aboutsummaryrefslogtreecommitdiff
path: root/vendor/image/src/imageops
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/image/src/imageops
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/image/src/imageops')
-rw-r--r--vendor/image/src/imageops/affine.rs410
-rw-r--r--vendor/image/src/imageops/colorops.rs646
-rw-r--r--vendor/image/src/imageops/mod.rs485
-rw-r--r--vendor/image/src/imageops/sample.rs1228
4 files changed, 0 insertions, 2769 deletions
diff --git a/vendor/image/src/imageops/affine.rs b/vendor/image/src/imageops/affine.rs
deleted file mode 100644
index 548381c..0000000
--- a/vendor/image/src/imageops/affine.rs
+++ /dev/null
@@ -1,410 +0,0 @@
-//! Functions for performing affine transformations.
-
-use crate::error::{ImageError, ParameterError, ParameterErrorKind};
-use crate::image::{GenericImage, GenericImageView};
-use crate::traits::Pixel;
-use crate::ImageBuffer;
-
-/// Rotate an image 90 degrees clockwise.
-pub fn rotate90<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(height, width);
- let _ = rotate90_in(image, &mut out);
- out
-}
-
-/// Rotate an image 180 degrees clockwise.
-pub fn rotate180<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
- let _ = rotate180_in(image, &mut out);
- out
-}
-
-/// Rotate an image 270 degrees clockwise.
-pub fn rotate270<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(height, width);
- let _ = rotate270_in(image, &mut out);
- out
-}
-
-/// Rotate an image 90 degrees clockwise and put the result into the destination [`ImageBuffer`].
-pub fn rotate90_in<I, Container>(
- image: &I,
- destination: &mut ImageBuffer<I::Pixel, Container>,
-) -> crate::ImageResult<()>
-where
- I: GenericImageView,
- I::Pixel: 'static,
- Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>,
-{
- let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
- if w0 != h1 || h0 != w1 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- for y in 0..h0 {
- for x in 0..w0 {
- let p = image.get_pixel(x, y);
- destination.put_pixel(h0 - y - 1, x, p);
- }
- }
- Ok(())
-}
-
-/// Rotate an image 180 degrees clockwise and put the result into the destination [`ImageBuffer`].
-pub fn rotate180_in<I, Container>(
- image: &I,
- destination: &mut ImageBuffer<I::Pixel, Container>,
-) -> crate::ImageResult<()>
-where
- I: GenericImageView,
- I::Pixel: 'static,
- Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>,
-{
- let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
- if w0 != w1 || h0 != h1 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- for y in 0..h0 {
- for x in 0..w0 {
- let p = image.get_pixel(x, y);
- destination.put_pixel(w0 - x - 1, h0 - y - 1, p);
- }
- }
- Ok(())
-}
-
-/// Rotate an image 270 degrees clockwise and put the result into the destination [`ImageBuffer`].
-pub fn rotate270_in<I, Container>(
- image: &I,
- destination: &mut ImageBuffer<I::Pixel, Container>,
-) -> crate::ImageResult<()>
-where
- I: GenericImageView,
- I::Pixel: 'static,
- Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>,
-{
- let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
- if w0 != h1 || h0 != w1 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- for y in 0..h0 {
- for x in 0..w0 {
- let p = image.get_pixel(x, y);
- destination.put_pixel(y, w0 - x - 1, p);
- }
- }
- Ok(())
-}
-
-/// Flip an image horizontally
-pub fn flip_horizontal<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
- let _ = flip_horizontal_in(image, &mut out);
- out
-}
-
-/// Flip an image vertically
-pub fn flip_vertical<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
- let _ = flip_vertical_in(image, &mut out);
- out
-}
-
-/// Flip an image horizontally and put the result into the destination [`ImageBuffer`].
-pub fn flip_horizontal_in<I, Container>(
- image: &I,
- destination: &mut ImageBuffer<I::Pixel, Container>,
-) -> crate::ImageResult<()>
-where
- I: GenericImageView,
- I::Pixel: 'static,
- Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>,
-{
- let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
- if w0 != w1 || h0 != h1 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- for y in 0..h0 {
- for x in 0..w0 {
- let p = image.get_pixel(x, y);
- destination.put_pixel(w0 - x - 1, y, p);
- }
- }
- Ok(())
-}
-
-/// Flip an image vertically and put the result into the destination [`ImageBuffer`].
-pub fn flip_vertical_in<I, Container>(
- image: &I,
- destination: &mut ImageBuffer<I::Pixel, Container>,
-) -> crate::ImageResult<()>
-where
- I: GenericImageView,
- I::Pixel: 'static,
- Container: std::ops::DerefMut<Target = [<I::Pixel as Pixel>::Subpixel]>,
-{
- let ((w0, h0), (w1, h1)) = (image.dimensions(), destination.dimensions());
- if w0 != w1 || h0 != h1 {
- return Err(ImageError::Parameter(ParameterError::from_kind(
- ParameterErrorKind::DimensionMismatch,
- )));
- }
-
- for y in 0..h0 {
- for x in 0..w0 {
- let p = image.get_pixel(x, y);
- destination.put_pixel(x, h0 - 1 - y, p);
- }
- }
- Ok(())
-}
-
-/// Rotate an image 180 degrees clockwise in place.
-pub fn rotate180_in_place<I: GenericImage>(image: &mut I) {
- let (width, height) = image.dimensions();
-
- for y in 0..height / 2 {
- for x in 0..width {
- let p = image.get_pixel(x, y);
-
- let x2 = width - x - 1;
- let y2 = height - y - 1;
-
- let p2 = image.get_pixel(x2, y2);
- image.put_pixel(x, y, p2);
- image.put_pixel(x2, y2, p);
- }
- }
-
- if height % 2 != 0 {
- let middle = height / 2;
-
- for x in 0..width / 2 {
- let p = image.get_pixel(x, middle);
- let x2 = width - x - 1;
-
- let p2 = image.get_pixel(x2, middle);
- image.put_pixel(x, middle, p2);
- image.put_pixel(x2, middle, p);
- }
- }
-}
-
-/// Flip an image horizontally in place.
-pub fn flip_horizontal_in_place<I: GenericImage>(image: &mut I) {
- let (width, height) = image.dimensions();
-
- for y in 0..height {
- for x in 0..width / 2 {
- let x2 = width - x - 1;
- let p2 = image.get_pixel(x2, y);
- let p = image.get_pixel(x, y);
- image.put_pixel(x2, y, p);
- image.put_pixel(x, y, p2);
- }
- }
-}
-
-/// Flip an image vertically in place.
-pub fn flip_vertical_in_place<I: GenericImage>(image: &mut I) {
- let (width, height) = image.dimensions();
-
- for y in 0..height / 2 {
- for x in 0..width {
- let y2 = height - y - 1;
- let p2 = image.get_pixel(x, y2);
- let p = image.get_pixel(x, y);
- image.put_pixel(x, y2, p);
- image.put_pixel(x, y, p2);
- }
- }
-}
-
-#[cfg(test)]
-mod test {
- use super::{
- flip_horizontal, flip_horizontal_in_place, flip_vertical, flip_vertical_in_place,
- rotate180, rotate180_in_place, rotate270, rotate90,
- };
- use crate::image::GenericImage;
- use crate::traits::Pixel;
- use crate::{GrayImage, ImageBuffer};
-
- macro_rules! assert_pixels_eq {
- ($actual:expr, $expected:expr) => {{
- let actual_dim = $actual.dimensions();
- let expected_dim = $expected.dimensions();
-
- if actual_dim != expected_dim {
- panic!(
- "dimensions do not match. \
- actual: {:?}, expected: {:?}",
- actual_dim, expected_dim
- )
- }
-
- let diffs = pixel_diffs($actual, $expected);
-
- if !diffs.is_empty() {
- let mut err = "".to_string();
-
- let diff_messages = diffs
- .iter()
- .take(5)
- .map(|d| format!("\nactual: {:?}, expected {:?} ", d.0, d.1))
- .collect::<Vec<_>>()
- .join("");
-
- err.push_str(&diff_messages);
- panic!("pixels do not match. {:?}", err)
- }
- }};
- }
-
- #[test]
- fn test_rotate90() {
- let image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(2, 3, vec![10u8, 00u8, 11u8, 01u8, 12u8, 02u8]).unwrap();
-
- assert_pixels_eq!(&rotate90(&image), &expected);
- }
-
- #[test]
- fn test_rotate180() {
- let image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![12u8, 11u8, 10u8, 02u8, 01u8, 00u8]).unwrap();
-
- assert_pixels_eq!(&rotate180(&image), &expected);
- }
-
- #[test]
- fn test_rotate270() {
- let image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(2, 3, vec![02u8, 12u8, 01u8, 11u8, 00u8, 10u8]).unwrap();
-
- assert_pixels_eq!(&rotate270(&image), &expected);
- }
-
- #[test]
- fn test_rotate180_in_place() {
- let mut image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![12u8, 11u8, 10u8, 02u8, 01u8, 00u8]).unwrap();
-
- rotate180_in_place(&mut image);
-
- assert_pixels_eq!(&image, &expected);
- }
-
- #[test]
- fn test_flip_horizontal() {
- let image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![02u8, 01u8, 00u8, 12u8, 11u8, 10u8]).unwrap();
-
- assert_pixels_eq!(&flip_horizontal(&image), &expected);
- }
-
- #[test]
- fn test_flip_vertical() {
- let image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 00u8, 01u8, 02u8]).unwrap();
-
- assert_pixels_eq!(&flip_vertical(&image), &expected);
- }
-
- #[test]
- fn test_flip_horizontal_in_place() {
- let mut image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![02u8, 01u8, 00u8, 12u8, 11u8, 10u8]).unwrap();
-
- flip_horizontal_in_place(&mut image);
-
- assert_pixels_eq!(&image, &expected);
- }
-
- #[test]
- fn test_flip_vertical_in_place() {
- let mut image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 00u8, 01u8, 02u8]).unwrap();
-
- flip_vertical_in_place(&mut image);
-
- assert_pixels_eq!(&image, &expected);
- }
-
- fn pixel_diffs<I, J, P>(left: &I, right: &J) -> Vec<((u32, u32, P), (u32, u32, P))>
- where
- I: GenericImage<Pixel = P>,
- J: GenericImage<Pixel = P>,
- P: Pixel + Eq,
- {
- left.pixels()
- .zip(right.pixels())
- .filter(|&(p, q)| p != q)
- .collect::<Vec<_>>()
- }
-}
diff --git a/vendor/image/src/imageops/colorops.rs b/vendor/image/src/imageops/colorops.rs
deleted file mode 100644
index 085e5f4..0000000
--- a/vendor/image/src/imageops/colorops.rs
+++ /dev/null
@@ -1,646 +0,0 @@
-//! Functions for altering and converting the color of pixelbufs
-
-use num_traits::NumCast;
-use std::f64::consts::PI;
-
-use crate::color::{FromColor, IntoColor, Luma, LumaA, Rgba};
-use crate::image::{GenericImage, GenericImageView};
-use crate::traits::{Pixel, Primitive};
-use crate::utils::clamp;
-use crate::ImageBuffer;
-
-type Subpixel<I> = <<I as GenericImageView>::Pixel as Pixel>::Subpixel;
-
-/// Convert the supplied image to grayscale. Alpha channel is discarded.
-pub fn grayscale<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<Luma<Subpixel<I>>, Vec<Subpixel<I>>> {
- grayscale_with_type(image)
-}
-
-/// Convert the supplied image to grayscale. Alpha channel is preserved.
-pub fn grayscale_alpha<I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<LumaA<Subpixel<I>>, Vec<Subpixel<I>>> {
- grayscale_with_type_alpha(image)
-}
-
-/// Convert the supplied image to a grayscale image with the specified pixel type. Alpha channel is discarded.
-pub fn grayscale_with_type<NewPixel, I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<NewPixel, Vec<NewPixel::Subpixel>>
-where
- NewPixel: Pixel + FromColor<Luma<Subpixel<I>>>,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
-
- for (x, y, pixel) in image.pixels() {
- let grayscale = pixel.to_luma();
- let new_pixel = grayscale.into_color(); // no-op for luma->luma
-
- out.put_pixel(x, y, new_pixel);
- }
-
- out
-}
-
-/// Convert the supplied image to a grayscale image with the specified pixel type. Alpha channel is preserved.
-pub fn grayscale_with_type_alpha<NewPixel, I: GenericImageView>(
- image: &I,
-) -> ImageBuffer<NewPixel, Vec<NewPixel::Subpixel>>
-where
- NewPixel: Pixel + FromColor<LumaA<Subpixel<I>>>,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
-
- for (x, y, pixel) in image.pixels() {
- let grayscale = pixel.to_luma_alpha();
- let new_pixel = grayscale.into_color(); // no-op for luma->luma
-
- out.put_pixel(x, y, new_pixel);
- }
-
- out
-}
-
-/// Invert each pixel within the supplied image.
-/// This function operates in place.
-pub fn invert<I: GenericImage>(image: &mut I) {
- // TODO find a way to use pixels?
- let (width, height) = image.dimensions();
-
- for y in 0..height {
- for x in 0..width {
- let mut p = image.get_pixel(x, y);
- p.invert();
-
- image.put_pixel(x, y, p);
- }
- }
-}
-
-/// Adjust the contrast of the supplied image.
-/// ```contrast``` is the amount to adjust the contrast by.
-/// Negative values decrease the contrast and positive values increase the contrast.
-///
-/// *[See also `contrast_in_place`.][contrast_in_place]*
-pub fn contrast<I, P, S>(image: &I, contrast: f32) -> ImageBuffer<P, Vec<S>>
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
-
- let max = S::DEFAULT_MAX_VALUE;
- let max: f32 = NumCast::from(max).unwrap();
-
- let percent = ((100.0 + contrast) / 100.0).powi(2);
-
- for (x, y, pixel) in image.pixels() {
- let f = pixel.map(|b| {
- let c: f32 = NumCast::from(b).unwrap();
-
- let d = ((c / max - 0.5) * percent + 0.5) * max;
- let e = clamp(d, 0.0, max);
-
- NumCast::from(e).unwrap()
- });
- out.put_pixel(x, y, f);
- }
-
- out
-}
-
-/// Adjust the contrast of the supplied image in place.
-/// ```contrast``` is the amount to adjust the contrast by.
-/// Negative values decrease the contrast and positive values increase the contrast.
-///
-/// *[See also `contrast`.][contrast]*
-pub fn contrast_in_place<I>(image: &mut I, contrast: f32)
-where
- I: GenericImage,
-{
- let (width, height) = image.dimensions();
-
- let max = <I::Pixel as Pixel>::Subpixel::DEFAULT_MAX_VALUE;
- let max: f32 = NumCast::from(max).unwrap();
-
- let percent = ((100.0 + contrast) / 100.0).powi(2);
-
- // TODO find a way to use pixels?
- for y in 0..height {
- for x in 0..width {
- let f = image.get_pixel(x, y).map(|b| {
- let c: f32 = NumCast::from(b).unwrap();
-
- let d = ((c / max - 0.5) * percent + 0.5) * max;
- let e = clamp(d, 0.0, max);
-
- NumCast::from(e).unwrap()
- });
-
- image.put_pixel(x, y, f);
- }
- }
-}
-
-/// Brighten the supplied image.
-/// ```value``` is the amount to brighten each pixel by.
-/// Negative values decrease the brightness and positive values increase it.
-///
-/// *[See also `brighten_in_place`.][brighten_in_place]*
-pub fn brighten<I, P, S>(image: &I, value: i32) -> ImageBuffer<P, Vec<S>>
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
-
- let max = S::DEFAULT_MAX_VALUE;
- let max: i32 = NumCast::from(max).unwrap();
-
- for (x, y, pixel) in image.pixels() {
- let e = pixel.map_with_alpha(
- |b| {
- let c: i32 = NumCast::from(b).unwrap();
- let d = clamp(c + value, 0, max);
-
- NumCast::from(d).unwrap()
- },
- |alpha| alpha,
- );
- out.put_pixel(x, y, e);
- }
-
- out
-}
-
-/// Brighten the supplied image in place.
-/// ```value``` is the amount to brighten each pixel by.
-/// Negative values decrease the brightness and positive values increase it.
-///
-/// *[See also `brighten`.][brighten]*
-pub fn brighten_in_place<I>(image: &mut I, value: i32)
-where
- I: GenericImage,
-{
- let (width, height) = image.dimensions();
-
- let max = <I::Pixel as Pixel>::Subpixel::DEFAULT_MAX_VALUE;
- let max: i32 = NumCast::from(max).unwrap(); // TODO what does this do for f32? clamp at 1??
-
- // TODO find a way to use pixels?
- for y in 0..height {
- for x in 0..width {
- let e = image.get_pixel(x, y).map_with_alpha(
- |b| {
- let c: i32 = NumCast::from(b).unwrap();
- let d = clamp(c + value, 0, max);
-
- NumCast::from(d).unwrap()
- },
- |alpha| alpha,
- );
-
- image.put_pixel(x, y, e);
- }
- }
-}
-
-/// Hue rotate the supplied image.
-/// `value` is the degrees to rotate each pixel by.
-/// 0 and 360 do nothing, the rest rotates by the given degree value.
-/// just like the css webkit filter hue-rotate(180)
-///
-/// *[See also `huerotate_in_place`.][huerotate_in_place]*
-pub fn huerotate<I, P, S>(image: &I, value: i32) -> ImageBuffer<P, Vec<S>>
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, height);
-
- let angle: f64 = NumCast::from(value).unwrap();
-
- let cosv = (angle * PI / 180.0).cos();
- let sinv = (angle * PI / 180.0).sin();
- let matrix: [f64; 9] = [
- // Reds
- 0.213 + cosv * 0.787 - sinv * 0.213,
- 0.715 - cosv * 0.715 - sinv * 0.715,
- 0.072 - cosv * 0.072 + sinv * 0.928,
- // Greens
- 0.213 - cosv * 0.213 + sinv * 0.143,
- 0.715 + cosv * 0.285 + sinv * 0.140,
- 0.072 - cosv * 0.072 - sinv * 0.283,
- // Blues
- 0.213 - cosv * 0.213 - sinv * 0.787,
- 0.715 - cosv * 0.715 + sinv * 0.715,
- 0.072 + cosv * 0.928 + sinv * 0.072,
- ];
- for (x, y, pixel) in out.enumerate_pixels_mut() {
- let p = image.get_pixel(x, y);
-
- #[allow(deprecated)]
- let (k1, k2, k3, k4) = p.channels4();
- let vec: (f64, f64, f64, f64) = (
- NumCast::from(k1).unwrap(),
- NumCast::from(k2).unwrap(),
- NumCast::from(k3).unwrap(),
- NumCast::from(k4).unwrap(),
- );
-
- let r = vec.0;
- let g = vec.1;
- let b = vec.2;
-
- let new_r = matrix[0] * r + matrix[1] * g + matrix[2] * b;
- let new_g = matrix[3] * r + matrix[4] * g + matrix[5] * b;
- let new_b = matrix[6] * r + matrix[7] * g + matrix[8] * b;
- let max = 255f64;
-
- #[allow(deprecated)]
- let outpixel = Pixel::from_channels(
- NumCast::from(clamp(new_r, 0.0, max)).unwrap(),
- NumCast::from(clamp(new_g, 0.0, max)).unwrap(),
- NumCast::from(clamp(new_b, 0.0, max)).unwrap(),
- NumCast::from(clamp(vec.3, 0.0, max)).unwrap(),
- );
- *pixel = outpixel;
- }
- out
-}
-
-/// Hue rotate the supplied image in place.
-/// `value` is the degrees to rotate each pixel by.
-/// 0 and 360 do nothing, the rest rotates by the given degree value.
-/// just like the css webkit filter hue-rotate(180)
-///
-/// *[See also `huerotate`.][huerotate]*
-pub fn huerotate_in_place<I>(image: &mut I, value: i32)
-where
- I: GenericImage,
-{
- let (width, height) = image.dimensions();
-
- let angle: f64 = NumCast::from(value).unwrap();
-
- let cosv = (angle * PI / 180.0).cos();
- let sinv = (angle * PI / 180.0).sin();
- let matrix: [f64; 9] = [
- // Reds
- 0.213 + cosv * 0.787 - sinv * 0.213,
- 0.715 - cosv * 0.715 - sinv * 0.715,
- 0.072 - cosv * 0.072 + sinv * 0.928,
- // Greens
- 0.213 - cosv * 0.213 + sinv * 0.143,
- 0.715 + cosv * 0.285 + sinv * 0.140,
- 0.072 - cosv * 0.072 - sinv * 0.283,
- // Blues
- 0.213 - cosv * 0.213 - sinv * 0.787,
- 0.715 - cosv * 0.715 + sinv * 0.715,
- 0.072 + cosv * 0.928 + sinv * 0.072,
- ];
-
- // TODO find a way to use pixels?
- for y in 0..height {
- for x in 0..width {
- let pixel = image.get_pixel(x, y);
-
- #[allow(deprecated)]
- let (k1, k2, k3, k4) = pixel.channels4();
-
- let vec: (f64, f64, f64, f64) = (
- NumCast::from(k1).unwrap(),
- NumCast::from(k2).unwrap(),
- NumCast::from(k3).unwrap(),
- NumCast::from(k4).unwrap(),
- );
-
- let r = vec.0;
- let g = vec.1;
- let b = vec.2;
-
- let new_r = matrix[0] * r + matrix[1] * g + matrix[2] * b;
- let new_g = matrix[3] * r + matrix[4] * g + matrix[5] * b;
- let new_b = matrix[6] * r + matrix[7] * g + matrix[8] * b;
- let max = 255f64;
-
- #[allow(deprecated)]
- let outpixel = Pixel::from_channels(
- NumCast::from(clamp(new_r, 0.0, max)).unwrap(),
- NumCast::from(clamp(new_g, 0.0, max)).unwrap(),
- NumCast::from(clamp(new_b, 0.0, max)).unwrap(),
- NumCast::from(clamp(vec.3, 0.0, max)).unwrap(),
- );
-
- image.put_pixel(x, y, outpixel);
- }
- }
-}
-
-/// A color map
-pub trait ColorMap {
- /// The color type on which the map operates on
- type Color;
- /// Returns the index of the closest match of `color`
- /// in the color map.
- fn index_of(&self, color: &Self::Color) -> usize;
- /// Looks up color by index in the color map. If `idx` is out of range for the color map, or
- /// ColorMap doesn't implement `lookup` `None` is returned.
- fn lookup(&self, index: usize) -> Option<Self::Color> {
- let _ = index;
- None
- }
- /// Determine if this implementation of ColorMap overrides the default `lookup`.
- fn has_lookup(&self) -> bool {
- false
- }
- /// Maps `color` to the closest color in the color map.
- fn map_color(&self, color: &mut Self::Color);
-}
-
-/// A bi-level color map
-///
-/// # Examples
-/// ```
-/// use image::imageops::colorops::{index_colors, BiLevel, ColorMap};
-/// use image::{ImageBuffer, Luma};
-///
-/// let (w, h) = (16, 16);
-/// // Create an image with a smooth horizontal gradient from black (0) to white (255).
-/// let gray = ImageBuffer::from_fn(w, h, |x, y| -> Luma<u8> { [(255 * x / w) as u8].into() });
-/// // Mapping the gray image through the `BiLevel` filter should map gray pixels less than half
-/// // intensity (127) to black (0), and anything greater to white (255).
-/// let cmap = BiLevel;
-/// let palletized = index_colors(&gray, &cmap);
-/// let mapped = ImageBuffer::from_fn(w, h, |x, y| {
-/// let p = palletized.get_pixel(x, y);
-/// cmap.lookup(p.0[0] as usize)
-/// .expect("indexed color out-of-range")
-/// });
-/// // Create an black and white image of expected output.
-/// let bw = ImageBuffer::from_fn(w, h, |x, y| -> Luma<u8> {
-/// if x <= (w / 2) {
-/// [0].into()
-/// } else {
-/// [255].into()
-/// }
-/// });
-/// assert_eq!(mapped, bw);
-/// ```
-#[derive(Clone, Copy)]
-pub struct BiLevel;
-
-impl ColorMap for BiLevel {
- type Color = Luma<u8>;
-
- #[inline(always)]
- fn index_of(&self, color: &Luma<u8>) -> usize {
- let luma = color.0;
- if luma[0] > 127 {
- 1
- } else {
- 0
- }
- }
-
- #[inline(always)]
- fn lookup(&self, idx: usize) -> Option<Self::Color> {
- match idx {
- 0 => Some([0].into()),
- 1 => Some([255].into()),
- _ => None,
- }
- }
-
- /// Indicate NeuQuant implements `lookup`.
- fn has_lookup(&self) -> bool {
- true
- }
-
- #[inline(always)]
- fn map_color(&self, color: &mut Luma<u8>) {
- let new_color = 0xFF * self.index_of(color) as u8;
- let luma = &mut color.0;
- luma[0] = new_color;
- }
-}
-
-impl ColorMap for color_quant::NeuQuant {
- type Color = Rgba<u8>;
-
- #[inline(always)]
- fn index_of(&self, color: &Rgba<u8>) -> usize {
- self.index_of(color.channels())
- }
-
- #[inline(always)]
- fn lookup(&self, idx: usize) -> Option<Self::Color> {
- self.lookup(idx).map(|p| p.into())
- }
-
- /// Indicate NeuQuant implements `lookup`.
- fn has_lookup(&self) -> bool {
- true
- }
-
- #[inline(always)]
- fn map_color(&self, color: &mut Rgba<u8>) {
- self.map_pixel(color.channels_mut())
- }
-}
-
-/// Floyd-Steinberg error diffusion
-fn diffuse_err<P: Pixel<Subpixel = u8>>(pixel: &mut P, error: [i16; 3], factor: i16) {
- for (e, c) in error.iter().zip(pixel.channels_mut().iter_mut()) {
- *c = match <i16 as From<_>>::from(*c) + e * factor / 16 {
- val if val < 0 => 0,
- val if val > 0xFF => 0xFF,
- val => val as u8,
- }
- }
-}
-
-macro_rules! do_dithering(
- ($map:expr, $image:expr, $err:expr, $x:expr, $y:expr) => (
- {
- let old_pixel = $image[($x, $y)];
- let new_pixel = $image.get_pixel_mut($x, $y);
- $map.map_color(new_pixel);
- for ((e, &old), &new) in $err.iter_mut()
- .zip(old_pixel.channels().iter())
- .zip(new_pixel.channels().iter())
- {
- *e = <i16 as From<_>>::from(old) - <i16 as From<_>>::from(new)
- }
- }
- )
-);
-
-/// Reduces the colors of the image using the supplied `color_map` while applying
-/// Floyd-Steinberg dithering to improve the visual conception
-pub fn dither<Pix, Map>(image: &mut ImageBuffer<Pix, Vec<u8>>, color_map: &Map)
-where
- Map: ColorMap<Color = Pix> + ?Sized,
- Pix: Pixel<Subpixel = u8> + 'static,
-{
- let (width, height) = image.dimensions();
- let mut err: [i16; 3] = [0; 3];
- for y in 0..height - 1 {
- let x = 0;
- do_dithering!(color_map, image, err, x, y);
- diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
- diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
- diffuse_err(image.get_pixel_mut(x + 1, y + 1), err, 1);
- for x in 1..width - 1 {
- do_dithering!(color_map, image, err, x, y);
- diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
- diffuse_err(image.get_pixel_mut(x - 1, y + 1), err, 3);
- diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
- diffuse_err(image.get_pixel_mut(x + 1, y + 1), err, 1);
- }
- let x = width - 1;
- do_dithering!(color_map, image, err, x, y);
- diffuse_err(image.get_pixel_mut(x - 1, y + 1), err, 3);
- diffuse_err(image.get_pixel_mut(x, y + 1), err, 5);
- }
- let y = height - 1;
- let x = 0;
- do_dithering!(color_map, image, err, x, y);
- diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
- for x in 1..width - 1 {
- do_dithering!(color_map, image, err, x, y);
- diffuse_err(image.get_pixel_mut(x + 1, y), err, 7);
- }
- let x = width - 1;
- do_dithering!(color_map, image, err, x, y);
-}
-
-/// Reduces the colors using the supplied `color_map` and returns an image of the indices
-pub fn index_colors<Pix, Map>(
- image: &ImageBuffer<Pix, Vec<u8>>,
- color_map: &Map,
-) -> ImageBuffer<Luma<u8>, Vec<u8>>
-where
- Map: ColorMap<Color = Pix> + ?Sized,
- Pix: Pixel<Subpixel = u8> + 'static,
-{
- let mut indices = ImageBuffer::new(image.width(), image.height());
- for (pixel, idx) in image.pixels().zip(indices.pixels_mut()) {
- *idx = Luma([color_map.index_of(pixel) as u8])
- }
- indices
-}
-
-#[cfg(test)]
-mod test {
-
- use super::*;
- use crate::{GrayImage, ImageBuffer};
-
- macro_rules! assert_pixels_eq {
- ($actual:expr, $expected:expr) => {{
- let actual_dim = $actual.dimensions();
- let expected_dim = $expected.dimensions();
-
- if actual_dim != expected_dim {
- panic!(
- "dimensions do not match. \
- actual: {:?}, expected: {:?}",
- actual_dim, expected_dim
- )
- }
-
- let diffs = pixel_diffs($actual, $expected);
-
- if !diffs.is_empty() {
- let mut err = "".to_string();
-
- let diff_messages = diffs
- .iter()
- .take(5)
- .map(|d| format!("\nactual: {:?}, expected {:?} ", d.0, d.1))
- .collect::<Vec<_>>()
- .join("");
-
- err.push_str(&diff_messages);
- panic!("pixels do not match. {:?}", err)
- }
- }};
- }
-
- #[test]
- fn test_dither() {
- let mut image = ImageBuffer::from_raw(2, 2, vec![127, 127, 127, 127]).unwrap();
- let cmap = BiLevel;
- dither(&mut image, &cmap);
- assert_eq!(&*image, &[0, 0xFF, 0xFF, 0]);
- assert_eq!(index_colors(&image, &cmap).into_raw(), vec![0, 1, 1, 0])
- }
-
- #[test]
- fn test_grayscale() {
- let mut image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- assert_pixels_eq!(&grayscale(&mut image), &expected);
- }
-
- #[test]
- fn test_invert() {
- let mut image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![255u8, 254u8, 253u8, 245u8, 244u8, 243u8]).unwrap();
-
- invert(&mut image);
- assert_pixels_eq!(&image, &expected);
- }
- #[test]
- fn test_brighten() {
- let image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 20u8, 21u8, 22u8]).unwrap();
-
- assert_pixels_eq!(&brighten(&image, 10), &expected);
- }
-
- #[test]
- fn test_brighten_place() {
- let mut image: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![00u8, 01u8, 02u8, 10u8, 11u8, 12u8]).unwrap();
-
- let expected: GrayImage =
- ImageBuffer::from_raw(3, 2, vec![10u8, 11u8, 12u8, 20u8, 21u8, 22u8]).unwrap();
-
- brighten_in_place(&mut image, 10);
- assert_pixels_eq!(&image, &expected);
- }
-
- fn pixel_diffs<I, J, P>(left: &I, right: &J) -> Vec<((u32, u32, P), (u32, u32, P))>
- where
- I: GenericImage<Pixel = P>,
- J: GenericImage<Pixel = P>,
- P: Pixel + Eq,
- {
- left.pixels()
- .zip(right.pixels())
- .filter(|&(p, q)| p != q)
- .collect::<Vec<_>>()
- }
-}
diff --git a/vendor/image/src/imageops/mod.rs b/vendor/image/src/imageops/mod.rs
deleted file mode 100644
index fdd2bf3..0000000
--- a/vendor/image/src/imageops/mod.rs
+++ /dev/null
@@ -1,485 +0,0 @@
-//! Image Processing Functions
-use std::cmp;
-
-use crate::image::{GenericImage, GenericImageView, SubImage};
-use crate::traits::{Lerp, Pixel, Primitive};
-
-pub use self::sample::FilterType;
-
-pub use self::sample::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
-
-/// Affine transformations
-pub use self::affine::{
- flip_horizontal, flip_horizontal_in, flip_horizontal_in_place, flip_vertical, flip_vertical_in,
- flip_vertical_in_place, rotate180, rotate180_in, rotate180_in_place, rotate270, rotate270_in,
- rotate90, rotate90_in,
-};
-
-/// Image sampling
-pub use self::sample::{
- blur, filter3x3, interpolate_bilinear, interpolate_nearest, resize, sample_bilinear,
- sample_nearest, thumbnail, unsharpen,
-};
-
-/// Color operations
-pub use self::colorops::{
- brighten, contrast, dither, grayscale, grayscale_alpha, grayscale_with_type,
- grayscale_with_type_alpha, huerotate, index_colors, invert, BiLevel, ColorMap,
-};
-
-mod affine;
-// Public only because of Rust bug:
-// https://github.com/rust-lang/rust/issues/18241
-pub mod colorops;
-mod sample;
-
-/// Return a mutable view into an image
-/// The coordinates set the position of the top left corner of the crop.
-pub fn crop<I: GenericImageView>(
- image: &mut I,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
-) -> SubImage<&mut I> {
- let (x, y, width, height) = crop_dimms(image, x, y, width, height);
- SubImage::new(image, x, y, width, height)
-}
-
-/// Return an immutable view into an image
-/// The coordinates set the position of the top left corner of the crop.
-pub fn crop_imm<I: GenericImageView>(
- image: &I,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
-) -> SubImage<&I> {
- let (x, y, width, height) = crop_dimms(image, x, y, width, height);
- SubImage::new(image, x, y, width, height)
-}
-
-fn crop_dimms<I: GenericImageView>(
- image: &I,
- x: u32,
- y: u32,
- width: u32,
- height: u32,
-) -> (u32, u32, u32, u32) {
- let (iwidth, iheight) = image.dimensions();
-
- let x = cmp::min(x, iwidth);
- let y = cmp::min(y, iheight);
-
- let height = cmp::min(height, iheight - y);
- let width = cmp::min(width, iwidth - x);
-
- (x, y, width, height)
-}
-
-/// Calculate the region that can be copied from top to bottom.
-///
-/// Given image size of bottom and top image, and a point at which we want to place the top image
-/// onto the bottom image, how large can we be? Have to wary of the following issues:
-/// * Top might be larger than bottom
-/// * Overflows in the computation
-/// * Coordinates could be completely out of bounds
-///
-/// The main idea is to make use of inequalities provided by the nature of `saturating_add` and
-/// `saturating_sub`. These intrinsically validate that all resulting coordinates will be in bounds
-/// for both images.
-///
-/// We want that all these coordinate accesses are safe:
-/// 1. `bottom.get_pixel(x + [0..x_range), y + [0..y_range))`
-/// 2. `top.get_pixel([0..x_range), [0..y_range))`
-///
-/// Proof that the function provides the necessary bounds for width. Note that all unaugmented math
-/// operations are to be read in standard arithmetic, not integer arithmetic. Since no direct
-/// integer arithmetic occurs in the implementation, this is unambiguous.
-///
-/// ```text
-/// Three short notes/lemmata:
-/// - Iff `(a - b) <= 0` then `a.saturating_sub(b) = 0`
-/// - Iff `(a - b) >= 0` then `a.saturating_sub(b) = a - b`
-/// - If `a <= c` then `a.saturating_sub(b) <= c.saturating_sub(b)`
-///
-/// 1.1 We show that if `bottom_width <= x`, then `x_range = 0` therefore `x + [0..x_range)` is empty.
-///
-/// x_range
-/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
-/// <= bottom_width.saturating_sub(x)
-///
-/// bottom_width <= x
-/// <==> bottom_width - x <= 0
-/// <==> bottom_width.saturating_sub(x) = 0
-/// ==> x_range <= 0
-/// ==> x_range = 0
-///
-/// 1.2 If `x < bottom_width` then `x + x_range < bottom_width`
-///
-/// x + x_range
-/// <= x + bottom_width.saturating_sub(x)
-/// = x + (bottom_width - x)
-/// = bottom_width
-///
-/// 2. We show that `x_range <= top_width`
-///
-/// x_range
-/// = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
-/// <= top_width.saturating_add(x).saturating_sub(x)
-/// <= (top_wdith + x).saturating_sub(x)
-/// = top_width (due to `top_width >= 0` and `x >= 0`)
-/// ```
-///
-/// Proof is the same for height.
-pub fn overlay_bounds(
- (bottom_width, bottom_height): (u32, u32),
- (top_width, top_height): (u32, u32),
- x: u32,
- y: u32,
-) -> (u32, u32) {
- let x_range = top_width
- .saturating_add(x) // Calculate max coordinate
- .min(bottom_width) // Restrict to lower width
- .saturating_sub(x); // Determinate length from start `x`
- let y_range = top_height
- .saturating_add(y)
- .min(bottom_height)
- .saturating_sub(y);
- (x_range, y_range)
-}
-
-/// Calculate the region that can be copied from top to bottom.
-///
-/// Given image size of bottom and top image, and a point at which we want to place the top image
-/// onto the bottom image, how large can we be? Have to wary of the following issues:
-/// * Top might be larger than bottom
-/// * Overflows in the computation
-/// * Coordinates could be completely out of bounds
-///
-/// The returned value is of the form:
-///
-/// `(origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, x_range, y_range)`
-///
-/// The main idea is to do computations on i64's and then clamp to image dimensions.
-/// In particular, we want to ensure that all these coordinate accesses are safe:
-/// 1. `bottom.get_pixel(origin_bottom_x + [0..x_range), origin_bottom_y + [0..y_range))`
-/// 2. `top.get_pixel(origin_top_y + [0..x_range), origin_top_y + [0..y_range))`
-///
-fn overlay_bounds_ext(
- (bottom_width, bottom_height): (u32, u32),
- (top_width, top_height): (u32, u32),
- x: i64,
- y: i64,
-) -> (u32, u32, u32, u32, u32, u32) {
- // Return a predictable value if the two images don't overlap at all.
- if x > i64::from(bottom_width)
- || y > i64::from(bottom_height)
- || x.saturating_add(i64::from(top_width)) <= 0
- || y.saturating_add(i64::from(top_height)) <= 0
- {
- return (0, 0, 0, 0, 0, 0);
- }
-
- // Find the maximum x and y coordinates in terms of the bottom image.
- let max_x = x.saturating_add(i64::from(top_width));
- let max_y = y.saturating_add(i64::from(top_height));
-
- // Clip the origin and maximum coordinates to the bounds of the bottom image.
- // Casting to a u32 is safe because both 0 and `bottom_{width,height}` fit
- // into 32-bits.
- let max_inbounds_x = max_x.clamp(0, i64::from(bottom_width)) as u32;
- let max_inbounds_y = max_y.clamp(0, i64::from(bottom_height)) as u32;
- let origin_bottom_x = x.clamp(0, i64::from(bottom_width)) as u32;
- let origin_bottom_y = y.clamp(0, i64::from(bottom_height)) as u32;
-
- // The range is the difference between the maximum inbounds coordinates and
- // the clipped origin. Unchecked subtraction is safe here because both are
- // always positive and `max_inbounds_{x,y}` >= `origin_{x,y}` due to
- // `top_{width,height}` being >= 0.
- let x_range = max_inbounds_x - origin_bottom_x;
- let y_range = max_inbounds_y - origin_bottom_y;
-
- // If x (or y) is negative, then the origin of the top image is shifted by -x (or -y).
- let origin_top_x = x.saturating_mul(-1).clamp(0, i64::from(top_width)) as u32;
- let origin_top_y = y.saturating_mul(-1).clamp(0, i64::from(top_height)) as u32;
-
- (
- origin_bottom_x,
- origin_bottom_y,
- origin_top_x,
- origin_top_y,
- x_range,
- y_range,
- )
-}
-
-/// Overlay an image at a given coordinate (x, y)
-pub fn overlay<I, J>(bottom: &mut I, top: &J, x: i64, y: i64)
-where
- I: GenericImage,
- J: GenericImageView<Pixel = I::Pixel>,
-{
- let bottom_dims = bottom.dimensions();
- let top_dims = top.dimensions();
-
- // Crop our top image if we're going out of bounds
- let (origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, range_width, range_height) =
- overlay_bounds_ext(bottom_dims, top_dims, x, y);
-
- for y in 0..range_height {
- for x in 0..range_width {
- let p = top.get_pixel(origin_top_x + x, origin_top_y + y);
- let mut bottom_pixel = bottom.get_pixel(origin_bottom_x + x, origin_bottom_y + y);
- bottom_pixel.blend(&p);
-
- bottom.put_pixel(origin_bottom_x + x, origin_bottom_y + y, bottom_pixel);
- }
- }
-}
-
-/// Tile an image by repeating it multiple times
-///
-/// # Examples
-/// ```no_run
-/// use image::{RgbaImage};
-///
-/// let mut img = RgbaImage::new(1920, 1080);
-/// let tile = image::open("tile.png").unwrap();
-///
-/// image::imageops::tile(&mut img, &tile);
-/// img.save("tiled_wallpaper.png").unwrap();
-/// ```
-pub fn tile<I, J>(bottom: &mut I, top: &J)
-where
- I: GenericImage,
- J: GenericImageView<Pixel = I::Pixel>,
-{
- for x in (0..bottom.width()).step_by(top.width() as usize) {
- for y in (0..bottom.height()).step_by(top.height() as usize) {
- overlay(bottom, top, i64::from(x), i64::from(y));
- }
- }
-}
-
-/// Fill the image with a linear vertical gradient
-///
-/// This function assumes a linear color space.
-///
-/// # Examples
-/// ```no_run
-/// use image::{Rgba, RgbaImage, Pixel};
-///
-/// let mut img = RgbaImage::new(100, 100);
-/// let start = Rgba::from_slice(&[0, 128, 0, 0]);
-/// let end = Rgba::from_slice(&[255, 255, 255, 255]);
-///
-/// image::imageops::vertical_gradient(&mut img, start, end);
-/// img.save("vertical_gradient.png").unwrap();
-pub fn vertical_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
-where
- I: GenericImage<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + Lerp + 'static,
-{
- for y in 0..img.height() {
- let pixel = start.map2(stop, |a, b| {
- let y = <S::Ratio as num_traits::NumCast>::from(y).unwrap();
- let height = <S::Ratio as num_traits::NumCast>::from(img.height() - 1).unwrap();
- S::lerp(a, b, y / height)
- });
-
- for x in 0..img.width() {
- img.put_pixel(x, y, pixel);
- }
- }
-}
-
-/// Fill the image with a linear horizontal gradient
-///
-/// This function assumes a linear color space.
-///
-/// # Examples
-/// ```no_run
-/// use image::{Rgba, RgbaImage, Pixel};
-///
-/// let mut img = RgbaImage::new(100, 100);
-/// let start = Rgba::from_slice(&[0, 128, 0, 0]);
-/// let end = Rgba::from_slice(&[255, 255, 255, 255]);
-///
-/// image::imageops::horizontal_gradient(&mut img, start, end);
-/// img.save("horizontal_gradient.png").unwrap();
-pub fn horizontal_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
-where
- I: GenericImage<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + Lerp + 'static,
-{
- for x in 0..img.width() {
- let pixel = start.map2(stop, |a, b| {
- let x = <S::Ratio as num_traits::NumCast>::from(x).unwrap();
- let width = <S::Ratio as num_traits::NumCast>::from(img.width() - 1).unwrap();
- S::lerp(a, b, x / width)
- });
-
- for y in 0..img.height() {
- img.put_pixel(x, y, pixel);
- }
- }
-}
-
-/// Replace the contents of an image at a given coordinate (x, y)
-pub fn replace<I, J>(bottom: &mut I, top: &J, x: i64, y: i64)
-where
- I: GenericImage,
- J: GenericImageView<Pixel = I::Pixel>,
-{
- let bottom_dims = bottom.dimensions();
- let top_dims = top.dimensions();
-
- // Crop our top image if we're going out of bounds
- let (origin_bottom_x, origin_bottom_y, origin_top_x, origin_top_y, range_width, range_height) =
- overlay_bounds_ext(bottom_dims, top_dims, x, y);
-
- for y in 0..range_height {
- for x in 0..range_width {
- let p = top.get_pixel(origin_top_x + x, origin_top_y + y);
- bottom.put_pixel(origin_bottom_x + x, origin_bottom_y + y, p);
- }
- }
-}
-
-#[cfg(test)]
-mod tests {
-
- use super::{overlay, overlay_bounds_ext};
- use crate::color::Rgb;
- use crate::ImageBuffer;
- use crate::RgbaImage;
-
- #[test]
- fn test_overlay_bounds_ext() {
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), 0, 0),
- (0, 0, 0, 0, 10, 10)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), 1, 0),
- (1, 0, 0, 0, 9, 10)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), 0, 11),
- (0, 0, 0, 0, 0, 0)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), -1, 0),
- (0, 0, 1, 0, 9, 10)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), -10, 0),
- (0, 0, 0, 0, 0, 0)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), 1i64 << 50, 0),
- (0, 0, 0, 0, 0, 0)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (10, 10), -(1i64 << 50), 0),
- (0, 0, 0, 0, 0, 0)
- );
- assert_eq!(
- overlay_bounds_ext((10, 10), (u32::MAX, 10), 10 - i64::from(u32::MAX), 0),
- (0, 0, u32::MAX - 10, 0, 10, 10)
- );
- }
-
- #[test]
- /// Test that images written into other images works
- fn test_image_in_image() {
- let mut target = ImageBuffer::new(32, 32);
- let source = ImageBuffer::from_pixel(16, 16, Rgb([255u8, 0, 0]));
- overlay(&mut target, &source, 0, 0);
- assert!(*target.get_pixel(0, 0) == Rgb([255u8, 0, 0]));
- assert!(*target.get_pixel(15, 0) == Rgb([255u8, 0, 0]));
- assert!(*target.get_pixel(16, 0) == Rgb([0u8, 0, 0]));
- assert!(*target.get_pixel(0, 15) == Rgb([255u8, 0, 0]));
- assert!(*target.get_pixel(0, 16) == Rgb([0u8, 0, 0]));
- }
-
- #[test]
- /// Test that images written outside of a frame doesn't blow up
- fn test_image_in_image_outside_of_bounds() {
- let mut target = ImageBuffer::new(32, 32);
- let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
- overlay(&mut target, &source, 1, 1);
- assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
- assert!(*target.get_pixel(1, 1) == Rgb([255u8, 0, 0]));
- assert!(*target.get_pixel(31, 31) == Rgb([255u8, 0, 0]));
- }
-
- #[test]
- /// Test that images written to coordinates out of the frame doesn't blow up
- /// (issue came up in #848)
- fn test_image_outside_image_no_wrap_around() {
- let mut target = ImageBuffer::new(32, 32);
- let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
- overlay(&mut target, &source, 33, 33);
- assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
- assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
- assert!(*target.get_pixel(31, 31) == Rgb([0, 0, 0]));
- }
-
- #[test]
- /// Test that images written to coordinates with overflow works
- fn test_image_coordinate_overflow() {
- let mut target = ImageBuffer::new(16, 16);
- let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
- // Overflows to 'sane' coordinates but top is larger than bot.
- overlay(
- &mut target,
- &source,
- i64::from(u32::max_value() - 31),
- i64::from(u32::max_value() - 31),
- );
- assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
- assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
- assert!(*target.get_pixel(15, 15) == Rgb([0, 0, 0]));
- }
-
- use super::{horizontal_gradient, vertical_gradient};
-
- #[test]
- /// Test that horizontal gradients are correctly generated
- fn test_image_horizontal_gradient_limits() {
- let mut img = ImageBuffer::new(100, 1);
-
- let start = Rgb([0u8, 128, 0]);
- let end = Rgb([255u8, 255, 255]);
-
- horizontal_gradient(&mut img, &start, &end);
-
- assert_eq!(img.get_pixel(0, 0), &start);
- assert_eq!(img.get_pixel(img.width() - 1, 0), &end);
- }
-
- #[test]
- /// Test that vertical gradients are correctly generated
- fn test_image_vertical_gradient_limits() {
- let mut img = ImageBuffer::new(1, 100);
-
- let start = Rgb([0u8, 128, 0]);
- let end = Rgb([255u8, 255, 255]);
-
- vertical_gradient(&mut img, &start, &end);
-
- assert_eq!(img.get_pixel(0, 0), &start);
- assert_eq!(img.get_pixel(0, img.height() - 1), &end);
- }
-
- #[test]
- /// Test blur doesn't panick when passed 0.0
- fn test_blur_zero() {
- let image = RgbaImage::new(50, 50);
- let _ = super::blur(&image, 0.0);
- }
-}
diff --git a/vendor/image/src/imageops/sample.rs b/vendor/image/src/imageops/sample.rs
deleted file mode 100644
index a362f83..0000000
--- a/vendor/image/src/imageops/sample.rs
+++ /dev/null
@@ -1,1228 +0,0 @@
-//! Functions and filters for the sampling of pixels.
-
-// See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf
-// for some of the theory behind image scaling and convolution
-
-use std::f32;
-
-use num_traits::{NumCast, ToPrimitive, Zero};
-
-use crate::image::{GenericImage, GenericImageView};
-use crate::traits::{Enlargeable, Pixel, Primitive};
-use crate::utils::clamp;
-use crate::{ImageBuffer, Rgba32FImage};
-
-/// Available Sampling Filters.
-///
-/// ## Examples
-///
-/// To test the different sampling filters on a real example, you can find two
-/// examples called
-/// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown)
-/// and
-/// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup)
-/// in the `examples` directory of the crate source code.
-///
-/// Here is a 3.58 MiB
-/// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg)
-/// that has been scaled down to 300x225 px:
-///
-/// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` -->
-/// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;">
-/// <div style="margin: 0 8px 8px 0;">
-/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br>
-/// Nearest Neighbor
-/// </div>
-/// <div style="margin: 0 8px 8px 0;">
-/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br>
-/// Linear: Triangle
-/// </div>
-/// <div style="margin: 0 8px 8px 0;">
-/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br>
-/// Cubic: Catmull-Rom
-/// </div>
-/// <div style="margin: 0 8px 8px 0;">
-/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br>
-/// Gaussian
-/// </div>
-/// <div style="margin: 0 8px 8px 0;">
-/// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br>
-/// Lanczos with window 3
-/// </div>
-/// </div>
-///
-/// ## Speed
-///
-/// Time required to create each of the examples above, tested on an Intel
-/// i7-4770 CPU with Rust 1.37 in release mode:
-///
-/// <table style="width: auto;">
-/// <tr>
-/// <th>Nearest</th>
-/// <td>31 ms</td>
-/// </tr>
-/// <tr>
-/// <th>Triangle</th>
-/// <td>414 ms</td>
-/// </tr>
-/// <tr>
-/// <th>CatmullRom</th>
-/// <td>817 ms</td>
-/// </tr>
-/// <tr>
-/// <th>Gaussian</th>
-/// <td>1180 ms</td>
-/// </tr>
-/// <tr>
-/// <th>Lanczos3</th>
-/// <td>1170 ms</td>
-/// </tr>
-/// </table>
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub enum FilterType {
- /// Nearest Neighbor
- Nearest,
-
- /// Linear Filter
- Triangle,
-
- /// Cubic Filter
- CatmullRom,
-
- /// Gaussian Filter
- Gaussian,
-
- /// Lanczos with window 3
- Lanczos3,
-}
-
-/// A Representation of a separable filter.
-pub(crate) struct Filter<'a> {
- /// The filter's filter function.
- pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
-
- /// The window on which this filter operates.
- pub(crate) support: f32,
-}
-
-struct FloatNearest(f32);
-
-// to_i64, to_u64, and to_f64 implicitly affect all other lower conversions.
-// Note that to_f64 by default calls to_i64 and thus needs to be overridden.
-impl ToPrimitive for FloatNearest {
- // to_{i,u}64 is required, to_{i,u}{8,16} are useful.
- // If a usecase for full 32 bits is found its trivial to add
- fn to_i8(&self) -> Option<i8> {
- self.0.round().to_i8()
- }
- fn to_i16(&self) -> Option<i16> {
- self.0.round().to_i16()
- }
- fn to_i64(&self) -> Option<i64> {
- self.0.round().to_i64()
- }
- fn to_u8(&self) -> Option<u8> {
- self.0.round().to_u8()
- }
- fn to_u16(&self) -> Option<u16> {
- self.0.round().to_u16()
- }
- fn to_u64(&self) -> Option<u64> {
- self.0.round().to_u64()
- }
- fn to_f64(&self) -> Option<f64> {
- self.0.to_f64()
- }
-}
-
-// sinc function: the ideal sampling filter.
-fn sinc(t: f32) -> f32 {
- let a = t * f32::consts::PI;
-
- if t == 0.0 {
- 1.0
- } else {
- a.sin() / a
- }
-}
-
-// lanczos kernel function. A windowed sinc function.
-fn lanczos(x: f32, t: f32) -> f32 {
- if x.abs() < t {
- sinc(x) * sinc(x / t)
- } else {
- 0.0
- }
-}
-
-// Calculate a splice based on the b and c parameters.
-// from authors Mitchell and Netravali.
-fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
- let a = x.abs();
-
- let k = if a < 1.0 {
- (12.0 - 9.0 * b - 6.0 * c) * a.powi(3)
- + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
- + (6.0 - 2.0 * b)
- } else if a < 2.0 {
- (-b - 6.0 * c) * a.powi(3)
- + (6.0 * b + 30.0 * c) * a.powi(2)
- + (-12.0 * b - 48.0 * c) * a
- + (8.0 * b + 24.0 * c)
- } else {
- 0.0
- };
-
- k / 6.0
-}
-
-/// The Gaussian Function.
-/// ```r``` is the standard deviation.
-pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
- ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
-}
-
-/// Calculate the lanczos kernel with a window of 3
-pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
- lanczos(x, 3.0)
-}
-
-/// Calculate the gaussian function with a
-/// standard deviation of 0.5
-pub(crate) fn gaussian_kernel(x: f32) -> f32 {
- gaussian(x, 0.5)
-}
-
-/// Calculate the Catmull-Rom cubic spline.
-/// Also known as a form of `BiCubic` sampling in two dimensions.
-pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
- bc_cubic_spline(x, 0.0, 0.5)
-}
-
-/// Calculate the triangle function.
-/// Also known as `BiLinear` sampling in two dimensions.
-pub(crate) fn triangle_kernel(x: f32) -> f32 {
- if x.abs() < 1.0 {
- 1.0 - x.abs()
- } else {
- 0.0
- }
-}
-
-/// Calculate the box kernel.
-/// Only pixels inside the box should be considered, and those
-/// contribute equally. So this method simply returns 1.
-pub(crate) fn box_kernel(_x: f32) -> f32 {
- 1.0
-}
-
-// Sample the rows of the supplied image using the provided filter.
-// The height of the image remains unchanged.
-// ```new_width``` is the desired width of the new image
-// ```filter``` is the filter to use for sampling.
-// ```image``` is not necessarily Rgba and the order of channels is passed through.
-fn horizontal_sample<P, S>(
- image: &Rgba32FImage,
- new_width: u32,
- filter: &mut Filter,
-) -> ImageBuffer<P, Vec<S>>
-where
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(new_width, height);
- let mut ws = Vec::new();
-
- let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap();
- let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap();
- let ratio = width as f32 / new_width as f32;
- let sratio = if ratio < 1.0 { 1.0 } else { ratio };
- let src_support = filter.support * sratio;
-
- for outx in 0..new_width {
- // Find the point in the input image corresponding to the centre
- // of the current pixel in the output image.
- let inputx = (outx as f32 + 0.5) * ratio;
-
- // Left and right are slice bounds for the input pixels relevant
- // to the output pixel we are calculating. Pixel x is relevant
- // if and only if (x >= left) && (x < right).
-
- // Invariant: 0 <= left < right <= width
-
- let left = (inputx - src_support).floor() as i64;
- let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
-
- let right = (inputx + src_support).ceil() as i64;
- let right = clamp(
- right,
- <i64 as From<_>>::from(left) + 1,
- <i64 as From<_>>::from(width),
- ) as u32;
-
- // Go back to left boundary of pixel, to properly compare with i
- // below, as the kernel treats the centre of a pixel as 0.
- let inputx = inputx - 0.5;
-
- ws.clear();
- let mut sum = 0.0;
- for i in left..right {
- let w = (filter.kernel)((i as f32 - inputx) / sratio);
- ws.push(w);
- sum += w;
- }
- ws.iter_mut().for_each(|w| *w /= sum);
-
- for y in 0..height {
- let mut t = (0.0, 0.0, 0.0, 0.0);
-
- for (i, w) in ws.iter().enumerate() {
- let p = image.get_pixel(left + i as u32, y);
-
- #[allow(deprecated)]
- let vec = p.channels4();
-
- t.0 += vec.0 * w;
- t.1 += vec.1 * w;
- t.2 += vec.2 * w;
- t.3 += vec.3 * w;
- }
-
- #[allow(deprecated)]
- let t = Pixel::from_channels(
- NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(),
- NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(),
- NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(),
- NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(),
- );
-
- out.put_pixel(outx, y, t);
- }
- }
-
- out
-}
-
-/// Linearly sample from an image using coordinates in [0, 1].
-pub fn sample_bilinear<P: Pixel>(
- img: &impl GenericImageView<Pixel = P>,
- u: f32,
- v: f32,
-) -> Option<P> {
- if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
- return None;
- }
-
- let (w, h) = img.dimensions();
- if w == 0 || h == 0 {
- return None;
- }
-
- let ui = w as f32 * u - 0.5;
- let vi = h as f32 * v - 0.5;
- interpolate_bilinear(
- img,
- ui.max(0.).min((w - 1) as f32),
- vi.max(0.).min((h - 1) as f32),
- )
-}
-
-/// Sample from an image using coordinates in [0, 1], taking the nearest coordinate.
-pub fn sample_nearest<P: Pixel>(
- img: &impl GenericImageView<Pixel = P>,
- u: f32,
- v: f32,
-) -> Option<P> {
- if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
- return None;
- }
-
- let (w, h) = img.dimensions();
- let ui = w as f32 * u - 0.5;
- let ui = ui.max(0.).min((w.saturating_sub(1)) as f32);
-
- let vi = h as f32 * v - 0.5;
- let vi = vi.max(0.).min((h.saturating_sub(1)) as f32);
- interpolate_nearest(img, ui, vi)
-}
-
-/// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the
-/// nearest pixel.
-///
-/// Coordinates outside the image bounds will return `None`, however the
-/// behavior for points within half a pixel of the image bounds may change in
-/// the future.
-pub fn interpolate_nearest<P: Pixel>(
- img: &impl GenericImageView<Pixel = P>,
- x: f32,
- y: f32,
-) -> Option<P> {
- let (w, h) = img.dimensions();
- if w == 0 || h == 0 {
- return None;
- }
- if !(0.0..=((w - 1) as f32)).contains(&x) {
- return None;
- }
- if !(0.0..=((h - 1) as f32)).contains(&y) {
- return None;
- }
-
- Some(img.get_pixel(x.round() as u32, y.round() as u32))
-}
-
-/// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1].
-pub fn interpolate_bilinear<P: Pixel>(
- img: &impl GenericImageView<Pixel = P>,
- x: f32,
- y: f32,
-) -> Option<P> {
- let (w, h) = img.dimensions();
- if w == 0 || h == 0 {
- return None;
- }
- if !(0.0..=((w - 1) as f32)).contains(&x) {
- return None;
- }
- if !(0.0..=((h - 1) as f32)).contains(&y) {
- return None;
- }
-
- let uf = x.floor();
- let vf = y.floor();
- let uc = (x + 1.).min((w - 1) as f32);
- let vc = (y + 1.).min((h - 1) as f32);
-
- // clamp coords to the range of the image
- let coords = [[uf, vf], [uf, vc], [uc, vf], [uc, vc]];
-
- assert!(coords
- .iter()
- .all(|&[u, v]| { img.in_bounds(u as u32, v as u32) }));
- let samples = coords.map(|[u, v]| img.get_pixel(u as u32, v as u32));
- assert!(P::CHANNEL_COUNT <= 4);
-
- // convert samples to f32
- // currently rgba is the largest one,
- // so just store as many items as necessary,
- // because there's not a simple way to be generic over all of them.
- let [sff, sfc, scf, scc] = samples.map(|s| {
- let mut out = [0.; 4];
- for (i, c) in s.channels().iter().enumerate() {
- out[i] = c.to_f32().unwrap();
- }
- out
- });
- // weights
- let [ufw, vfw] = [x - uf, y - vf];
- let [ucw, vcw] = [1. - ufw, 1. - vfw];
-
- // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean
- // the distance between pixels is 1 so there is no denominator
- let wff = ucw * vcw;
- let wfc = ucw * vfw;
- let wcf = ufw * vcw;
- let wcc = ufw * vfw;
- assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3);
-
- // hack to get around not being able to construct a generic Pixel
- let mut out = samples[0];
- for (i, c) in out.channels_mut().iter_mut().enumerate() {
- let v = wff * sff[i] + wfc * sfc[i] + wcf * scf[i] + wcc * scc[i];
- // this rounding may introduce quantization errors,
- // but cannot do anything about it.
- *c = <P::Subpixel as NumCast>::from(v.round()).unwrap_or({
- if v < 0.0 {
- P::Subpixel::DEFAULT_MIN_VALUE
- } else {
- P::Subpixel::DEFAULT_MAX_VALUE
- }
- })
- }
- Some(out)
-}
-
-// Sample the columns of the supplied image using the provided filter.
-// The width of the image remains unchanged.
-// ```new_height``` is the desired height of the new image
-// ```filter``` is the filter to use for sampling.
-// The return value is not necessarily Rgba, the underlying order of channels in ```image``` is
-// preserved.
-fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(width, new_height);
- let mut ws = Vec::new();
-
- let ratio = height as f32 / new_height as f32;
- let sratio = if ratio < 1.0 { 1.0 } else { ratio };
- let src_support = filter.support * sratio;
-
- for outy in 0..new_height {
- // For an explanation of this algorithm, see the comments
- // in horizontal_sample.
- let inputy = (outy as f32 + 0.5) * ratio;
-
- let left = (inputy - src_support).floor() as i64;
- let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
-
- let right = (inputy + src_support).ceil() as i64;
- let right = clamp(
- right,
- <i64 as From<_>>::from(left) + 1,
- <i64 as From<_>>::from(height),
- ) as u32;
-
- let inputy = inputy - 0.5;
-
- ws.clear();
- let mut sum = 0.0;
- for i in left..right {
- let w = (filter.kernel)((i as f32 - inputy) / sratio);
- ws.push(w);
- sum += w;
- }
- ws.iter_mut().for_each(|w| *w /= sum);
-
- for x in 0..width {
- let mut t = (0.0, 0.0, 0.0, 0.0);
-
- for (i, w) in ws.iter().enumerate() {
- let p = image.get_pixel(x, left + i as u32);
-
- #[allow(deprecated)]
- let (k1, k2, k3, k4) = p.channels4();
- let vec: (f32, f32, f32, f32) = (
- NumCast::from(k1).unwrap(),
- NumCast::from(k2).unwrap(),
- NumCast::from(k3).unwrap(),
- NumCast::from(k4).unwrap(),
- );
-
- t.0 += vec.0 * w;
- t.1 += vec.1 * w;
- t.2 += vec.2 * w;
- t.3 += vec.3 * w;
- }
-
- #[allow(deprecated)]
- // This is not necessarily Rgba.
- let t = Pixel::from_channels(t.0, t.1, t.2, t.3);
-
- out.put_pixel(x, outy, t);
- }
- }
-
- out
-}
-
-/// Local struct for keeping track of pixel sums for fast thumbnail averaging
-struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
-
-impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
- fn zeroed() -> Self {
- ThumbnailSum(
- S::Larger::zero(),
- S::Larger::zero(),
- S::Larger::zero(),
- S::Larger::zero(),
- )
- }
-
- fn sample_val(val: S) -> S::Larger {
- <S::Larger as NumCast>::from(val).unwrap()
- }
-
- fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) {
- #[allow(deprecated)]
- let pixel = pixel.channels4();
- self.0 += Self::sample_val(pixel.0);
- self.1 += Self::sample_val(pixel.1);
- self.2 += Self::sample_val(pixel.2);
- self.3 += Self::sample_val(pixel.3);
- }
-}
-
-/// Resize the supplied image to the specific dimensions.
-///
-/// For downscaling, this method uses a fast integer algorithm where each source pixel contributes
-/// to exactly one target pixel. May give aliasing artifacts if new size is close to old size.
-///
-/// In case the current width is smaller than the new width or similar for the height, another
-/// strategy is used instead. For each pixel in the output, a rectangular region of the input is
-/// determined, just as previously. But when no input pixel is part of this region, the nearest
-/// pixels are interpolated instead.
-///
-/// For speed reasons, all interpolation is performed linearly over the colour values. It will not
-/// take the pixel colour spaces into account.
-pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + Enlargeable + 'static,
-{
- let (width, height) = image.dimensions();
- let mut out = ImageBuffer::new(new_width, new_height);
-
- let x_ratio = width as f32 / new_width as f32;
- let y_ratio = height as f32 / new_height as f32;
-
- for outy in 0..new_height {
- let bottomf = outy as f32 * y_ratio;
- let topf = bottomf + y_ratio;
-
- let bottom = clamp(bottomf.ceil() as u32, 0, height - 1);
- let top = clamp(topf.ceil() as u32, bottom, height);
-
- for outx in 0..new_width {
- let leftf = outx as f32 * x_ratio;
- let rightf = leftf + x_ratio;
-
- let left = clamp(leftf.ceil() as u32, 0, width - 1);
- let right = clamp(rightf.ceil() as u32, left, width);
-
- let avg = if bottom != top && left != right {
- thumbnail_sample_block(image, left, right, bottom, top)
- } else if bottom != top {
- // && left == right
- // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this
- // assertion can never trigger.
- debug_assert!(
- left > 0 && right > 0,
- "First output column must have corresponding pixels"
- );
-
- let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.;
- thumbnail_sample_fraction_horizontal(
- image,
- right - 1,
- fraction_horizontal,
- bottom,
- top,
- )
- } else if left != right {
- // && bottom == top
- // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this
- // assertion can never trigger.
- debug_assert!(
- bottom > 0 && top > 0,
- "First output row must have corresponding pixels"
- );
-
- let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.;
- thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
- } else {
- // bottom == top && left == right
- let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.;
- let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.;
-
- thumbnail_sample_fraction_both(
- image,
- right - 1,
- fraction_horizontal,
- top - 1,
- fraction_vertical,
- )
- };
-
- #[allow(deprecated)]
- let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
- out.put_pixel(outx, outy, pixel);
- }
- }
-
- out
-}
-
-/// Get a pixel for a thumbnail where the input window encloses at least a full pixel.
-fn thumbnail_sample_block<I, P, S>(
- image: &I,
- left: u32,
- right: u32,
- bottom: u32,
- top: u32,
-) -> (S, S, S, S)
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S>,
- S: Primitive + Enlargeable,
-{
- let mut sum = ThumbnailSum::zeroed();
-
- for y in bottom..top {
- for x in left..right {
- let k = image.get_pixel(x, y);
- sum.add_pixel(k);
- }
- }
-
- let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap();
- let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap();
- (
- S::clamp_from((sum.0 + round) / n),
- S::clamp_from((sum.1 + round) / n),
- S::clamp_from((sum.2 + round) / n),
- S::clamp_from((sum.3 + round) / n),
- )
-}
-
-/// Get a thumbnail pixel where the input window encloses at least a vertical pixel.
-fn thumbnail_sample_fraction_horizontal<I, P, S>(
- image: &I,
- left: u32,
- fraction_horizontal: f32,
- bottom: u32,
- top: u32,
-) -> (S, S, S, S)
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S>,
- S: Primitive + Enlargeable,
-{
- let fract = fraction_horizontal;
-
- let mut sum_left = ThumbnailSum::zeroed();
- let mut sum_right = ThumbnailSum::zeroed();
- for x in bottom..top {
- let k_left = image.get_pixel(left, x);
- sum_left.add_pixel(k_left);
-
- let k_right = image.get_pixel(left + 1, x);
- sum_right.add_pixel(k_right);
- }
-
- // Now we approximate: left/n*(1-fract) + right/n*fract
- let fact_right = fract / ((top - bottom) as f32);
- let fact_left = (1. - fract) / ((top - bottom) as f32);
-
- let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| {
- <S as NumCast>::from(
- fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(),
- )
- .expect("Average sample value should fit into sample type")
- };
-
- (
- mix_left_and_right(sum_left.0, sum_right.0),
- mix_left_and_right(sum_left.1, sum_right.1),
- mix_left_and_right(sum_left.2, sum_right.2),
- mix_left_and_right(sum_left.3, sum_right.3),
- )
-}
-
-/// Get a thumbnail pixel where the input window encloses at least a horizontal pixel.
-fn thumbnail_sample_fraction_vertical<I, P, S>(
- image: &I,
- left: u32,
- right: u32,
- bottom: u32,
- fraction_vertical: f32,
-) -> (S, S, S, S)
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S>,
- S: Primitive + Enlargeable,
-{
- let fract = fraction_vertical;
-
- let mut sum_bot = ThumbnailSum::zeroed();
- let mut sum_top = ThumbnailSum::zeroed();
- for x in left..right {
- let k_bot = image.get_pixel(x, bottom);
- sum_bot.add_pixel(k_bot);
-
- let k_top = image.get_pixel(x, bottom + 1);
- sum_top.add_pixel(k_top);
- }
-
- // Now we approximate: bot/n*fract + top/n*(1-fract)
- let fact_top = fract / ((right - left) as f32);
- let fact_bot = (1. - fract) / ((right - left) as f32);
-
- let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| {
- <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap())
- .expect("Average sample value should fit into sample type")
- };
-
- (
- mix_bot_and_top(sum_bot.0, sum_top.0),
- mix_bot_and_top(sum_bot.1, sum_top.1),
- mix_bot_and_top(sum_bot.2, sum_top.2),
- mix_bot_and_top(sum_bot.3, sum_top.3),
- )
-}
-
-/// Get a single pixel for a thumbnail where the input window does not enclose any full pixel.
-fn thumbnail_sample_fraction_both<I, P, S>(
- image: &I,
- left: u32,
- fraction_vertical: f32,
- bottom: u32,
- fraction_horizontal: f32,
-) -> (S, S, S, S)
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S>,
- S: Primitive + Enlargeable,
-{
- #[allow(deprecated)]
- let k_bl = image.get_pixel(left, bottom).channels4();
- #[allow(deprecated)]
- let k_tl = image.get_pixel(left, bottom + 1).channels4();
- #[allow(deprecated)]
- let k_br = image.get_pixel(left + 1, bottom).channels4();
- #[allow(deprecated)]
- let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
-
- let frac_v = fraction_vertical;
- let frac_h = fraction_horizontal;
-
- let fact_tr = frac_v * frac_h;
- let fact_tl = frac_v * (1. - frac_h);
- let fact_br = (1. - frac_v) * frac_h;
- let fact_bl = (1. - frac_v) * (1. - frac_h);
-
- let mix = |br: S, tr: S, bl: S, tl: S| {
- <S as NumCast>::from(
- fact_br * br.to_f32().unwrap()
- + fact_tr * tr.to_f32().unwrap()
- + fact_bl * bl.to_f32().unwrap()
- + fact_tl * tl.to_f32().unwrap(),
- )
- .expect("Average sample value should fit into sample type")
- };
-
- (
- mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
- mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
- mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
- mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
- )
-}
-
-/// Perform a 3x3 box filter on the supplied image.
-/// ```kernel``` is an array of the filter weights of length 9.
-pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- // The kernel's input positions relative to the current pixel.
- let taps: &[(isize, isize)] = &[
- (-1, -1),
- (0, -1),
- (1, -1),
- (-1, 0),
- (0, 0),
- (1, 0),
- (-1, 1),
- (0, 1),
- (1, 1),
- ];
-
- let (width, height) = image.dimensions();
-
- let mut out = ImageBuffer::new(width, height);
-
- let max = S::DEFAULT_MAX_VALUE;
- let max: f32 = NumCast::from(max).unwrap();
-
- let sum = match kernel.iter().fold(0.0, |s, &item| s + item) {
- x if x == 0.0 => 1.0,
- sum => sum,
- };
- let sum = (sum, sum, sum, sum);
-
- for y in 1..height - 1 {
- for x in 1..width - 1 {
- let mut t = (0.0, 0.0, 0.0, 0.0);
-
- // TODO: There is no need to recalculate the kernel for each pixel.
- // Only a subtract and addition is needed for pixels after the first
- // in each row.
- for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
- let k = (k, k, k, k);
- let x0 = x as isize + a;
- let y0 = y as isize + b;
-
- let p = image.get_pixel(x0 as u32, y0 as u32);
-
- #[allow(deprecated)]
- let (k1, k2, k3, k4) = p.channels4();
-
- let vec: (f32, f32, f32, f32) = (
- NumCast::from(k1).unwrap(),
- NumCast::from(k2).unwrap(),
- NumCast::from(k3).unwrap(),
- NumCast::from(k4).unwrap(),
- );
-
- t.0 += vec.0 * k.0;
- t.1 += vec.1 * k.1;
- t.2 += vec.2 * k.2;
- t.3 += vec.3 * k.3;
- }
-
- let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3);
-
- #[allow(deprecated)]
- let t = Pixel::from_channels(
- NumCast::from(clamp(t1, 0.0, max)).unwrap(),
- NumCast::from(clamp(t2, 0.0, max)).unwrap(),
- NumCast::from(clamp(t3, 0.0, max)).unwrap(),
- NumCast::from(clamp(t4, 0.0, max)).unwrap(),
- );
-
- out.put_pixel(x, y, t);
- }
- }
-
- out
-}
-
-/// Resize the supplied image to the specified dimensions.
-/// ```nwidth``` and ```nheight``` are the new dimensions.
-/// ```filter``` is the sampling filter to use.
-pub fn resize<I: GenericImageView>(
- image: &I,
- nwidth: u32,
- nheight: u32,
- filter: FilterType,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
- <I::Pixel as Pixel>::Subpixel: 'static,
-{
- // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling
- if (nwidth, nheight) == image.dimensions() {
- let mut tmp = ImageBuffer::new(image.width(), image.height());
- tmp.copy_from(image, 0, 0).unwrap();
- return tmp;
- }
-
- let mut method = match filter {
- FilterType::Nearest => Filter {
- kernel: Box::new(box_kernel),
- support: 0.0,
- },
- FilterType::Triangle => Filter {
- kernel: Box::new(triangle_kernel),
- support: 1.0,
- },
- FilterType::CatmullRom => Filter {
- kernel: Box::new(catmullrom_kernel),
- support: 2.0,
- },
- FilterType::Gaussian => Filter {
- kernel: Box::new(gaussian_kernel),
- support: 3.0,
- },
- FilterType::Lanczos3 => Filter {
- kernel: Box::new(lanczos3_kernel),
- support: 3.0,
- },
- };
-
- // Note: tmp is not necessarily actually Rgba
- let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method);
- horizontal_sample(&tmp, nwidth, &mut method)
-}
-
-/// Performs a Gaussian blur on the supplied image.
-/// ```sigma``` is a measure of how much to blur by.
-pub fn blur<I: GenericImageView>(
- image: &I,
- sigma: f32,
-) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
-where
- I::Pixel: 'static,
-{
- let sigma = if sigma <= 0.0 { 1.0 } else { sigma };
-
- let mut method = Filter {
- kernel: Box::new(|x| gaussian(x, sigma)),
- support: 2.0 * sigma,
- };
-
- let (width, height) = image.dimensions();
-
- // Keep width and height the same for horizontal and
- // vertical sampling.
- // Note: tmp is not necessarily actually Rgba
- let tmp: Rgba32FImage = vertical_sample(image, height, &mut method);
- horizontal_sample(&tmp, width, &mut method)
-}
-
-/// Performs an unsharpen mask on the supplied image.
-/// ```sigma``` is the amount to blur the image by.
-/// ```threshold``` is the threshold for minimal brightness change that will be sharpened.
-///
-/// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking>
-pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
-where
- I: GenericImageView<Pixel = P>,
- P: Pixel<Subpixel = S> + 'static,
- S: Primitive + 'static,
-{
- let mut tmp = blur(image, sigma);
-
- let max = S::DEFAULT_MAX_VALUE;
- let max: i32 = NumCast::from(max).unwrap();
- let (width, height) = image.dimensions();
-
- for y in 0..height {
- for x in 0..width {
- let a = image.get_pixel(x, y);
- let b = tmp.get_pixel_mut(x, y);
-
- let p = a.map2(b, |c, d| {
- let ic: i32 = NumCast::from(c).unwrap();
- let id: i32 = NumCast::from(d).unwrap();
-
- let diff = (ic - id).abs();
-
- if diff > threshold {
- let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers??
-
- NumCast::from(e).unwrap()
- } else {
- c
- }
- });
-
- *b = p;
- }
- }
-
- tmp
-}
-
-#[cfg(test)]
-mod tests {
- use super::{resize, sample_bilinear, sample_nearest, FilterType};
- use crate::{GenericImageView, ImageBuffer, RgbImage};
- #[cfg(feature = "benchmarks")]
- use test;
-
- #[bench]
- #[cfg(all(feature = "benchmarks", feature = "png"))]
- fn bench_resize(b: &mut test::Bencher) {
- use std::path::Path;
- let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
- b.iter(|| {
- test::black_box(resize(&img, 200, 200, FilterType::Nearest));
- });
- b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
- }
-
- #[test]
- #[cfg(feature = "png")]
- fn test_resize_same_size() {
- use std::path::Path;
- let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
- let resize = img.resize(img.width(), img.height(), FilterType::Triangle);
- assert!(img.pixels().eq(resize.pixels()))
- }
-
- #[test]
- #[cfg(feature = "png")]
- fn test_sample_bilinear() {
- use std::path::Path;
- let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
- assert!(sample_bilinear(&img, 0., 0.).is_some());
- assert!(sample_bilinear(&img, 1., 0.).is_some());
- assert!(sample_bilinear(&img, 0., 1.).is_some());
- assert!(sample_bilinear(&img, 1., 1.).is_some());
- assert!(sample_bilinear(&img, 0.5, 0.5).is_some());
-
- assert!(sample_bilinear(&img, 1.2, 0.5).is_none());
- assert!(sample_bilinear(&img, 0.5, 1.2).is_none());
- assert!(sample_bilinear(&img, 1.2, 1.2).is_none());
-
- assert!(sample_bilinear(&img, -0.1, 0.2).is_none());
- assert!(sample_bilinear(&img, 0.2, -0.1).is_none());
- assert!(sample_bilinear(&img, -0.1, -0.1).is_none());
- }
- #[test]
- #[cfg(feature = "png")]
- fn test_sample_nearest() {
- use std::path::Path;
- let img = crate::open(&Path::new("./examples/fractal.png")).unwrap();
- assert!(sample_nearest(&img, 0., 0.).is_some());
- assert!(sample_nearest(&img, 1., 0.).is_some());
- assert!(sample_nearest(&img, 0., 1.).is_some());
- assert!(sample_nearest(&img, 1., 1.).is_some());
- assert!(sample_nearest(&img, 0.5, 0.5).is_some());
-
- assert!(sample_nearest(&img, 1.2, 0.5).is_none());
- assert!(sample_nearest(&img, 0.5, 1.2).is_none());
- assert!(sample_nearest(&img, 1.2, 1.2).is_none());
-
- assert!(sample_nearest(&img, -0.1, 0.2).is_none());
- assert!(sample_nearest(&img, 0.2, -0.1).is_none());
- assert!(sample_nearest(&img, -0.1, -0.1).is_none());
- }
- #[test]
- fn test_sample_bilinear_correctness() {
- use crate::Rgba;
- let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
- (0, 0) => Rgba([255, 0, 0, 0]),
- (0, 1) => Rgba([0, 255, 0, 0]),
- (1, 0) => Rgba([0, 0, 255, 0]),
- (1, 1) => Rgba([0, 0, 0, 255]),
- _ => panic!(),
- });
- assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4])));
- assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
- assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
- assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
- assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
-
- assert_eq!(
- sample_bilinear(&img, 0.5, 0.0),
- Some(Rgba([128, 0, 128, 0]))
- );
- assert_eq!(
- sample_bilinear(&img, 0.0, 0.5),
- Some(Rgba([128, 128, 0, 0]))
- );
- assert_eq!(
- sample_bilinear(&img, 0.5, 1.0),
- Some(Rgba([0, 128, 0, 128]))
- );
- assert_eq!(
- sample_bilinear(&img, 1.0, 0.5),
- Some(Rgba([0, 0, 128, 128]))
- );
- }
- #[test]
- fn test_sample_nearest_correctness() {
- use crate::Rgba;
- let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
- (0, 0) => Rgba([255, 0, 0, 0]),
- (0, 1) => Rgba([0, 255, 0, 0]),
- (1, 0) => Rgba([0, 0, 255, 0]),
- (1, 1) => Rgba([0, 0, 0, 255]),
- _ => panic!(),
- });
-
- assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
- assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
- assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
- assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
-
- assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255])));
- assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0])));
- assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0])));
- assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255])));
- assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255])));
- }
-
- #[bench]
- #[cfg(all(feature = "benchmarks", feature = "tiff"))]
- fn bench_resize_same_size(b: &mut test::Bencher) {
- let path = concat!(
- env!("CARGO_MANIFEST_DIR"),
- "/tests/images/tiff/testsuite/mandrill.tiff"
- );
- let image = crate::open(path).unwrap();
- b.iter(|| {
- test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom));
- });
- b.bytes = (image.width() * image.height() * 3) as u64;
- }
-
- #[test]
- fn test_issue_186() {
- let img: RgbImage = ImageBuffer::new(100, 100);
- let _ = resize(&img, 50, 50, FilterType::Lanczos3);
- }
-
- #[bench]
- #[cfg(all(feature = "benchmarks", feature = "tiff"))]
- fn bench_thumbnail(b: &mut test::Bencher) {
- let path = concat!(
- env!("CARGO_MANIFEST_DIR"),
- "/tests/images/tiff/testsuite/mandrill.tiff"
- );
- let image = crate::open(path).unwrap();
- b.iter(|| {
- test::black_box(image.thumbnail(256, 256));
- });
- b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
- }
-
- #[bench]
- #[cfg(all(feature = "benchmarks", feature = "tiff"))]
- fn bench_thumbnail_upsize(b: &mut test::Bencher) {
- let path = concat!(
- env!("CARGO_MANIFEST_DIR"),
- "/tests/images/tiff/testsuite/mandrill.tiff"
- );
- let image = crate::open(path).unwrap().thumbnail(256, 256);
- b.iter(|| {
- test::black_box(image.thumbnail(512, 512));
- });
- b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
- }
-
- #[bench]
- #[cfg(all(feature = "benchmarks", feature = "tiff"))]
- fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
- let path = concat!(
- env!("CARGO_MANIFEST_DIR"),
- "/tests/images/tiff/testsuite/mandrill.tiff"
- );
- let image = crate::open(path).unwrap().thumbnail(193, 193);
- b.iter(|| {
- test::black_box(image.thumbnail(256, 256));
- });
- b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
- }
-
- #[test]
- #[cfg(feature = "png")]
- fn resize_transparent_image() {
- use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
- use crate::imageops::crop_imm;
- use crate::RgbaImage;
-
- fn assert_resize(image: &RgbaImage, filter: FilterType) {
- let resized = resize(image, 16, 16, filter);
- let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image();
- for pixel in cropped.pixels() {
- let alpha = pixel.0[3];
- assert!(
- alpha != 254 && alpha != 253,
- "alpha value: {}, {:?}",
- alpha,
- filter
- );
- }
- }
-
- let path = concat!(
- env!("CARGO_MANIFEST_DIR"),
- "/tests/images/png/transparency/tp1n3p08.png"
- );
- let img = crate::open(path).unwrap();
- let rgba8 = img.as_rgba8().unwrap();
- let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3];
- for filter in filters {
- assert_resize(rgba8, *filter);
- }
- }
-
- #[test]
- fn bug_1600() {
- let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap();
- let result = resize(&image, 22, 22, FilterType::Lanczos3);
- assert!(result.into_raw().into_iter().any(|c| c != 0));
- }
-}