aboutsummaryrefslogtreecommitdiff
path: root/vendor/half/src/bfloat.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/half/src/bfloat.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/half/src/bfloat.rs')
-rw-r--r--vendor/half/src/bfloat.rs1841
1 files changed, 0 insertions, 1841 deletions
diff --git a/vendor/half/src/bfloat.rs b/vendor/half/src/bfloat.rs
deleted file mode 100644
index 8b23863..0000000
--- a/vendor/half/src/bfloat.rs
+++ /dev/null
@@ -1,1841 +0,0 @@
-#[cfg(feature = "bytemuck")]
-use bytemuck::{Pod, Zeroable};
-use core::{
- cmp::Ordering,
- iter::{Product, Sum},
- num::FpCategory,
- ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
-};
-#[cfg(not(target_arch = "spirv"))]
-use core::{
- fmt::{
- Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
- },
- num::ParseFloatError,
- str::FromStr,
-};
-#[cfg(feature = "serde")]
-use serde::{Deserialize, Serialize};
-#[cfg(feature = "zerocopy")]
-use zerocopy::{AsBytes, FromBytes};
-
-pub(crate) mod convert;
-
-/// A 16-bit floating point type implementing the [`bfloat16`] format.
-///
-/// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard
-/// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by
-/// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of
-/// 11 bits, [`bf16`] has a precision of only 8 bits.
-///
-/// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for
-/// compact storage rather than calculations. Operations should be performed with [`f32`] or
-/// higher-precision types and converted to/from [`bf16`] as necessary.
-///
-/// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
-#[allow(non_camel_case_types)]
-#[derive(Clone, Copy, Default)]
-#[repr(transparent)]
-#[cfg_attr(feature = "serde", derive(Serialize))]
-#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
-#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
-pub struct bf16(u16);
-
-impl bf16 {
- /// Constructs a [`bf16`] value from the raw bits.
- #[inline]
- #[must_use]
- pub const fn from_bits(bits: u16) -> bf16 {
- bf16(bits)
- }
-
- /// Constructs a [`bf16`] value from a 32-bit floating point value.
- ///
- /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved.
- /// Subnormal values that are too tiny to be represented will result in ±0. All other values
- /// are truncated and rounded to the nearest representable value.
- #[inline]
- #[must_use]
- pub fn from_f32(value: f32) -> bf16 {
- Self::from_f32_const(value)
- }
-
- /// Constructs a [`bf16`] value from a 32-bit floating point value.
- ///
- /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
- /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
- /// in any non-`const` context.
- ///
- /// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved.
- /// Subnormal values that are too tiny to be represented will result in ±0. All other values
- /// are truncated and rounded to the nearest representable value.
- #[inline]
- #[must_use]
- pub const fn from_f32_const(value: f32) -> bf16 {
- bf16(convert::f32_to_bf16(value))
- }
-
- /// Constructs a [`bf16`] value from a 64-bit floating point value.
- ///
- /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved.
- /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that
- /// underflow the minimum exponent will result in subnormals or ±0. All other values are
- /// truncated and rounded to the nearest representable value.
- #[inline]
- #[must_use]
- pub fn from_f64(value: f64) -> bf16 {
- Self::from_f64_const(value)
- }
-
- /// Constructs a [`bf16`] value from a 64-bit floating point value.
- ///
- /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
- /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
- /// in any non-`const` context.
- ///
- /// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved.
- /// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that
- /// underflow the minimum exponent will result in subnormals or ±0. All other values are
- /// truncated and rounded to the nearest representable value.
- #[inline]
- #[must_use]
- pub const fn from_f64_const(value: f64) -> bf16 {
- bf16(convert::f64_to_bf16(value))
- }
-
- /// Converts a [`bf16`] into the underlying bit representation.
- #[inline]
- #[must_use]
- pub const fn to_bits(self) -> u16 {
- self.0
- }
-
- /// Returns the memory representation of the underlying bit representation as a byte array in
- /// little-endian byte order.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- /// let bytes = bf16::from_f32(12.5).to_le_bytes();
- /// assert_eq!(bytes, [0x48, 0x41]);
- /// ```
- #[inline]
- #[must_use]
- pub const fn to_le_bytes(self) -> [u8; 2] {
- self.0.to_le_bytes()
- }
-
- /// Returns the memory representation of the underlying bit representation as a byte array in
- /// big-endian (network) byte order.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- /// let bytes = bf16::from_f32(12.5).to_be_bytes();
- /// assert_eq!(bytes, [0x41, 0x48]);
- /// ```
- #[inline]
- #[must_use]
- pub const fn to_be_bytes(self) -> [u8; 2] {
- self.0.to_be_bytes()
- }
-
- /// Returns the memory representation of the underlying bit representation as a byte array in
- /// native byte order.
- ///
- /// As the target platform's native endianness is used, portable code should use
- /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate,
- /// instead.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- /// let bytes = bf16::from_f32(12.5).to_ne_bytes();
- /// assert_eq!(bytes, if cfg!(target_endian = "big") {
- /// [0x41, 0x48]
- /// } else {
- /// [0x48, 0x41]
- /// });
- /// ```
- #[inline]
- #[must_use]
- pub const fn to_ne_bytes(self) -> [u8; 2] {
- self.0.to_ne_bytes()
- }
-
- /// Creates a floating point value from its representation as a byte array in little endian.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- /// let value = bf16::from_le_bytes([0x48, 0x41]);
- /// assert_eq!(value, bf16::from_f32(12.5));
- /// ```
- #[inline]
- #[must_use]
- pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 {
- bf16::from_bits(u16::from_le_bytes(bytes))
- }
-
- /// Creates a floating point value from its representation as a byte array in big endian.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- /// let value = bf16::from_be_bytes([0x41, 0x48]);
- /// assert_eq!(value, bf16::from_f32(12.5));
- /// ```
- #[inline]
- #[must_use]
- pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 {
- bf16::from_bits(u16::from_be_bytes(bytes))
- }
-
- /// Creates a floating point value from its representation as a byte array in native endian.
- ///
- /// As the target platform's native endianness is used, portable code likely wants to use
- /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as
- /// appropriate instead.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") {
- /// [0x41, 0x48]
- /// } else {
- /// [0x48, 0x41]
- /// });
- /// assert_eq!(value, bf16::from_f32(12.5));
- /// ```
- #[inline]
- #[must_use]
- pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 {
- bf16::from_bits(u16::from_ne_bytes(bytes))
- }
-
- /// Converts a [`bf16`] value into an [`f32`] value.
- ///
- /// This conversion is lossless as all values can be represented exactly in [`f32`].
- #[inline]
- #[must_use]
- pub fn to_f32(self) -> f32 {
- self.to_f32_const()
- }
-
- /// Converts a [`bf16`] value into an [`f32`] value.
- ///
- /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
- /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
- /// in any non-`const` context.
- ///
- /// This conversion is lossless as all values can be represented exactly in [`f32`].
- #[inline]
- #[must_use]
- pub const fn to_f32_const(self) -> f32 {
- convert::bf16_to_f32(self.0)
- }
-
- /// Converts a [`bf16`] value into an [`f64`] value.
- ///
- /// This conversion is lossless as all values can be represented exactly in [`f64`].
- #[inline]
- #[must_use]
- pub fn to_f64(self) -> f64 {
- self.to_f64_const()
- }
-
- /// Converts a [`bf16`] value into an [`f64`] value.
- ///
- /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
- /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
- /// in any non-`const` context.
- ///
- /// This conversion is lossless as all values can be represented exactly in [`f64`].
- #[inline]
- #[must_use]
- pub const fn to_f64_const(self) -> f64 {
- convert::bf16_to_f64(self.0)
- }
-
- /// Returns `true` if this value is NaN and `false` otherwise.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let nan = bf16::NAN;
- /// let f = bf16::from_f32(7.0_f32);
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- #[inline]
- #[must_use]
- pub const fn is_nan(self) -> bool {
- self.0 & 0x7FFFu16 > 0x7F80u16
- }
-
- /// Returns `true` if this value is ±∞ and `false` otherwise.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let f = bf16::from_f32(7.0f32);
- /// let inf = bf16::INFINITY;
- /// let neg_inf = bf16::NEG_INFINITY;
- /// let nan = bf16::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- #[inline]
- #[must_use]
- pub const fn is_infinite(self) -> bool {
- self.0 & 0x7FFFu16 == 0x7F80u16
- }
-
- /// Returns `true` if this number is neither infinite nor NaN.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let f = bf16::from_f32(7.0f32);
- /// let inf = bf16::INFINITY;
- /// let neg_inf = bf16::NEG_INFINITY;
- /// let nan = bf16::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- #[inline]
- #[must_use]
- pub const fn is_finite(self) -> bool {
- self.0 & 0x7F80u16 != 0x7F80u16
- }
-
- /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let min = bf16::MIN_POSITIVE;
- /// let max = bf16::MAX;
- /// let lower_than_min = bf16::from_f32(1.0e-39_f32);
- /// let zero = bf16::from_f32(0.0_f32);
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!bf16::NAN.is_normal());
- /// assert!(!bf16::INFINITY.is_normal());
- /// // Values between 0 and `min` are subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- #[inline]
- #[must_use]
- pub const fn is_normal(self) -> bool {
- let exp = self.0 & 0x7F80u16;
- exp != 0x7F80u16 && exp != 0
- }
-
- /// Returns the floating point category of the number.
- ///
- /// If only one property is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use std::num::FpCategory;
- /// # use half::prelude::*;
- ///
- /// let num = bf16::from_f32(12.4_f32);
- /// let inf = bf16::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- #[must_use]
- pub const fn classify(self) -> FpCategory {
- let exp = self.0 & 0x7F80u16;
- let man = self.0 & 0x007Fu16;
- match (exp, man) {
- (0, 0) => FpCategory::Zero,
- (0, _) => FpCategory::Subnormal,
- (0x7F80u16, 0) => FpCategory::Infinite,
- (0x7F80u16, _) => FpCategory::Nan,
- _ => FpCategory::Normal,
- }
- }
-
- /// Returns a number that represents the sign of `self`.
- ///
- /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY]
- /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY]
- /// * [`NAN`][bf16::NAN] if the number is NaN
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let f = bf16::from_f32(3.5_f32);
- ///
- /// assert_eq!(f.signum(), bf16::from_f32(1.0));
- /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
- ///
- /// assert!(bf16::NAN.signum().is_nan());
- /// ```
- #[must_use]
- pub const fn signum(self) -> bf16 {
- if self.is_nan() {
- self
- } else if self.0 & 0x8000u16 != 0 {
- Self::NEG_ONE
- } else {
- Self::ONE
- }
- }
-
- /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a
- /// positive sign bit and +∞.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let nan = bf16::NAN;
- /// let f = bf16::from_f32(7.0_f32);
- /// let g = bf16::from_f32(-7.0_f32);
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// // NaN can be either positive or negative
- /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
- /// ```
- #[inline]
- #[must_use]
- pub const fn is_sign_positive(self) -> bool {
- self.0 & 0x8000u16 == 0
- }
-
- /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a
- /// negative sign bit and −∞.
- ///
- /// # Examples
- ///
- /// ```rust
- /// # use half::prelude::*;
- ///
- /// let nan = bf16::NAN;
- /// let f = bf16::from_f32(7.0f32);
- /// let g = bf16::from_f32(-7.0f32);
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// // NaN can be either positive or negative
- /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
- /// ```
- #[inline]
- #[must_use]
- pub const fn is_sign_negative(self) -> bool {
- self.0 & 0x8000u16 != 0
- }
-
- /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
- ///
- /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
- /// If `self` is NaN, then NaN with the sign of `sign` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// # use half::prelude::*;
- /// let f = bf16::from_f32(3.5);
- ///
- /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
- /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
- /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
- /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
- ///
- /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());
- /// ```
- #[inline]
- #[must_use]
- pub const fn copysign(self, sign: bf16) -> bf16 {
- bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
- }
-
- /// Returns the maximum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// # use half::prelude::*;
- /// let x = bf16::from_f32(1.0);
- /// let y = bf16::from_f32(2.0);
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- #[inline]
- #[must_use]
- pub fn max(self, other: bf16) -> bf16 {
- if other > self && !other.is_nan() {
- other
- } else {
- self
- }
- }
-
- /// Returns the minimum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// # use half::prelude::*;
- /// let x = bf16::from_f32(1.0);
- /// let y = bf16::from_f32(2.0);
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- #[inline]
- #[must_use]
- pub fn min(self, other: bf16) -> bf16 {
- if other < self && !other.is_nan() {
- other
- } else {
- self
- }
- }
-
- /// Restrict a value to a certain interval unless it is NaN.
- ///
- /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
- /// Otherwise this returns `self`.
- ///
- /// Note that this function returns NaN if the initial value was NaN as well.
- ///
- /// # Panics
- /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// # use half::prelude::*;
- /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
- /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
- /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
- /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());
- /// ```
- #[inline]
- #[must_use]
- pub fn clamp(self, min: bf16, max: bf16) -> bf16 {
- assert!(min <= max);
- let mut x = self;
- if x < min {
- x = min;
- }
- if x > max {
- x = max;
- }
- x
- }
-
- /// Returns the ordering between `self` and `other`.
- ///
- /// Unlike the standard partial comparison between floating point numbers,
- /// this comparison always produces an ordering in accordance to
- /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
- /// floating point standard. The values are ordered in the following sequence:
- ///
- /// - negative quiet NaN
- /// - negative signaling NaN
- /// - negative infinity
- /// - negative numbers
- /// - negative subnormal numbers
- /// - negative zero
- /// - positive zero
- /// - positive subnormal numbers
- /// - positive numbers
- /// - positive infinity
- /// - positive signaling NaN
- /// - positive quiet NaN.
- ///
- /// The ordering established by this function does not always agree with the
- /// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example,
- /// they consider negative and positive zero equal, while `total_cmp`
- /// doesn't.
- ///
- /// The interpretation of the signaling NaN bit follows the definition in
- /// the IEEE 754 standard, which may not match the interpretation by some of
- /// the older, non-conformant (e.g. MIPS) hardware implementations.
- ///
- /// # Examples
- /// ```
- /// # use half::bf16;
- /// let mut v: Vec<bf16> = vec![];
- /// v.push(bf16::ONE);
- /// v.push(bf16::INFINITY);
- /// v.push(bf16::NEG_INFINITY);
- /// v.push(bf16::NAN);
- /// v.push(bf16::MAX_SUBNORMAL);
- /// v.push(-bf16::MAX_SUBNORMAL);
- /// v.push(bf16::ZERO);
- /// v.push(bf16::NEG_ZERO);
- /// v.push(bf16::NEG_ONE);
- /// v.push(bf16::MIN_POSITIVE);
- ///
- /// v.sort_by(|a, b| a.total_cmp(&b));
- ///
- /// assert!(v
- /// .into_iter()
- /// .zip(
- /// [
- /// bf16::NEG_INFINITY,
- /// bf16::NEG_ONE,
- /// -bf16::MAX_SUBNORMAL,
- /// bf16::NEG_ZERO,
- /// bf16::ZERO,
- /// bf16::MAX_SUBNORMAL,
- /// bf16::MIN_POSITIVE,
- /// bf16::ONE,
- /// bf16::INFINITY,
- /// bf16::NAN
- /// ]
- /// .iter()
- /// )
- /// .all(|(a, b)| a.to_bits() == b.to_bits()));
- /// ```
- // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
- #[inline]
- #[must_use]
- pub fn total_cmp(&self, other: &Self) -> Ordering {
- let mut left = self.to_bits() as i16;
- let mut right = other.to_bits() as i16;
- left ^= (((left >> 15) as u16) >> 1) as i16;
- right ^= (((right >> 15) as u16) >> 1) as i16;
- left.cmp(&right)
- }
-
- /// Alternate serialize adapter for serializing as a float.
- ///
- /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
- /// implementation that serializes as an [`f32`] value. It is designed for use with
- /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
- /// the default deserialize implementation.
- ///
- /// # Examples
- ///
- /// A demonstration on how to use this adapater:
- ///
- /// ```
- /// use serde::{Serialize, Deserialize};
- /// use half::bf16;
- ///
- /// #[derive(Serialize, Deserialize)]
- /// struct MyStruct {
- /// #[serde(serialize_with = "bf16::serialize_as_f32")]
- /// value: bf16 // Will be serialized as f32 instead of u16
- /// }
- /// ```
- #[cfg(feature = "serde")]
- pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
- serializer.serialize_f32(self.to_f32())
- }
-
- /// Alternate serialize adapter for serializing as a string.
- ///
- /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
- /// implementation that serializes as a string value. It is designed for use with
- /// `serialize_with` serde attributes. Deserialization from string values is already supported
- /// by the default deserialize implementation.
- ///
- /// # Examples
- ///
- /// A demonstration on how to use this adapater:
- ///
- /// ```
- /// use serde::{Serialize, Deserialize};
- /// use half::bf16;
- ///
- /// #[derive(Serialize, Deserialize)]
- /// struct MyStruct {
- /// #[serde(serialize_with = "bf16::serialize_as_string")]
- /// value: bf16 // Will be serialized as a string instead of u16
- /// }
- /// ```
- #[cfg(feature = "serde")]
- pub fn serialize_as_string<S: serde::Serializer>(
- &self,
- serializer: S,
- ) -> Result<S::Ok, S::Error> {
- serializer.serialize_str(&self.to_string())
- }
-
- /// Approximate number of [`bf16`] significant digits in base 10
- pub const DIGITS: u32 = 2;
- /// [`bf16`]
- /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
- ///
- /// This is the difference between 1.0 and the next largest representable number.
- pub const EPSILON: bf16 = bf16(0x3C00u16);
- /// [`bf16`] positive Infinity (+∞)
- pub const INFINITY: bf16 = bf16(0x7F80u16);
- /// Number of [`bf16`] significant digits in base 2
- pub const MANTISSA_DIGITS: u32 = 8;
- /// Largest finite [`bf16`] value
- pub const MAX: bf16 = bf16(0x7F7F);
- /// Maximum possible [`bf16`] power of 10 exponent
- pub const MAX_10_EXP: i32 = 38;
- /// Maximum possible [`bf16`] power of 2 exponent
- pub const MAX_EXP: i32 = 128;
- /// Smallest finite [`bf16`] value
- pub const MIN: bf16 = bf16(0xFF7F);
- /// Minimum possible normal [`bf16`] power of 10 exponent
- pub const MIN_10_EXP: i32 = -37;
- /// One greater than the minimum possible normal [`bf16`] power of 2 exponent
- pub const MIN_EXP: i32 = -125;
- /// Smallest positive normal [`bf16`] value
- pub const MIN_POSITIVE: bf16 = bf16(0x0080u16);
- /// [`bf16`] Not a Number (NaN)
- pub const NAN: bf16 = bf16(0x7FC0u16);
- /// [`bf16`] negative infinity (-∞).
- pub const NEG_INFINITY: bf16 = bf16(0xFF80u16);
- /// The radix or base of the internal representation of [`bf16`]
- pub const RADIX: u32 = 2;
-
- /// Minimum positive subnormal [`bf16`] value
- pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16);
- /// Maximum subnormal [`bf16`] value
- pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16);
-
- /// [`bf16`] 1
- pub const ONE: bf16 = bf16(0x3F80u16);
- /// [`bf16`] 0
- pub const ZERO: bf16 = bf16(0x0000u16);
- /// [`bf16`] -0
- pub const NEG_ZERO: bf16 = bf16(0x8000u16);
- /// [`bf16`] -1
- pub const NEG_ONE: bf16 = bf16(0xBF80u16);
-
- /// [`bf16`] Euler's number (ℯ)
- pub const E: bf16 = bf16(0x402Eu16);
- /// [`bf16`] Archimedes' constant (π)
- pub const PI: bf16 = bf16(0x4049u16);
- /// [`bf16`] 1/π
- pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16);
- /// [`bf16`] 1/√2
- pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16);
- /// [`bf16`] 2/π
- pub const FRAC_2_PI: bf16 = bf16(0x3F23u16);
- /// [`bf16`] 2/√π
- pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16);
- /// [`bf16`] π/2
- pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16);
- /// [`bf16`] π/3
- pub const FRAC_PI_3: bf16 = bf16(0x3F86u16);
- /// [`bf16`] π/4
- pub const FRAC_PI_4: bf16 = bf16(0x3F49u16);
- /// [`bf16`] π/6
- pub const FRAC_PI_6: bf16 = bf16(0x3F06u16);
- /// [`bf16`] π/8
- pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16);
- /// [`bf16`] 𝗅𝗇 10
- pub const LN_10: bf16 = bf16(0x4013u16);
- /// [`bf16`] 𝗅𝗇 2
- pub const LN_2: bf16 = bf16(0x3F31u16);
- /// [`bf16`] 𝗅𝗈𝗀₁₀ℯ
- pub const LOG10_E: bf16 = bf16(0x3EDEu16);
- /// [`bf16`] 𝗅𝗈𝗀₁₀2
- pub const LOG10_2: bf16 = bf16(0x3E9Au16);
- /// [`bf16`] 𝗅𝗈𝗀₂ℯ
- pub const LOG2_E: bf16 = bf16(0x3FB9u16);
- /// [`bf16`] 𝗅𝗈𝗀₂10
- pub const LOG2_10: bf16 = bf16(0x4055u16);
- /// [`bf16`] √2
- pub const SQRT_2: bf16 = bf16(0x3FB5u16);
-}
-
-impl From<bf16> for f32 {
- #[inline]
- fn from(x: bf16) -> f32 {
- x.to_f32()
- }
-}
-
-impl From<bf16> for f64 {
- #[inline]
- fn from(x: bf16) -> f64 {
- x.to_f64()
- }
-}
-
-impl From<i8> for bf16 {
- #[inline]
- fn from(x: i8) -> bf16 {
- // Convert to f32, then to bf16
- bf16::from_f32(f32::from(x))
- }
-}
-
-impl From<u8> for bf16 {
- #[inline]
- fn from(x: u8) -> bf16 {
- // Convert to f32, then to f16
- bf16::from_f32(f32::from(x))
- }
-}
-
-impl PartialEq for bf16 {
- fn eq(&self, other: &bf16) -> bool {
- if self.is_nan() || other.is_nan() {
- false
- } else {
- (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
- }
- }
-}
-
-impl PartialOrd for bf16 {
- fn partial_cmp(&self, other: &bf16) -> Option<Ordering> {
- if self.is_nan() || other.is_nan() {
- None
- } else {
- let neg = self.0 & 0x8000u16 != 0;
- let other_neg = other.0 & 0x8000u16 != 0;
- match (neg, other_neg) {
- (false, false) => Some(self.0.cmp(&other.0)),
- (false, true) => {
- if (self.0 | other.0) & 0x7FFFu16 == 0 {
- Some(Ordering::Equal)
- } else {
- Some(Ordering::Greater)
- }
- }
- (true, false) => {
- if (self.0 | other.0) & 0x7FFFu16 == 0 {
- Some(Ordering::Equal)
- } else {
- Some(Ordering::Less)
- }
- }
- (true, true) => Some(other.0.cmp(&self.0)),
- }
- }
- }
-
- fn lt(&self, other: &bf16) -> bool {
- if self.is_nan() || other.is_nan() {
- false
- } else {
- let neg = self.0 & 0x8000u16 != 0;
- let other_neg = other.0 & 0x8000u16 != 0;
- match (neg, other_neg) {
- (false, false) => self.0 < other.0,
- (false, true) => false,
- (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
- (true, true) => self.0 > other.0,
- }
- }
- }
-
- fn le(&self, other: &bf16) -> bool {
- if self.is_nan() || other.is_nan() {
- false
- } else {
- let neg = self.0 & 0x8000u16 != 0;
- let other_neg = other.0 & 0x8000u16 != 0;
- match (neg, other_neg) {
- (false, false) => self.0 <= other.0,
- (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
- (true, false) => true,
- (true, true) => self.0 >= other.0,
- }
- }
- }
-
- fn gt(&self, other: &bf16) -> bool {
- if self.is_nan() || other.is_nan() {
- false
- } else {
- let neg = self.0 & 0x8000u16 != 0;
- let other_neg = other.0 & 0x8000u16 != 0;
- match (neg, other_neg) {
- (false, false) => self.0 > other.0,
- (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
- (true, false) => false,
- (true, true) => self.0 < other.0,
- }
- }
- }
-
- fn ge(&self, other: &bf16) -> bool {
- if self.is_nan() || other.is_nan() {
- false
- } else {
- let neg = self.0 & 0x8000u16 != 0;
- let other_neg = other.0 & 0x8000u16 != 0;
- match (neg, other_neg) {
- (false, false) => self.0 >= other.0,
- (false, true) => true,
- (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
- (true, true) => self.0 <= other.0,
- }
- }
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl FromStr for bf16 {
- type Err = ParseFloatError;
- fn from_str(src: &str) -> Result<bf16, ParseFloatError> {
- f32::from_str(src).map(bf16::from_f32)
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl Debug for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:?}", self.to_f32())
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl Display for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{}", self.to_f32())
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl LowerExp for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:e}", self.to_f32())
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl UpperExp for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:E}", self.to_f32())
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl Binary for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:b}", self.0)
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl Octal for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:o}", self.0)
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl LowerHex for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:x}", self.0)
- }
-}
-
-#[cfg(not(target_arch = "spirv"))]
-impl UpperHex for bf16 {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
- write!(f, "{:X}", self.0)
- }
-}
-
-impl Neg for bf16 {
- type Output = Self;
-
- fn neg(self) -> Self::Output {
- Self(self.0 ^ 0x8000)
- }
-}
-
-impl Neg for &bf16 {
- type Output = <bf16 as Neg>::Output;
-
- #[inline]
- fn neg(self) -> Self::Output {
- Neg::neg(*self)
- }
-}
-
-impl Add for bf16 {
- type Output = Self;
-
- fn add(self, rhs: Self) -> Self::Output {
- Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs))
- }
-}
-
-impl Add<&bf16> for bf16 {
- type Output = <bf16 as Add<bf16>>::Output;
-
- #[inline]
- fn add(self, rhs: &bf16) -> Self::Output {
- self.add(*rhs)
- }
-}
-
-impl Add<&bf16> for &bf16 {
- type Output = <bf16 as Add<bf16>>::Output;
-
- #[inline]
- fn add(self, rhs: &bf16) -> Self::Output {
- (*self).add(*rhs)
- }
-}
-
-impl Add<bf16> for &bf16 {
- type Output = <bf16 as Add<bf16>>::Output;
-
- #[inline]
- fn add(self, rhs: bf16) -> Self::Output {
- (*self).add(rhs)
- }
-}
-
-impl AddAssign for bf16 {
- #[inline]
- fn add_assign(&mut self, rhs: Self) {
- *self = (*self).add(rhs);
- }
-}
-
-impl AddAssign<&bf16> for bf16 {
- #[inline]
- fn add_assign(&mut self, rhs: &bf16) {
- *self = (*self).add(rhs);
- }
-}
-
-impl Sub for bf16 {
- type Output = Self;
-
- fn sub(self, rhs: Self) -> Self::Output {
- Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs))
- }
-}
-
-impl Sub<&bf16> for bf16 {
- type Output = <bf16 as Sub<bf16>>::Output;
-
- #[inline]
- fn sub(self, rhs: &bf16) -> Self::Output {
- self.sub(*rhs)
- }
-}
-
-impl Sub<&bf16> for &bf16 {
- type Output = <bf16 as Sub<bf16>>::Output;
-
- #[inline]
- fn sub(self, rhs: &bf16) -> Self::Output {
- (*self).sub(*rhs)
- }
-}
-
-impl Sub<bf16> for &bf16 {
- type Output = <bf16 as Sub<bf16>>::Output;
-
- #[inline]
- fn sub(self, rhs: bf16) -> Self::Output {
- (*self).sub(rhs)
- }
-}
-
-impl SubAssign for bf16 {
- #[inline]
- fn sub_assign(&mut self, rhs: Self) {
- *self = (*self).sub(rhs);
- }
-}
-
-impl SubAssign<&bf16> for bf16 {
- #[inline]
- fn sub_assign(&mut self, rhs: &bf16) {
- *self = (*self).sub(rhs);
- }
-}
-
-impl Mul for bf16 {
- type Output = Self;
-
- fn mul(self, rhs: Self) -> Self::Output {
- Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs))
- }
-}
-
-impl Mul<&bf16> for bf16 {
- type Output = <bf16 as Mul<bf16>>::Output;
-
- #[inline]
- fn mul(self, rhs: &bf16) -> Self::Output {
- self.mul(*rhs)
- }
-}
-
-impl Mul<&bf16> for &bf16 {
- type Output = <bf16 as Mul<bf16>>::Output;
-
- #[inline]
- fn mul(self, rhs: &bf16) -> Self::Output {
- (*self).mul(*rhs)
- }
-}
-
-impl Mul<bf16> for &bf16 {
- type Output = <bf16 as Mul<bf16>>::Output;
-
- #[inline]
- fn mul(self, rhs: bf16) -> Self::Output {
- (*self).mul(rhs)
- }
-}
-
-impl MulAssign for bf16 {
- #[inline]
- fn mul_assign(&mut self, rhs: Self) {
- *self = (*self).mul(rhs);
- }
-}
-
-impl MulAssign<&bf16> for bf16 {
- #[inline]
- fn mul_assign(&mut self, rhs: &bf16) {
- *self = (*self).mul(rhs);
- }
-}
-
-impl Div for bf16 {
- type Output = Self;
-
- fn div(self, rhs: Self) -> Self::Output {
- Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs))
- }
-}
-
-impl Div<&bf16> for bf16 {
- type Output = <bf16 as Div<bf16>>::Output;
-
- #[inline]
- fn div(self, rhs: &bf16) -> Self::Output {
- self.div(*rhs)
- }
-}
-
-impl Div<&bf16> for &bf16 {
- type Output = <bf16 as Div<bf16>>::Output;
-
- #[inline]
- fn div(self, rhs: &bf16) -> Self::Output {
- (*self).div(*rhs)
- }
-}
-
-impl Div<bf16> for &bf16 {
- type Output = <bf16 as Div<bf16>>::Output;
-
- #[inline]
- fn div(self, rhs: bf16) -> Self::Output {
- (*self).div(rhs)
- }
-}
-
-impl DivAssign for bf16 {
- #[inline]
- fn div_assign(&mut self, rhs: Self) {
- *self = (*self).div(rhs);
- }
-}
-
-impl DivAssign<&bf16> for bf16 {
- #[inline]
- fn div_assign(&mut self, rhs: &bf16) {
- *self = (*self).div(rhs);
- }
-}
-
-impl Rem for bf16 {
- type Output = Self;
-
- fn rem(self, rhs: Self) -> Self::Output {
- Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs))
- }
-}
-
-impl Rem<&bf16> for bf16 {
- type Output = <bf16 as Rem<bf16>>::Output;
-
- #[inline]
- fn rem(self, rhs: &bf16) -> Self::Output {
- self.rem(*rhs)
- }
-}
-
-impl Rem<&bf16> for &bf16 {
- type Output = <bf16 as Rem<bf16>>::Output;
-
- #[inline]
- fn rem(self, rhs: &bf16) -> Self::Output {
- (*self).rem(*rhs)
- }
-}
-
-impl Rem<bf16> for &bf16 {
- type Output = <bf16 as Rem<bf16>>::Output;
-
- #[inline]
- fn rem(self, rhs: bf16) -> Self::Output {
- (*self).rem(rhs)
- }
-}
-
-impl RemAssign for bf16 {
- #[inline]
- fn rem_assign(&mut self, rhs: Self) {
- *self = (*self).rem(rhs);
- }
-}
-
-impl RemAssign<&bf16> for bf16 {
- #[inline]
- fn rem_assign(&mut self, rhs: &bf16) {
- *self = (*self).rem(rhs);
- }
-}
-
-impl Product for bf16 {
- #[inline]
- fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
- bf16::from_f32(iter.map(|f| f.to_f32()).product())
- }
-}
-
-impl<'a> Product<&'a bf16> for bf16 {
- #[inline]
- fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
- bf16::from_f32(iter.map(|f| f.to_f32()).product())
- }
-}
-
-impl Sum for bf16 {
- #[inline]
- fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
- bf16::from_f32(iter.map(|f| f.to_f32()).sum())
- }
-}
-
-impl<'a> Sum<&'a bf16> for bf16 {
- #[inline]
- fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
- bf16::from_f32(iter.map(|f| f.to_f32()).product())
- }
-}
-
-#[cfg(feature = "serde")]
-struct Visitor;
-
-#[cfg(feature = "serde")]
-impl<'de> Deserialize<'de> for bf16 {
- fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error>
- where
- D: serde::de::Deserializer<'de>,
- {
- deserializer.deserialize_newtype_struct("bf16", Visitor)
- }
-}
-
-#[cfg(feature = "serde")]
-impl<'de> serde::de::Visitor<'de> for Visitor {
- type Value = bf16;
-
- fn expecting(&self, formatter: &mut alloc::fmt::Formatter) -> alloc::fmt::Result {
- write!(formatter, "tuple struct bf16")
- }
-
- fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
- where
- D: serde::Deserializer<'de>,
- {
- Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?))
- }
-
- fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
- where
- E: serde::de::Error,
- {
- v.parse().map_err(|_| {
- serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
- })
- }
-
- fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
- where
- E: serde::de::Error,
- {
- Ok(bf16::from_f32(v))
- }
-
- fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
- where
- E: serde::de::Error,
- {
- Ok(bf16::from_f64(v))
- }
-}
-
-#[allow(
- clippy::cognitive_complexity,
- clippy::float_cmp,
- clippy::neg_cmp_op_on_partial_ord
-)]
-#[cfg(test)]
-mod test {
- use super::*;
- use core::cmp::Ordering;
- #[cfg(feature = "num-traits")]
- use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
- use quickcheck_macros::quickcheck;
-
- #[cfg(feature = "num-traits")]
- #[test]
- fn as_primitive() {
- let two = bf16::from_f32(2.0);
- assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two);
- assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2);
-
- assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two);
- assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0);
-
- assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two);
- assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0);
- }
-
- #[cfg(feature = "num-traits")]
- #[test]
- fn to_primitive() {
- let two = bf16::from_f32(2.0);
- assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
- assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
- assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
- }
-
- #[cfg(feature = "num-traits")]
- #[test]
- fn from_primitive() {
- let two = bf16::from_f32(2.0);
- assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two);
- assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
- assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
- }
-
- #[test]
- fn test_bf16_consts_from_f32() {
- let one = bf16::from_f32(1.0);
- let zero = bf16::from_f32(0.0);
- let neg_zero = bf16::from_f32(-0.0);
- let neg_one = bf16::from_f32(-1.0);
- let inf = bf16::from_f32(core::f32::INFINITY);
- let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY);
- let nan = bf16::from_f32(core::f32::NAN);
-
- assert_eq!(bf16::ONE, one);
- assert_eq!(bf16::ZERO, zero);
- assert!(zero.is_sign_positive());
- assert_eq!(bf16::NEG_ZERO, neg_zero);
- assert!(neg_zero.is_sign_negative());
- assert_eq!(bf16::NEG_ONE, neg_one);
- assert!(neg_one.is_sign_negative());
- assert_eq!(bf16::INFINITY, inf);
- assert_eq!(bf16::NEG_INFINITY, neg_inf);
- assert!(nan.is_nan());
- assert!(bf16::NAN.is_nan());
-
- let e = bf16::from_f32(core::f32::consts::E);
- let pi = bf16::from_f32(core::f32::consts::PI);
- let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI);
- let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
- let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI);
- let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
- let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2);
- let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3);
- let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4);
- let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6);
- let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8);
- let ln_10 = bf16::from_f32(core::f32::consts::LN_10);
- let ln_2 = bf16::from_f32(core::f32::consts::LN_2);
- let log10_e = bf16::from_f32(core::f32::consts::LOG10_E);
- // core::f32::consts::LOG10_2 requires rustc 1.43.0
- let log10_2 = bf16::from_f32(2f32.log10());
- let log2_e = bf16::from_f32(core::f32::consts::LOG2_E);
- // core::f32::consts::LOG2_10 requires rustc 1.43.0
- let log2_10 = bf16::from_f32(10f32.log2());
- let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2);
-
- assert_eq!(bf16::E, e);
- assert_eq!(bf16::PI, pi);
- assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
- assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
- assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
- assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
- assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
- assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
- assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
- assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
- assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
- assert_eq!(bf16::LN_10, ln_10);
- assert_eq!(bf16::LN_2, ln_2);
- assert_eq!(bf16::LOG10_E, log10_e);
- assert_eq!(bf16::LOG10_2, log10_2);
- assert_eq!(bf16::LOG2_E, log2_e);
- assert_eq!(bf16::LOG2_10, log2_10);
- assert_eq!(bf16::SQRT_2, sqrt_2);
- }
-
- #[test]
- fn test_bf16_consts_from_f64() {
- let one = bf16::from_f64(1.0);
- let zero = bf16::from_f64(0.0);
- let neg_zero = bf16::from_f64(-0.0);
- let inf = bf16::from_f64(core::f64::INFINITY);
- let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY);
- let nan = bf16::from_f64(core::f64::NAN);
-
- assert_eq!(bf16::ONE, one);
- assert_eq!(bf16::ZERO, zero);
- assert_eq!(bf16::NEG_ZERO, neg_zero);
- assert_eq!(bf16::INFINITY, inf);
- assert_eq!(bf16::NEG_INFINITY, neg_inf);
- assert!(nan.is_nan());
- assert!(bf16::NAN.is_nan());
-
- let e = bf16::from_f64(core::f64::consts::E);
- let pi = bf16::from_f64(core::f64::consts::PI);
- let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI);
- let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
- let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI);
- let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
- let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2);
- let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3);
- let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4);
- let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6);
- let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8);
- let ln_10 = bf16::from_f64(core::f64::consts::LN_10);
- let ln_2 = bf16::from_f64(core::f64::consts::LN_2);
- let log10_e = bf16::from_f64(core::f64::consts::LOG10_E);
- // core::f64::consts::LOG10_2 requires rustc 1.43.0
- let log10_2 = bf16::from_f64(2f64.log10());
- let log2_e = bf16::from_f64(core::f64::consts::LOG2_E);
- // core::f64::consts::LOG2_10 requires rustc 1.43.0
- let log2_10 = bf16::from_f64(10f64.log2());
- let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2);
-
- assert_eq!(bf16::E, e);
- assert_eq!(bf16::PI, pi);
- assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
- assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
- assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
- assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
- assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
- assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
- assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
- assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
- assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
- assert_eq!(bf16::LN_10, ln_10);
- assert_eq!(bf16::LN_2, ln_2);
- assert_eq!(bf16::LOG10_E, log10_e);
- assert_eq!(bf16::LOG10_2, log10_2);
- assert_eq!(bf16::LOG2_E, log2_e);
- assert_eq!(bf16::LOG2_10, log2_10);
- assert_eq!(bf16::SQRT_2, sqrt_2);
- }
-
- #[test]
- fn test_nan_conversion_to_smaller() {
- let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
- let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
- let nan32 = f32::from_bits(0x7F80_0001u32);
- let neg_nan32 = f32::from_bits(0xFF80_0001u32);
- let nan32_from_64 = nan64 as f32;
- let neg_nan32_from_64 = neg_nan64 as f32;
- let nan16_from_64 = bf16::from_f64(nan64);
- let neg_nan16_from_64 = bf16::from_f64(neg_nan64);
- let nan16_from_32 = bf16::from_f32(nan32);
- let neg_nan16_from_32 = bf16::from_f32(neg_nan32);
-
- assert!(nan64.is_nan() && nan64.is_sign_positive());
- assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
- assert!(nan32.is_nan() && nan32.is_sign_positive());
- assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
- assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive());
- assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative());
- assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive());
- assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative());
- assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive());
- assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative());
- }
-
- #[test]
- fn test_nan_conversion_to_larger() {
- let nan16 = bf16::from_bits(0x7F81u16);
- let neg_nan16 = bf16::from_bits(0xFF81u16);
- let nan32 = f32::from_bits(0x7F80_0001u32);
- let neg_nan32 = f32::from_bits(0xFF80_0001u32);
- let nan32_from_16 = f32::from(nan16);
- let neg_nan32_from_16 = f32::from(neg_nan16);
- let nan64_from_16 = f64::from(nan16);
- let neg_nan64_from_16 = f64::from(neg_nan16);
- let nan64_from_32 = f64::from(nan32);
- let neg_nan64_from_32 = f64::from(neg_nan32);
-
- assert!(nan16.is_nan() && nan16.is_sign_positive());
- assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
- assert!(nan32.is_nan() && nan32.is_sign_positive());
- assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
- assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive());
- assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative());
- assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive());
- assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative());
- assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive());
- assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative());
- }
-
- #[test]
- fn test_bf16_to_f32() {
- let f = bf16::from_f32(7.0);
- assert_eq!(f.to_f32(), 7.0f32);
-
- // 7.1 is NOT exactly representable in 16-bit, it's rounded
- let f = bf16::from_f32(7.1);
- let diff = (f.to_f32() - 7.1f32).abs();
- // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
- assert!(diff <= 4.0 * bf16::EPSILON.to_f32());
-
- let tiny32 = f32::from_bits(0x0001_0000u32);
- assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32);
- assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32);
-
- assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32));
- assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32));
- }
-
- #[test]
- fn test_bf16_to_f64() {
- let f = bf16::from_f64(7.0);
- assert_eq!(f.to_f64(), 7.0f64);
-
- // 7.1 is NOT exactly representable in 16-bit, it's rounded
- let f = bf16::from_f64(7.1);
- let diff = (f.to_f64() - 7.1f64).abs();
- // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
- assert!(diff <= 4.0 * bf16::EPSILON.to_f64());
-
- let tiny64 = 2.0f64.powi(-133);
- assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64);
- assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64);
-
- assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64));
- assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64));
- }
-
- #[test]
- fn test_comparisons() {
- let zero = bf16::from_f64(0.0);
- let one = bf16::from_f64(1.0);
- let neg_zero = bf16::from_f64(-0.0);
- let neg_one = bf16::from_f64(-1.0);
-
- assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
- assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
- assert!(zero == neg_zero);
- assert!(neg_zero == zero);
- assert!(!(zero != neg_zero));
- assert!(!(neg_zero != zero));
- assert!(!(zero < neg_zero));
- assert!(!(neg_zero < zero));
- assert!(zero <= neg_zero);
- assert!(neg_zero <= zero);
- assert!(!(zero > neg_zero));
- assert!(!(neg_zero > zero));
- assert!(zero >= neg_zero);
- assert!(neg_zero >= zero);
-
- assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
- assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
- assert!(!(one == neg_zero));
- assert!(!(neg_zero == one));
- assert!(one != neg_zero);
- assert!(neg_zero != one);
- assert!(!(one < neg_zero));
- assert!(neg_zero < one);
- assert!(!(one <= neg_zero));
- assert!(neg_zero <= one);
- assert!(one > neg_zero);
- assert!(!(neg_zero > one));
- assert!(one >= neg_zero);
- assert!(!(neg_zero >= one));
-
- assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
- assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
- assert!(!(one == neg_one));
- assert!(!(neg_one == one));
- assert!(one != neg_one);
- assert!(neg_one != one);
- assert!(!(one < neg_one));
- assert!(neg_one < one);
- assert!(!(one <= neg_one));
- assert!(neg_one <= one);
- assert!(one > neg_one);
- assert!(!(neg_one > one));
- assert!(one >= neg_one);
- assert!(!(neg_one >= one));
- }
-
- #[test]
- #[allow(clippy::erasing_op, clippy::identity_op)]
- fn round_to_even_f32() {
- // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
- let min_sub = bf16::from_bits(1);
- let min_sub_f = (-133f32).exp2();
- assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
- assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
-
- // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
- // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
- // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
- assert_eq!(
- bf16::from_f32(min_sub_f * 0.49).to_bits(),
- min_sub.to_bits() * 0
- );
- assert_eq!(
- bf16::from_f32(min_sub_f * 0.50).to_bits(),
- min_sub.to_bits() * 0
- );
- assert_eq!(
- bf16::from_f32(min_sub_f * 0.51).to_bits(),
- min_sub.to_bits() * 1
- );
-
- // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
- // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
- // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
- assert_eq!(
- bf16::from_f32(min_sub_f * 1.49).to_bits(),
- min_sub.to_bits() * 1
- );
- assert_eq!(
- bf16::from_f32(min_sub_f * 1.50).to_bits(),
- min_sub.to_bits() * 2
- );
- assert_eq!(
- bf16::from_f32(min_sub_f * 1.51).to_bits(),
- min_sub.to_bits() * 2
- );
-
- // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
- // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
- // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
- assert_eq!(
- bf16::from_f32(min_sub_f * 2.49).to_bits(),
- min_sub.to_bits() * 2
- );
- assert_eq!(
- bf16::from_f32(min_sub_f * 2.50).to_bits(),
- min_sub.to_bits() * 2
- );
- assert_eq!(
- bf16::from_f32(min_sub_f * 2.51).to_bits(),
- min_sub.to_bits() * 3
- );
-
- assert_eq!(
- bf16::from_f32(250.49f32).to_bits(),
- bf16::from_f32(250.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(250.50f32).to_bits(),
- bf16::from_f32(250.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(250.51f32).to_bits(),
- bf16::from_f32(251.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(251.49f32).to_bits(),
- bf16::from_f32(251.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(251.50f32).to_bits(),
- bf16::from_f32(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(251.51f32).to_bits(),
- bf16::from_f32(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(252.49f32).to_bits(),
- bf16::from_f32(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(252.50f32).to_bits(),
- bf16::from_f32(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f32(252.51f32).to_bits(),
- bf16::from_f32(253.0).to_bits()
- );
- }
-
- #[test]
- #[allow(clippy::erasing_op, clippy::identity_op)]
- fn round_to_even_f64() {
- // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
- let min_sub = bf16::from_bits(1);
- let min_sub_f = (-133f64).exp2();
- assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
- assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
-
- // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
- // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
- // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
- assert_eq!(
- bf16::from_f64(min_sub_f * 0.49).to_bits(),
- min_sub.to_bits() * 0
- );
- assert_eq!(
- bf16::from_f64(min_sub_f * 0.50).to_bits(),
- min_sub.to_bits() * 0
- );
- assert_eq!(
- bf16::from_f64(min_sub_f * 0.51).to_bits(),
- min_sub.to_bits() * 1
- );
-
- // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
- // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
- // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
- assert_eq!(
- bf16::from_f64(min_sub_f * 1.49).to_bits(),
- min_sub.to_bits() * 1
- );
- assert_eq!(
- bf16::from_f64(min_sub_f * 1.50).to_bits(),
- min_sub.to_bits() * 2
- );
- assert_eq!(
- bf16::from_f64(min_sub_f * 1.51).to_bits(),
- min_sub.to_bits() * 2
- );
-
- // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
- // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
- // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
- assert_eq!(
- bf16::from_f64(min_sub_f * 2.49).to_bits(),
- min_sub.to_bits() * 2
- );
- assert_eq!(
- bf16::from_f64(min_sub_f * 2.50).to_bits(),
- min_sub.to_bits() * 2
- );
- assert_eq!(
- bf16::from_f64(min_sub_f * 2.51).to_bits(),
- min_sub.to_bits() * 3
- );
-
- assert_eq!(
- bf16::from_f64(250.49f64).to_bits(),
- bf16::from_f64(250.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(250.50f64).to_bits(),
- bf16::from_f64(250.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(250.51f64).to_bits(),
- bf16::from_f64(251.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(251.49f64).to_bits(),
- bf16::from_f64(251.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(251.50f64).to_bits(),
- bf16::from_f64(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(251.51f64).to_bits(),
- bf16::from_f64(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(252.49f64).to_bits(),
- bf16::from_f64(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(252.50f64).to_bits(),
- bf16::from_f64(252.0).to_bits()
- );
- assert_eq!(
- bf16::from_f64(252.51f64).to_bits(),
- bf16::from_f64(253.0).to_bits()
- );
- }
-
- impl quickcheck::Arbitrary for bf16 {
- fn arbitrary(g: &mut quickcheck::Gen) -> Self {
- bf16(u16::arbitrary(g))
- }
- }
-
- #[quickcheck]
- fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool {
- let roundtrip = bf16::from_f32(f.to_f32());
- if f.is_nan() {
- roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
- } else {
- f.0 == roundtrip.0
- }
- }
-
- #[quickcheck]
- fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool {
- let roundtrip = bf16::from_f64(f.to_f64());
- if f.is_nan() {
- roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
- } else {
- f.0 == roundtrip.0
- }
- }
-}