *self = (*self).mul(rhs); - } -} - -impl MulAssign<&bf16> for bf16 { - #[inline] - fn mul_assign(&mut self, rhs: &bf16) { - *self = (*self).mul(rhs); - } -} - -impl Div for bf16 { - type Output = Self; - - fn div(self, rhs: Self) -> Self::Output { - Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) - } -} - -impl Div<&bf16> for bf16 { - type Output = <bf16 as Div<bf16>>::Output; - - #[inline] - fn div(self, rhs: &bf16) -> Self::Output { - self.div(*rhs) - } -} - -impl Div<&bf16> for &bf16 { - type Output = <bf16 as Div<bf16>>::Output; - - #[inline] - fn div(self, rhs: &bf16) -> Self::Output { - (*self).div(*rhs) - } -} - -impl Div<bf16> for &bf16 { - type Output = <bf16 as Div<bf16>>::Output; - - #[inline] - fn div(self, rhs: bf16) -> Self::Output { - (*self).div(rhs) - } -} - -impl DivAssign for bf16 { - #[inline] - fn div_assign(&mut self, rhs: Self) { - *self = (*self).div(rhs); - } -} - -impl DivAssign<&bf16> for bf16 { - #[inline] - fn div_assign(&mut self, rhs: &bf16) { - *self = (*self).div(rhs); - } -} - -impl Rem for bf16 { - type Output = Self; - - fn rem(self, rhs: Self) -> Self::Output { - Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) - } -} - -impl Rem<&bf16> for bf16 { - type Output = <bf16 as Rem<bf16>>::Output; - - #[inline] - fn rem(self, rhs: &bf16) -> Self::Output { - self.rem(*rhs) - } -} - -impl Rem<&bf16> for &bf16 { - type Output = <bf16 as Rem<bf16>>::Output; - - #[inline] - fn rem(self, rhs: &bf16) -> Self::Output { - (*self).rem(*rhs) - } -} - -impl Rem<bf16> for &bf16 { - type Output = <bf16 as Rem<bf16>>::Output; - - #[inline] - fn rem(self, rhs: bf16) -> Self::Output { - (*self).rem(rhs) - } -} - -impl RemAssign for bf16 { - #[inline] - fn rem_assign(&mut self, rhs: Self) { - *self = (*self).rem(rhs); - } -} - -impl RemAssign<&bf16> for bf16 { - #[inline] - fn rem_assign(&mut self, rhs: &bf16) { - *self = (*self).rem(rhs); - } -} - -impl Product for bf16 { - #[inline] - fn product<I: Iterator<Item = Self>>(iter: I) -> Self { - bf16::from_f32(iter.map(|f| f.to_f32()).product()) - } -} - -impl<'a> Product<&'a bf16> for bf16 { - #[inline] - fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { - bf16::from_f32(iter.map(|f| f.to_f32()).product()) - } -} - -impl Sum for bf16 { - #[inline] - fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { - bf16::from_f32(iter.map(|f| f.to_f32()).sum()) - } -} - -impl<'a> Sum<&'a bf16> for bf16 { - #[inline] - fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { - bf16::from_f32(iter.map(|f| f.to_f32()).product()) - } -} - -#[cfg(feature = "serde")] -struct Visitor; - -#[cfg(feature = "serde")] -impl<'de> Deserialize<'de> for bf16 { - fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error> - where - D: serde::de::Deserializer<'de>, - { - deserializer.deserialize_newtype_struct("bf16", Visitor) - } -} - -#[cfg(feature = "serde")] -impl<'de> serde::de::Visitor<'de> for Visitor { - type Value = bf16; - - fn expecting(&self, formatter: &mut alloc::fmt::Formatter) -> alloc::fmt::Result { - write!(formatter, "tuple struct bf16") - } - - fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> - where - D: serde::Deserializer<'de>, - { - Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?)) - } - - fn visit_str<E>(self, v: &str) -> Result<Self::Value, E> - where - E: serde::de::Error, - { - v.parse().map_err(|_| { - serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string") - }) - } - - fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E> - where - E: serde::de::Error, - { - Ok(bf16::from_f32(v)) - } - - fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E> - where - E: serde::de::Error, - { - Ok(bf16::from_f64(v)) - } -} - -#[allow( - clippy::cognitive_complexity, - clippy::float_cmp, - clippy::neg_cmp_op_on_partial_ord -)] -#[cfg(test)] -mod test { - use super::*; - use core::cmp::Ordering; - #[cfg(feature = "num-traits")] - use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; - use quickcheck_macros::quickcheck; - - #[cfg(feature = "num-traits")] - #[test] - fn as_primitive() { - let two = bf16::from_f32(2.0); - assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two); - assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2); - - assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two); - assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0); - - assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two); - assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0); - } - - #[cfg(feature = "num-traits")] - #[test] - fn to_primitive() { - let two = bf16::from_f32(2.0); - assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); - assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); - assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); - } - - #[cfg(feature = "num-traits")] - #[test] - fn from_primitive() { - let two = bf16::from_f32(2.0); - assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two); - assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two); - assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two); - } - - #[test] - fn test_bf16_consts_from_f32() { - let one = bf16::from_f32(1.0); - let zero = bf16::from_f32(0.0); - let neg_zero = bf16::from_f32(-0.0); - let neg_one = bf16::from_f32(-1.0); - let inf = bf16::from_f32(core::f32::INFINITY); - let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY); - let nan = bf16::from_f32(core::f32::NAN); - - assert_eq!(bf16::ONE, one); - assert_eq!(bf16::ZERO, zero); - assert!(zero.is_sign_positive()); - assert_eq!(bf16::NEG_ZERO, neg_zero); - assert!(neg_zero.is_sign_negative()); - assert_eq!(bf16::NEG_ONE, neg_one); - assert!(neg_one.is_sign_negative()); - assert_eq!(bf16::INFINITY, inf); - assert_eq!(bf16::NEG_INFINITY, neg_inf); - assert!(nan.is_nan()); - assert!(bf16::NAN.is_nan()); - - let e = bf16::from_f32(core::f32::consts::E); - let pi = bf16::from_f32(core::f32::consts::PI); - let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI); - let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2); - let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI); - let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); - let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2); - let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3); - let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4); - let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6); - let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8); - let ln_10 = bf16::from_f32(core::f32::consts::LN_10); - let ln_2 = bf16::from_f32(core::f32::consts::LN_2); - let log10_e = bf16::from_f32(core::f32::consts::LOG10_E); - // core::f32::consts::LOG10_2 requires rustc 1.43.0 - let log10_2 = bf16::from_f32(2f32.log10()); - let log2_e = bf16::from_f32(core::f32::consts::LOG2_E); - // core::f32::consts::LOG2_10 requires rustc 1.43.0 - let log2_10 = bf16::from_f32(10f32.log2()); - let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2); - - assert_eq!(bf16::E, e); - assert_eq!(bf16::PI, pi); - assert_eq!(bf16::FRAC_1_PI, frac_1_pi); - assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); - assert_eq!(bf16::FRAC_2_PI, frac_2_pi); - assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); - assert_eq!(bf16::FRAC_PI_2, frac_pi_2); - assert_eq!(bf16::FRAC_PI_3, frac_pi_3); - assert_eq!(bf16::FRAC_PI_4, frac_pi_4); - assert_eq!(bf16::FRAC_PI_6, frac_pi_6); - assert_eq!(bf16::FRAC_PI_8, frac_pi_8); - assert_eq!(bf16::LN_10, ln_10); - assert_eq!(bf16::LN_2, ln_2); - assert_eq!(bf16::LOG10_E, log10_e); - assert_eq!(bf16::LOG10_2, log10_2); - assert_eq!(bf16::LOG2_E, log2_e); - assert_eq!(bf16::LOG2_10, log2_10); - assert_eq!(bf16::SQRT_2, sqrt_2); - } - - #[test] - fn test_bf16_consts_from_f64() { - let one = bf16::from_f64(1.0); - let zero = bf16::from_f64(0.0); - let neg_zero = bf16::from_f64(-0.0); - let inf = bf16::from_f64(core::f64::INFINITY); - let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY); - let nan = bf16::from_f64(core::f64::NAN); - - assert_eq!(bf16::ONE, one); - assert_eq!(bf16::ZERO, zero); - assert_eq!(bf16::NEG_ZERO, neg_zero); - assert_eq!(bf16::INFINITY, inf); - assert_eq!(bf16::NEG_INFINITY, neg_inf); - assert!(nan.is_nan()); - assert!(bf16::NAN.is_nan()); - - let e = bf16::from_f64(core::f64::consts::E); - let pi = bf16::from_f64(core::f64::consts::PI); - let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI); - let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2); - let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI); - let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); - let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2); - let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3); - let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4); - let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6); - let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8); - let ln_10 = bf16::from_f64(core::f64::consts::LN_10); - let ln_2 = bf16::from_f64(core::f64::consts::LN_2); - let log10_e = bf16::from_f64(core::f64::consts::LOG10_E); - // core::f64::consts::LOG10_2 requires rustc 1.43.0 - let log10_2 = bf16::from_f64(2f64.log10()); - let log2_e = bf16::from_f64(core::f64::consts::LOG2_E); - // core::f64::consts::LOG2_10 requires rustc 1.43.0 - let log2_10 = bf16::from_f64(10f64.log2()); - let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2); - - assert_eq!(bf16::E, e); - assert_eq!(bf16::PI, pi); - assert_eq!(bf16::FRAC_1_PI, frac_1_pi); - assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); - assert_eq!(bf16::FRAC_2_PI, frac_2_pi); - assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); - assert_eq!(bf16::FRAC_PI_2, frac_pi_2); - assert_eq!(bf16::FRAC_PI_3, frac_pi_3); - assert_eq!(bf16::FRAC_PI_4, frac_pi_4); - assert_eq!(bf16::FRAC_PI_6, frac_pi_6); - assert_eq!(bf16::FRAC_PI_8, frac_pi_8); - assert_eq!(bf16::LN_10, ln_10); - assert_eq!(bf16::LN_2, ln_2); - assert_eq!(bf16::LOG10_E, log10_e); - assert_eq!(bf16::LOG10_2, log10_2); - assert_eq!(bf16::LOG2_E, log2_e); - assert_eq!(bf16::LOG2_10, log2_10); - assert_eq!(bf16::SQRT_2, sqrt_2); - } - - #[test] - fn test_nan_conversion_to_smaller() { - let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); - let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); - let nan32 = f32::from_bits(0x7F80_0001u32); - let neg_nan32 = f32::from_bits(0xFF80_0001u32); - let nan32_from_64 = nan64 as f32; - let neg_nan32_from_64 = neg_nan64 as f32; - let nan16_from_64 = bf16::from_f64(nan64); - let neg_nan16_from_64 = bf16::from_f64(neg_nan64); - let nan16_from_32 = bf16::from_f32(nan32); - let neg_nan16_from_32 = bf16::from_f32(neg_nan32); - - assert!(nan64.is_nan() && nan64.is_sign_positive()); - assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); - assert!(nan32.is_nan() && nan32.is_sign_positive()); - assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); - assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); - assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); - assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); - assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); - assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); - assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); - } - - #[test] - fn test_nan_conversion_to_larger() { - let nan16 = bf16::from_bits(0x7F81u16); - let neg_nan16 = bf16::from_bits(0xFF81u16); - let nan32 = f32::from_bits(0x7F80_0001u32); - let neg_nan32 = f32::from_bits(0xFF80_0001u32); - let nan32_from_16 = f32::from(nan16); - let neg_nan32_from_16 = f32::from(neg_nan16); - let nan64_from_16 = f64::from(nan16); - let neg_nan64_from_16 = f64::from(neg_nan16); - let nan64_from_32 = f64::from(nan32); - let neg_nan64_from_32 = f64::from(neg_nan32); - - assert!(nan16.is_nan() && nan16.is_sign_positive()); - assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); - assert!(nan32.is_nan() && nan32.is_sign_positive()); - assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); - assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); - assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); - assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); - assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); - assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); - assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); - } - - #[test] - fn test_bf16_to_f32() { - let f = bf16::from_f32(7.0); - assert_eq!(f.to_f32(), 7.0f32); - - // 7.1 is NOT exactly representable in 16-bit, it's rounded - let f = bf16::from_f32(7.1); - let diff = (f.to_f32() - 7.1f32).abs(); - // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 - assert!(diff <= 4.0 * bf16::EPSILON.to_f32()); - - let tiny32 = f32::from_bits(0x0001_0000u32); - assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32); - assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32); - - assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32)); - assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32)); - } - - #[test] - fn test_bf16_to_f64() { - let f = bf16::from_f64(7.0); - assert_eq!(f.to_f64(), 7.0f64); - - // 7.1 is NOT exactly representable in 16-bit, it's rounded - let f = bf16::from_f64(7.1); - let diff = (f.to_f64() - 7.1f64).abs(); - // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 - assert!(diff <= 4.0 * bf16::EPSILON.to_f64()); - - let tiny64 = 2.0f64.powi(-133); - assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64); - assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64); - - assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64)); - assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64)); - } - - #[test] - fn test_comparisons() { - let zero = bf16::from_f64(0.0); - let one = bf16::from_f64(1.0); - let neg_zero = bf16::from_f64(-0.0); - let neg_one = bf16::from_f64(-1.0); - - assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); - assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); - assert!(zero == neg_zero); - assert!(neg_zero == zero); - assert!(!(zero != neg_zero)); - assert!(!(neg_zero != zero)); - assert!(!(zero < neg_zero)); - assert!(!(neg_zero < zero)); - assert!(zero <= neg_zero); - assert!(neg_zero <= zero); - assert!(!(zero > neg_zero)); - assert!(!(neg_zero > zero)); - assert!(zero >= neg_zero); - assert!(neg_zero >= zero); - - assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); - assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); - assert!(!(one == neg_zero)); - assert!(!(neg_zero == one)); - assert!(one != neg_zero); - assert!(neg_zero != one); - assert!(!(one < neg_zero)); - assert!(neg_zero < one); - assert!(!(one <= neg_zero)); - assert!(neg_zero <= one); - assert!(one > neg_zero); - assert!(!(neg_zero > one)); - assert!(one >= neg_zero); - assert!(!(neg_zero >= one)); - - assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); - assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); - assert!(!(one == neg_one)); - assert!(!(neg_one == one)); - assert!(one != neg_one); - assert!(neg_one != one); - assert!(!(one < neg_one)); - assert!(neg_one < one); - assert!(!(one <= neg_one)); - assert!(neg_one <= one); - assert!(one > neg_one); - assert!(!(neg_one > one)); - assert!(one >= neg_one); - assert!(!(neg_one >= one)); - } - - #[test] - #[allow(clippy::erasing_op, clippy::identity_op)] - fn round_to_even_f32() { - // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 - let min_sub = bf16::from_bits(1); - let min_sub_f = (-133f32).exp2(); - assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); - assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); - - // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) - // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) - // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) - assert_eq!( - bf16::from_f32(min_sub_f * 0.49).to_bits(), - min_sub.to_bits() * 0 - ); - assert_eq!( - bf16::from_f32(min_sub_f * 0.50).to_bits(), - min_sub.to_bits() * 0 - ); - assert_eq!( - bf16::from_f32(min_sub_f * 0.51).to_bits(), - min_sub.to_bits() * 1 - ); - - // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) - // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) - // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) - assert_eq!( - bf16::from_f32(min_sub_f * 1.49).to_bits(), - min_sub.to_bits() * 1 - ); - assert_eq!( - bf16::from_f32(min_sub_f * 1.50).to_bits(), - min_sub.to_bits() * 2 - ); - assert_eq!( - bf16::from_f32(min_sub_f * 1.51).to_bits(), - min_sub.to_bits() * 2 - ); - - // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) - // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) - // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) - assert_eq!( - bf16::from_f32(min_sub_f * 2.49).to_bits(), - min_sub.to_bits() * 2 - ); - assert_eq!( - bf16::from_f32(min_sub_f * 2.50).to_bits(), - min_sub.to_bits() * 2 - ); - assert_eq!( - bf16::from_f32(min_sub_f * 2.51).to_bits(), - min_sub.to_bits() * 3 - ); - - assert_eq!( - bf16::from_f32(250.49f32).to_bits(), - bf16::from_f32(250.0).to_bits() - ); - assert_eq!( - bf16::from_f32(250.50f32).to_bits(), - bf16::from_f32(250.0).to_bits() - ); - assert_eq!( - bf16::from_f32(250.51f32).to_bits(), - bf16::from_f32(251.0).to_bits() - ); - assert_eq!( - bf16::from_f32(251.49f32).to_bits(), - bf16::from_f32(251.0).to_bits() - ); - assert_eq!( - bf16::from_f32(251.50f32).to_bits(), - bf16::from_f32(252.0).to_bits() - ); - assert_eq!( - bf16::from_f32(251.51f32).to_bits(), - bf16::from_f32(252.0).to_bits() - ); - assert_eq!( - bf16::from_f32(252.49f32).to_bits(), - bf16::from_f32(252.0).to_bits() - ); - assert_eq!( - bf16::from_f32(252.50f32).to_bits(), - bf16::from_f32(252.0).to_bits() - ); - assert_eq!( - bf16::from_f32(252.51f32).to_bits(), - bf16::from_f32(253.0).to_bits() - ); - } - - #[test] - #[allow(clippy::erasing_op, clippy::identity_op)] - fn round_to_even_f64() { - // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 - let min_sub = bf16::from_bits(1); - let min_sub_f = (-133f64).exp2(); - assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); - assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); - - // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) - // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) - // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) - assert_eq!( - bf16::from_f64(min_sub_f * 0.49).to_bits(), - min_sub.to_bits() * 0 - ); - assert_eq!( - bf16::from_f64(min_sub_f * 0.50).to_bits(), - min_sub.to_bits() * 0 - ); - assert_eq!( - bf16::from_f64(min_sub_f * 0.51).to_bits(), - min_sub.to_bits() * 1 - ); - - // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) - // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) - // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) - assert_eq!( - bf16::from_f64(min_sub_f * 1.49).to_bits(), - min_sub.to_bits() * 1 - ); - assert_eq!( - bf16::from_f64(min_sub_f * 1.50).to_bits(), - min_sub.to_bits() * 2 - ); - assert_eq!( - bf16::from_f64(min_sub_f * 1.51).to_bits(), - min_sub.to_bits() * 2 - ); - - // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) - // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) - // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) - assert_eq!( - bf16::from_f64(min_sub_f * 2.49).to_bits(), - min_sub.to_bits() * 2 - ); - assert_eq!( - bf16::from_f64(min_sub_f * 2.50).to_bits(), - min_sub.to_bits() * 2 - ); - assert_eq!( - bf16::from_f64(min_sub_f * 2.51).to_bits(), - min_sub.to_bits() * 3 - ); - - assert_eq!( - bf16::from_f64(250.49f64).to_bits(), - bf16::from_f64(250.0).to_bits() - ); - assert_eq!( - bf16::from_f64(250.50f64).to_bits(), - bf16::from_f64(250.0).to_bits() - ); - assert_eq!( - bf16::from_f64(250.51f64).to_bits(), - bf16::from_f64(251.0).to_bits() - ); - assert_eq!( - bf16::from_f64(251.49f64).to_bits(), - bf16::from_f64(251.0).to_bits() - ); - assert_eq!( - bf16::from_f64(251.50f64).to_bits(), - bf16::from_f64(252.0).to_bits() - ); - assert_eq!( - bf16::from_f64(251.51f64).to_bits(), - bf16::from_f64(252.0).to_bits() - ); - assert_eq!( - bf16::from_f64(252.49f64).to_bits(), - bf16::from_f64(252.0).to_bits() - ); - assert_eq!( - bf16::from_f64(252.50f64).to_bits(), - bf16::from_f64(252.0).to_bits() - ); - assert_eq!( - bf16::from_f64(252.51f64).to_bits(), - bf16::from_f64(253.0).to_bits() - ); - } - - impl quickcheck::Arbitrary for bf16 { - fn arbitrary(g: &mut quickcheck::Gen) -> Self { - bf16(u16::arbitrary(g)) - } - } - - #[quickcheck] - fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool { - let roundtrip = bf16::from_f32(f.to_f32()); - if f.is_nan() { - roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() - } else { - f.0 == roundtrip.0 - } - } - - #[quickcheck] - fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool { - let roundtrip = bf16::from_f64(f.to_f64()); - if f.is_nan() { - roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() - } else { - f.0 == roundtrip.0 - } - } -} |