aboutsummaryrefslogtreecommitdiff
path: root/vendor/object/src/macho.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
committerValentin Popov <valentin@popov.link>2024-07-19 15:37:58 +0300
commita990de90fe41456a23e58bd087d2f107d321f3a1 (patch)
tree15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/object/src/macho.rs
parent3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff)
downloadfparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz
fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip
Deleted vendor folder
Diffstat (limited to 'vendor/object/src/macho.rs')
-rw-r--r--vendor/object/src/macho.rs3307
1 files changed, 0 insertions, 3307 deletions
diff --git a/vendor/object/src/macho.rs b/vendor/object/src/macho.rs
deleted file mode 100644
index 3cd38e0..0000000
--- a/vendor/object/src/macho.rs
+++ /dev/null
@@ -1,3307 +0,0 @@
-//! Mach-O definitions.
-//!
-//! These definitions are independent of read/write support, although we do implement
-//! some traits useful for those.
-//!
-//! This module is based heavily on header files from MacOSX11.1.sdk.
-
-#![allow(missing_docs)]
-
-use crate::endian::{BigEndian, Endian, U64Bytes, U16, U32, U64};
-use crate::pod::Pod;
-
-// Definitions from "/usr/include/mach/machine.h".
-
-/*
- * Capability bits used in the definition of cpu_type.
- */
-
-/// mask for architecture bits
-pub const CPU_ARCH_MASK: u32 = 0xff00_0000;
-/// 64 bit ABI
-pub const CPU_ARCH_ABI64: u32 = 0x0100_0000;
-/// ABI for 64-bit hardware with 32-bit types; LP32
-pub const CPU_ARCH_ABI64_32: u32 = 0x0200_0000;
-
-/*
- * Machine types known by all.
- */
-
-pub const CPU_TYPE_ANY: u32 = !0;
-
-pub const CPU_TYPE_VAX: u32 = 1;
-pub const CPU_TYPE_MC680X0: u32 = 6;
-pub const CPU_TYPE_X86: u32 = 7;
-pub const CPU_TYPE_X86_64: u32 = CPU_TYPE_X86 | CPU_ARCH_ABI64;
-pub const CPU_TYPE_MIPS: u32 = 8;
-pub const CPU_TYPE_MC98000: u32 = 10;
-pub const CPU_TYPE_HPPA: u32 = 11;
-pub const CPU_TYPE_ARM: u32 = 12;
-pub const CPU_TYPE_ARM64: u32 = CPU_TYPE_ARM | CPU_ARCH_ABI64;
-pub const CPU_TYPE_ARM64_32: u32 = CPU_TYPE_ARM | CPU_ARCH_ABI64_32;
-pub const CPU_TYPE_MC88000: u32 = 13;
-pub const CPU_TYPE_SPARC: u32 = 14;
-pub const CPU_TYPE_I860: u32 = 15;
-pub const CPU_TYPE_ALPHA: u32 = 16;
-pub const CPU_TYPE_POWERPC: u32 = 18;
-pub const CPU_TYPE_POWERPC64: u32 = CPU_TYPE_POWERPC | CPU_ARCH_ABI64;
-
-/*
- * Capability bits used in the definition of cpu_subtype.
- */
-/// mask for feature flags
-pub const CPU_SUBTYPE_MASK: u32 = 0xff00_0000;
-/// 64 bit libraries
-pub const CPU_SUBTYPE_LIB64: u32 = 0x8000_0000;
-/// pointer authentication with versioned ABI
-pub const CPU_SUBTYPE_PTRAUTH_ABI: u32 = 0x8000_0000;
-
-/// When selecting a slice, ANY will pick the slice with the best
-/// grading for the selected cpu_type_t, unlike the "ALL" subtypes,
-/// which are the slices that can run on any hardware for that cpu type.
-pub const CPU_SUBTYPE_ANY: u32 = !0;
-
-/*
- * Object files that are hand-crafted to run on any
- * implementation of an architecture are tagged with
- * CPU_SUBTYPE_MULTIPLE. This functions essentially the same as
- * the "ALL" subtype of an architecture except that it allows us
- * to easily find object files that may need to be modified
- * whenever a new implementation of an architecture comes out.
- *
- * It is the responsibility of the implementor to make sure the
- * software handles unsupported implementations elegantly.
- */
-pub const CPU_SUBTYPE_MULTIPLE: u32 = !0;
-pub const CPU_SUBTYPE_LITTLE_ENDIAN: u32 = 0;
-pub const CPU_SUBTYPE_BIG_ENDIAN: u32 = 1;
-
-/*
- * VAX subtypes (these do *not* necessary conform to the actual cpu
- * ID assigned by DEC available via the SID register).
- */
-
-pub const CPU_SUBTYPE_VAX_ALL: u32 = 0;
-pub const CPU_SUBTYPE_VAX780: u32 = 1;
-pub const CPU_SUBTYPE_VAX785: u32 = 2;
-pub const CPU_SUBTYPE_VAX750: u32 = 3;
-pub const CPU_SUBTYPE_VAX730: u32 = 4;
-pub const CPU_SUBTYPE_UVAXI: u32 = 5;
-pub const CPU_SUBTYPE_UVAXII: u32 = 6;
-pub const CPU_SUBTYPE_VAX8200: u32 = 7;
-pub const CPU_SUBTYPE_VAX8500: u32 = 8;
-pub const CPU_SUBTYPE_VAX8600: u32 = 9;
-pub const CPU_SUBTYPE_VAX8650: u32 = 10;
-pub const CPU_SUBTYPE_VAX8800: u32 = 11;
-pub const CPU_SUBTYPE_UVAXIII: u32 = 12;
-
-/*
- * 680x0 subtypes
- *
- * The subtype definitions here are unusual for historical reasons.
- * NeXT used to consider 68030 code as generic 68000 code. For
- * backwards compatibility:
- *
- * CPU_SUBTYPE_MC68030 symbol has been preserved for source code
- * compatibility.
- *
- * CPU_SUBTYPE_MC680x0_ALL has been defined to be the same
- * subtype as CPU_SUBTYPE_MC68030 for binary comatability.
- *
- * CPU_SUBTYPE_MC68030_ONLY has been added to allow new object
- * files to be tagged as containing 68030-specific instructions.
- */
-
-pub const CPU_SUBTYPE_MC680X0_ALL: u32 = 1;
-// compat
-pub const CPU_SUBTYPE_MC68030: u32 = 1;
-pub const CPU_SUBTYPE_MC68040: u32 = 2;
-pub const CPU_SUBTYPE_MC68030_ONLY: u32 = 3;
-
-/*
- * I386 subtypes
- */
-
-#[inline]
-pub const fn cpu_subtype_intel(f: u32, m: u32) -> u32 {
- f + (m << 4)
-}
-
-pub const CPU_SUBTYPE_I386_ALL: u32 = cpu_subtype_intel(3, 0);
-pub const CPU_SUBTYPE_386: u32 = cpu_subtype_intel(3, 0);
-pub const CPU_SUBTYPE_486: u32 = cpu_subtype_intel(4, 0);
-pub const CPU_SUBTYPE_486SX: u32 = cpu_subtype_intel(4, 8);
-pub const CPU_SUBTYPE_586: u32 = cpu_subtype_intel(5, 0);
-pub const CPU_SUBTYPE_PENT: u32 = cpu_subtype_intel(5, 0);
-pub const CPU_SUBTYPE_PENTPRO: u32 = cpu_subtype_intel(6, 1);
-pub const CPU_SUBTYPE_PENTII_M3: u32 = cpu_subtype_intel(6, 3);
-pub const CPU_SUBTYPE_PENTII_M5: u32 = cpu_subtype_intel(6, 5);
-pub const CPU_SUBTYPE_CELERON: u32 = cpu_subtype_intel(7, 6);
-pub const CPU_SUBTYPE_CELERON_MOBILE: u32 = cpu_subtype_intel(7, 7);
-pub const CPU_SUBTYPE_PENTIUM_3: u32 = cpu_subtype_intel(8, 0);
-pub const CPU_SUBTYPE_PENTIUM_3_M: u32 = cpu_subtype_intel(8, 1);
-pub const CPU_SUBTYPE_PENTIUM_3_XEON: u32 = cpu_subtype_intel(8, 2);
-pub const CPU_SUBTYPE_PENTIUM_M: u32 = cpu_subtype_intel(9, 0);
-pub const CPU_SUBTYPE_PENTIUM_4: u32 = cpu_subtype_intel(10, 0);
-pub const CPU_SUBTYPE_PENTIUM_4_M: u32 = cpu_subtype_intel(10, 1);
-pub const CPU_SUBTYPE_ITANIUM: u32 = cpu_subtype_intel(11, 0);
-pub const CPU_SUBTYPE_ITANIUM_2: u32 = cpu_subtype_intel(11, 1);
-pub const CPU_SUBTYPE_XEON: u32 = cpu_subtype_intel(12, 0);
-pub const CPU_SUBTYPE_XEON_MP: u32 = cpu_subtype_intel(12, 1);
-
-#[inline]
-pub const fn cpu_subtype_intel_family(x: u32) -> u32 {
- x & 15
-}
-pub const CPU_SUBTYPE_INTEL_FAMILY_MAX: u32 = 15;
-
-#[inline]
-pub const fn cpu_subtype_intel_model(x: u32) -> u32 {
- x >> 4
-}
-pub const CPU_SUBTYPE_INTEL_MODEL_ALL: u32 = 0;
-
-/*
- * X86 subtypes.
- */
-
-pub const CPU_SUBTYPE_X86_ALL: u32 = 3;
-pub const CPU_SUBTYPE_X86_64_ALL: u32 = 3;
-pub const CPU_SUBTYPE_X86_ARCH1: u32 = 4;
-/// Haswell feature subset
-pub const CPU_SUBTYPE_X86_64_H: u32 = 8;
-
-/*
- * Mips subtypes.
- */
-
-pub const CPU_SUBTYPE_MIPS_ALL: u32 = 0;
-pub const CPU_SUBTYPE_MIPS_R2300: u32 = 1;
-pub const CPU_SUBTYPE_MIPS_R2600: u32 = 2;
-pub const CPU_SUBTYPE_MIPS_R2800: u32 = 3;
-/// pmax
-pub const CPU_SUBTYPE_MIPS_R2000A: u32 = 4;
-pub const CPU_SUBTYPE_MIPS_R2000: u32 = 5;
-/// 3max
-pub const CPU_SUBTYPE_MIPS_R3000A: u32 = 6;
-pub const CPU_SUBTYPE_MIPS_R3000: u32 = 7;
-
-/*
- * MC98000 (PowerPC) subtypes
- */
-pub const CPU_SUBTYPE_MC98000_ALL: u32 = 0;
-pub const CPU_SUBTYPE_MC98601: u32 = 1;
-
-/*
- * HPPA subtypes for Hewlett-Packard HP-PA family of
- * risc processors. Port by NeXT to 700 series.
- */
-
-pub const CPU_SUBTYPE_HPPA_ALL: u32 = 0;
-pub const CPU_SUBTYPE_HPPA_7100LC: u32 = 1;
-
-/*
- * MC88000 subtypes.
- */
-pub const CPU_SUBTYPE_MC88000_ALL: u32 = 0;
-pub const CPU_SUBTYPE_MC88100: u32 = 1;
-pub const CPU_SUBTYPE_MC88110: u32 = 2;
-
-/*
- * SPARC subtypes
- */
-pub const CPU_SUBTYPE_SPARC_ALL: u32 = 0;
-
-/*
- * I860 subtypes
- */
-pub const CPU_SUBTYPE_I860_ALL: u32 = 0;
-pub const CPU_SUBTYPE_I860_860: u32 = 1;
-
-/*
- * PowerPC subtypes
- */
-pub const CPU_SUBTYPE_POWERPC_ALL: u32 = 0;
-pub const CPU_SUBTYPE_POWERPC_601: u32 = 1;
-pub const CPU_SUBTYPE_POWERPC_602: u32 = 2;
-pub const CPU_SUBTYPE_POWERPC_603: u32 = 3;
-pub const CPU_SUBTYPE_POWERPC_603E: u32 = 4;
-pub const CPU_SUBTYPE_POWERPC_603EV: u32 = 5;
-pub const CPU_SUBTYPE_POWERPC_604: u32 = 6;
-pub const CPU_SUBTYPE_POWERPC_604E: u32 = 7;
-pub const CPU_SUBTYPE_POWERPC_620: u32 = 8;
-pub const CPU_SUBTYPE_POWERPC_750: u32 = 9;
-pub const CPU_SUBTYPE_POWERPC_7400: u32 = 10;
-pub const CPU_SUBTYPE_POWERPC_7450: u32 = 11;
-pub const CPU_SUBTYPE_POWERPC_970: u32 = 100;
-
-/*
- * ARM subtypes
- */
-pub const CPU_SUBTYPE_ARM_ALL: u32 = 0;
-pub const CPU_SUBTYPE_ARM_V4T: u32 = 5;
-pub const CPU_SUBTYPE_ARM_V6: u32 = 6;
-pub const CPU_SUBTYPE_ARM_V5TEJ: u32 = 7;
-pub const CPU_SUBTYPE_ARM_XSCALE: u32 = 8;
-/// ARMv7-A and ARMv7-R
-pub const CPU_SUBTYPE_ARM_V7: u32 = 9;
-/// Cortex A9
-pub const CPU_SUBTYPE_ARM_V7F: u32 = 10;
-/// Swift
-pub const CPU_SUBTYPE_ARM_V7S: u32 = 11;
-pub const CPU_SUBTYPE_ARM_V7K: u32 = 12;
-pub const CPU_SUBTYPE_ARM_V8: u32 = 13;
-/// Not meant to be run under xnu
-pub const CPU_SUBTYPE_ARM_V6M: u32 = 14;
-/// Not meant to be run under xnu
-pub const CPU_SUBTYPE_ARM_V7M: u32 = 15;
-/// Not meant to be run under xnu
-pub const CPU_SUBTYPE_ARM_V7EM: u32 = 16;
-/// Not meant to be run under xnu
-pub const CPU_SUBTYPE_ARM_V8M: u32 = 17;
-
-/*
- * ARM64 subtypes
- */
-pub const CPU_SUBTYPE_ARM64_ALL: u32 = 0;
-pub const CPU_SUBTYPE_ARM64_V8: u32 = 1;
-pub const CPU_SUBTYPE_ARM64E: u32 = 2;
-
-/*
- * ARM64_32 subtypes
- */
-pub const CPU_SUBTYPE_ARM64_32_ALL: u32 = 0;
-pub const CPU_SUBTYPE_ARM64_32_V8: u32 = 1;
-
-// Definitions from "/usr/include/mach/vm_prot.h".
-
-/// read permission
-pub const VM_PROT_READ: u32 = 0x01;
-/// write permission
-pub const VM_PROT_WRITE: u32 = 0x02;
-/// execute permission
-pub const VM_PROT_EXECUTE: u32 = 0x04;
-
-// Definitions from https://opensource.apple.com/source/dyld/dyld-210.2.3/launch-cache/dyld_cache_format.h.auto.html
-
-/// The dyld cache header.
-/// Corresponds to struct dyld_cache_header from dyld_cache_format.h.
-/// This header has grown over time. Only the fields up to and including dyld_base_address
-/// are guaranteed to be present. For all other fields, check the header size before
-/// accessing the field. The header size is stored in mapping_offset; the mappings start
-/// right after the theader.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DyldCacheHeader<E: Endian> {
- /// e.g. "dyld_v0 i386"
- pub magic: [u8; 16],
- /// file offset to first dyld_cache_mapping_info
- pub mapping_offset: U32<E>, // offset: 0x10
- /// number of dyld_cache_mapping_info entries
- pub mapping_count: U32<E>, // offset: 0x14
- /// file offset to first dyld_cache_image_info
- pub images_offset: U32<E>, // offset: 0x18
- /// number of dyld_cache_image_info entries
- pub images_count: U32<E>, // offset: 0x1c
- /// base address of dyld when cache was built
- pub dyld_base_address: U64<E>, // offset: 0x20
- ///
- reserved1: [u8; 32], // offset: 0x28
- /// file offset of where local symbols are stored
- pub local_symbols_offset: U64<E>, // offset: 0x48
- /// size of local symbols information
- pub local_symbols_size: U64<E>, // offset: 0x50
- /// unique value for each shared cache file
- pub uuid: [u8; 16], // offset: 0x58
- ///
- reserved2: [u8; 32], // offset: 0x68
- ///
- reserved3: [u8; 32], // offset: 0x88
- ///
- reserved4: [u8; 32], // offset: 0xa8
- ///
- reserved5: [u8; 32], // offset: 0xc8
- ///
- reserved6: [u8; 32], // offset: 0xe8
- ///
- reserved7: [u8; 32], // offset: 0x108
- ///
- reserved8: [u8; 32], // offset: 0x128
- ///
- reserved9: [u8; 32], // offset: 0x148
- ///
- reserved10: [u8; 32], // offset: 0x168
- /// file offset to first dyld_subcache_info
- pub subcaches_offset: U32<E>, // offset: 0x188
- /// number of dyld_subcache_info entries
- pub subcaches_count: U32<E>, // offset: 0x18c
- /// the UUID of the .symbols subcache
- pub symbols_subcache_uuid: [u8; 16], // offset: 0x190
- ///
- reserved11: [u8; 32], // offset: 0x1a0
- /// file offset to first dyld_cache_image_info
- /// Use this instead of images_offset if mapping_offset is at least 0x1c4.
- pub images_across_all_subcaches_offset: U32<E>, // offset: 0x1c0
- /// number of dyld_cache_image_info entries
- /// Use this instead of images_count if mapping_offset is at least 0x1c4.
- pub images_across_all_subcaches_count: U32<E>, // offset: 0x1c4
-}
-
-/// Corresponds to struct dyld_cache_mapping_info from dyld_cache_format.h.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DyldCacheMappingInfo<E: Endian> {
- ///
- pub address: U64<E>,
- ///
- pub size: U64<E>,
- ///
- pub file_offset: U64<E>,
- ///
- pub max_prot: U32<E>,
- ///
- pub init_prot: U32<E>,
-}
-
-/// Corresponds to struct dyld_cache_image_info from dyld_cache_format.h.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DyldCacheImageInfo<E: Endian> {
- ///
- pub address: U64<E>,
- ///
- pub mod_time: U64<E>,
- ///
- pub inode: U64<E>,
- ///
- pub path_file_offset: U32<E>,
- ///
- pub pad: U32<E>,
-}
-
-/// Corresponds to a struct whose source code has not been published as of Nov 2021.
-/// Added in the dyld cache version which shipped with macOS 12 / iOS 15.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DyldSubCacheInfo<E: Endian> {
- /// The UUID of this subcache.
- pub uuid: [u8; 16],
- /// The size of this subcache plus all previous subcaches.
- pub cumulative_size: U64<E>,
-}
-
-// Definitions from "/usr/include/mach-o/loader.h".
-
-/*
- * This header file describes the structures of the file format for "fat"
- * architecture specific file (wrapper design). At the beginning of the file
- * there is one `FatHeader` structure followed by a number of `FatArch*`
- * structures. For each architecture in the file, specified by a pair of
- * cputype and cpusubtype, the `FatHeader` describes the file offset, file
- * size and alignment in the file of the architecture specific member.
- * The padded bytes in the file to place each member on it's specific alignment
- * are defined to be read as zeros and can be left as "holes" if the file system
- * can support them as long as they read as zeros.
- *
- * All structures defined here are always written and read to/from disk
- * in big-endian order.
- */
-
-pub const FAT_MAGIC: u32 = 0xcafe_babe;
-/// NXSwapLong(FAT_MAGIC)
-pub const FAT_CIGAM: u32 = 0xbeba_feca;
-
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct FatHeader {
- /// FAT_MAGIC or FAT_MAGIC_64
- pub magic: U32<BigEndian>,
- /// number of structs that follow
- pub nfat_arch: U32<BigEndian>,
-}
-
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct FatArch32 {
- /// cpu specifier (int)
- pub cputype: U32<BigEndian>,
- /// machine specifier (int)
- pub cpusubtype: U32<BigEndian>,
- /// file offset to this object file
- pub offset: U32<BigEndian>,
- /// size of this object file
- pub size: U32<BigEndian>,
- /// alignment as a power of 2
- pub align: U32<BigEndian>,
-}
-
-/*
- * The support for the 64-bit fat file format described here is a work in
- * progress and not yet fully supported in all the Apple Developer Tools.
- *
- * When a slice is greater than 4mb or an offset to a slice is greater than 4mb
- * then the 64-bit fat file format is used.
- */
-pub const FAT_MAGIC_64: u32 = 0xcafe_babf;
-/// NXSwapLong(FAT_MAGIC_64)
-pub const FAT_CIGAM_64: u32 = 0xbfba_feca;
-
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct FatArch64 {
- /// cpu specifier (int)
- pub cputype: U32<BigEndian>,
- /// machine specifier (int)
- pub cpusubtype: U32<BigEndian>,
- /// file offset to this object file
- pub offset: U64<BigEndian>,
- /// size of this object file
- pub size: U64<BigEndian>,
- /// alignment as a power of 2
- pub align: U32<BigEndian>,
- /// reserved
- pub reserved: U32<BigEndian>,
-}
-
-// Definitions from "/usr/include/mach-o/loader.h".
-
-/// The 32-bit mach header.
-///
-/// Appears at the very beginning of the object file for 32-bit architectures.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct MachHeader32<E: Endian> {
- /// mach magic number identifier
- pub magic: U32<BigEndian>,
- /// cpu specifier
- pub cputype: U32<E>,
- /// machine specifier
- pub cpusubtype: U32<E>,
- /// type of file
- pub filetype: U32<E>,
- /// number of load commands
- pub ncmds: U32<E>,
- /// the size of all the load commands
- pub sizeofcmds: U32<E>,
- /// flags
- pub flags: U32<E>,
-}
-
-// Values for `MachHeader32::magic`.
-/// the mach magic number
-pub const MH_MAGIC: u32 = 0xfeed_face;
-/// NXSwapInt(MH_MAGIC)
-pub const MH_CIGAM: u32 = 0xcefa_edfe;
-
-/// The 64-bit mach header.
-///
-/// Appears at the very beginning of object files for 64-bit architectures.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct MachHeader64<E: Endian> {
- /// mach magic number identifier
- pub magic: U32<BigEndian>,
- /// cpu specifier
- pub cputype: U32<E>,
- /// machine specifier
- pub cpusubtype: U32<E>,
- /// type of file
- pub filetype: U32<E>,
- /// number of load commands
- pub ncmds: U32<E>,
- /// the size of all the load commands
- pub sizeofcmds: U32<E>,
- /// flags
- pub flags: U32<E>,
- /// reserved
- pub reserved: U32<E>,
-}
-
-// Values for `MachHeader64::magic`.
-/// the 64-bit mach magic number
-pub const MH_MAGIC_64: u32 = 0xfeed_facf;
-/// NXSwapInt(MH_MAGIC_64)
-pub const MH_CIGAM_64: u32 = 0xcffa_edfe;
-
-/*
- * The layout of the file depends on the filetype. For all but the MH_OBJECT
- * file type the segments are padded out and aligned on a segment alignment
- * boundary for efficient demand pageing. The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
- * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
- * of their first segment.
- *
- * The file type MH_OBJECT is a compact format intended as output of the
- * assembler and input (and possibly output) of the link editor (the .o
- * format). All sections are in one unnamed segment with no segment padding.
- * This format is used as an executable format when the file is so small the
- * segment padding greatly increases its size.
- *
- * The file type MH_PRELOAD is an executable format intended for things that
- * are not executed under the kernel (proms, stand alones, kernels, etc). The
- * format can be executed under the kernel but may demand paged it and not
- * preload it before execution.
- *
- * A core file is in MH_CORE format and can be any in an arbritray legal
- * Mach-O file.
- */
-
-// Values for `MachHeader*::filetype`.
-/// relocatable object file
-pub const MH_OBJECT: u32 = 0x1;
-/// demand paged executable file
-pub const MH_EXECUTE: u32 = 0x2;
-/// fixed VM shared library file
-pub const MH_FVMLIB: u32 = 0x3;
-/// core file
-pub const MH_CORE: u32 = 0x4;
-/// preloaded executable file
-pub const MH_PRELOAD: u32 = 0x5;
-/// dynamically bound shared library
-pub const MH_DYLIB: u32 = 0x6;
-/// dynamic link editor
-pub const MH_DYLINKER: u32 = 0x7;
-/// dynamically bound bundle file
-pub const MH_BUNDLE: u32 = 0x8;
-/// shared library stub for static linking only, no section contents
-pub const MH_DYLIB_STUB: u32 = 0x9;
-/// companion file with only debug sections
-pub const MH_DSYM: u32 = 0xa;
-/// x86_64 kexts
-pub const MH_KEXT_BUNDLE: u32 = 0xb;
-/// set of mach-o's
-pub const MH_FILESET: u32 = 0xc;
-
-// Values for `MachHeader*::flags`.
-/// the object file has no undefined references
-pub const MH_NOUNDEFS: u32 = 0x1;
-/// the object file is the output of an incremental link against a base file and can't be link edited again
-pub const MH_INCRLINK: u32 = 0x2;
-/// the object file is input for the dynamic linker and can't be statically link edited again
-pub const MH_DYLDLINK: u32 = 0x4;
-/// the object file's undefined references are bound by the dynamic linker when loaded.
-pub const MH_BINDATLOAD: u32 = 0x8;
-/// the file has its dynamic undefined references prebound.
-pub const MH_PREBOUND: u32 = 0x10;
-/// the file has its read-only and read-write segments split
-pub const MH_SPLIT_SEGS: u32 = 0x20;
-/// the shared library init routine is to be run lazily via catching memory faults to its writeable segments (obsolete)
-pub const MH_LAZY_INIT: u32 = 0x40;
-/// the image is using two-level name space bindings
-pub const MH_TWOLEVEL: u32 = 0x80;
-/// the executable is forcing all images to use flat name space bindings
-pub const MH_FORCE_FLAT: u32 = 0x100;
-/// this umbrella guarantees no multiple definitions of symbols in its sub-images so the two-level namespace hints can always be used.
-pub const MH_NOMULTIDEFS: u32 = 0x200;
-/// do not have dyld notify the prebinding agent about this executable
-pub const MH_NOFIXPREBINDING: u32 = 0x400;
-/// the binary is not prebound but can have its prebinding redone. only used when MH_PREBOUND is not set.
-pub const MH_PREBINDABLE: u32 = 0x800;
-/// indicates that this binary binds to all two-level namespace modules of its dependent libraries. only used when MH_PREBINDABLE and MH_TWOLEVEL are both set.
-pub const MH_ALLMODSBOUND: u32 = 0x1000;
-/// safe to divide up the sections into sub-sections via symbols for dead code stripping
-pub const MH_SUBSECTIONS_VIA_SYMBOLS: u32 = 0x2000;
-/// the binary has been canonicalized via the unprebind operation
-pub const MH_CANONICAL: u32 = 0x4000;
-/// the final linked image contains external weak symbols
-pub const MH_WEAK_DEFINES: u32 = 0x8000;
-/// the final linked image uses weak symbols
-pub const MH_BINDS_TO_WEAK: u32 = 0x10000;
-/// When this bit is set, all stacks in the task will be given stack execution privilege. Only used in MH_EXECUTE filetypes.
-pub const MH_ALLOW_STACK_EXECUTION: u32 = 0x20000;
-/// When this bit is set, the binary declares it is safe for use in processes with uid zero
-pub const MH_ROOT_SAFE: u32 = 0x40000;
-/// When this bit is set, the binary declares it is safe for use in processes when issetugid() is true
-pub const MH_SETUID_SAFE: u32 = 0x80000;
-/// When this bit is set on a dylib, the static linker does not need to examine dependent dylibs to see if any are re-exported
-pub const MH_NO_REEXPORTED_DYLIBS: u32 = 0x10_0000;
-/// When this bit is set, the OS will load the main executable at a random address. Only used in MH_EXECUTE filetypes.
-pub const MH_PIE: u32 = 0x20_0000;
-/// Only for use on dylibs. When linking against a dylib that has this bit set, the static linker will automatically not create a LC_LOAD_DYLIB load command to the dylib if no symbols are being referenced from the dylib.
-pub const MH_DEAD_STRIPPABLE_DYLIB: u32 = 0x40_0000;
-/// Contains a section of type S_THREAD_LOCAL_VARIABLES
-pub const MH_HAS_TLV_DESCRIPTORS: u32 = 0x80_0000;
-/// When this bit is set, the OS will run the main executable with a non-executable heap even on platforms (e.g. i386) that don't require it. Only used in MH_EXECUTE filetypes.
-pub const MH_NO_HEAP_EXECUTION: u32 = 0x100_0000;
-/// The code was linked for use in an application extension.
-pub const MH_APP_EXTENSION_SAFE: u32 = 0x0200_0000;
-/// The external symbols listed in the nlist symbol table do not include all the symbols listed in the dyld info.
-pub const MH_NLIST_OUTOFSYNC_WITH_DYLDINFO: u32 = 0x0400_0000;
-/// Allow LC_MIN_VERSION_MACOS and LC_BUILD_VERSION load commands with
-/// the platforms macOS, iOSMac, iOSSimulator, tvOSSimulator and watchOSSimulator.
-pub const MH_SIM_SUPPORT: u32 = 0x0800_0000;
-/// Only for use on dylibs. When this bit is set, the dylib is part of the dyld
-/// shared cache, rather than loose in the filesystem.
-pub const MH_DYLIB_IN_CACHE: u32 = 0x8000_0000;
-
-/// Common fields at the start of every load command.
-///
-/// The load commands directly follow the mach_header. The total size of all
-/// of the commands is given by the sizeofcmds field in the mach_header. All
-/// load commands must have as their first two fields `cmd` and `cmdsize`. The `cmd`
-/// field is filled in with a constant for that command type. Each command type
-/// has a structure specifically for it. The `cmdsize` field is the size in bytes
-/// of the particular load command structure plus anything that follows it that
-/// is a part of the load command (i.e. section structures, strings, etc.). To
-/// advance to the next load command the `cmdsize` can be added to the offset or
-/// pointer of the current load command. The `cmdsize` for 32-bit architectures
-/// MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
-/// of 8 bytes (these are forever the maximum alignment of any load commands).
-/// The padded bytes must be zero. All tables in the object file must also
-/// follow these rules so the file can be memory mapped. Otherwise the pointers
-/// to these tables will not work well or at all on some machines. With all
-/// padding zeroed like objects will compare byte for byte.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct LoadCommand<E: Endian> {
- /// Type of load command.
- ///
- /// One of the `LC_*` constants.
- pub cmd: U32<E>,
- /// Total size of command in bytes.
- pub cmdsize: U32<E>,
-}
-
-/*
- * After MacOS X 10.1 when a new load command is added that is required to be
- * understood by the dynamic linker for the image to execute properly the
- * LC_REQ_DYLD bit will be or'ed into the load command constant. If the dynamic
- * linker sees such a load command it it does not understand will issue a
- * "unknown load command required for execution" error and refuse to use the
- * image. Other load commands without this bit that are not understood will
- * simply be ignored.
- */
-pub const LC_REQ_DYLD: u32 = 0x8000_0000;
-
-/* Constants for the cmd field of all load commands, the type */
-/// segment of this file to be mapped
-pub const LC_SEGMENT: u32 = 0x1;
-/// link-edit stab symbol table info
-pub const LC_SYMTAB: u32 = 0x2;
-/// link-edit gdb symbol table info (obsolete)
-pub const LC_SYMSEG: u32 = 0x3;
-/// thread
-pub const LC_THREAD: u32 = 0x4;
-/// unix thread (includes a stack)
-pub const LC_UNIXTHREAD: u32 = 0x5;
-/// load a specified fixed VM shared library
-pub const LC_LOADFVMLIB: u32 = 0x6;
-/// fixed VM shared library identification
-pub const LC_IDFVMLIB: u32 = 0x7;
-/// object identification info (obsolete)
-pub const LC_IDENT: u32 = 0x8;
-/// fixed VM file inclusion (internal use)
-pub const LC_FVMFILE: u32 = 0x9;
-/// prepage command (internal use)
-pub const LC_PREPAGE: u32 = 0xa;
-/// dynamic link-edit symbol table info
-pub const LC_DYSYMTAB: u32 = 0xb;
-/// load a dynamically linked shared library
-pub const LC_LOAD_DYLIB: u32 = 0xc;
-/// dynamically linked shared lib ident
-pub const LC_ID_DYLIB: u32 = 0xd;
-/// load a dynamic linker
-pub const LC_LOAD_DYLINKER: u32 = 0xe;
-/// dynamic linker identification
-pub const LC_ID_DYLINKER: u32 = 0xf;
-/// modules prebound for a dynamically linked shared library
-pub const LC_PREBOUND_DYLIB: u32 = 0x10;
-/// image routines
-pub const LC_ROUTINES: u32 = 0x11;
-/// sub framework
-pub const LC_SUB_FRAMEWORK: u32 = 0x12;
-/// sub umbrella
-pub const LC_SUB_UMBRELLA: u32 = 0x13;
-/// sub client
-pub const LC_SUB_CLIENT: u32 = 0x14;
-/// sub library
-pub const LC_SUB_LIBRARY: u32 = 0x15;
-/// two-level namespace lookup hints
-pub const LC_TWOLEVEL_HINTS: u32 = 0x16;
-/// prebind checksum
-pub const LC_PREBIND_CKSUM: u32 = 0x17;
-/// load a dynamically linked shared library that is allowed to be missing
-/// (all symbols are weak imported).
-pub const LC_LOAD_WEAK_DYLIB: u32 = 0x18 | LC_REQ_DYLD;
-/// 64-bit segment of this file to be mapped
-pub const LC_SEGMENT_64: u32 = 0x19;
-/// 64-bit image routines
-pub const LC_ROUTINES_64: u32 = 0x1a;
-/// the uuid
-pub const LC_UUID: u32 = 0x1b;
-/// runpath additions
-pub const LC_RPATH: u32 = 0x1c | LC_REQ_DYLD;
-/// local of code signature
-pub const LC_CODE_SIGNATURE: u32 = 0x1d;
-/// local of info to split segments
-pub const LC_SEGMENT_SPLIT_INFO: u32 = 0x1e;
-/// load and re-export dylib
-pub const LC_REEXPORT_DYLIB: u32 = 0x1f | LC_REQ_DYLD;
-/// delay load of dylib until first use
-pub const LC_LAZY_LOAD_DYLIB: u32 = 0x20;
-/// encrypted segment information
-pub const LC_ENCRYPTION_INFO: u32 = 0x21;
-/// compressed dyld information
-pub const LC_DYLD_INFO: u32 = 0x22;
-/// compressed dyld information only
-pub const LC_DYLD_INFO_ONLY: u32 = 0x22 | LC_REQ_DYLD;
-/// load upward dylib
-pub const LC_LOAD_UPWARD_DYLIB: u32 = 0x23 | LC_REQ_DYLD;
-/// build for MacOSX min OS version
-pub const LC_VERSION_MIN_MACOSX: u32 = 0x24;
-/// build for iPhoneOS min OS version
-pub const LC_VERSION_MIN_IPHONEOS: u32 = 0x25;
-/// compressed table of function start addresses
-pub const LC_FUNCTION_STARTS: u32 = 0x26;
-/// string for dyld to treat like environment variable
-pub const LC_DYLD_ENVIRONMENT: u32 = 0x27;
-/// replacement for LC_UNIXTHREAD
-pub const LC_MAIN: u32 = 0x28 | LC_REQ_DYLD;
-/// table of non-instructions in __text
-pub const LC_DATA_IN_CODE: u32 = 0x29;
-/// source version used to build binary
-pub const LC_SOURCE_VERSION: u32 = 0x2A;
-/// Code signing DRs copied from linked dylibs
-pub const LC_DYLIB_CODE_SIGN_DRS: u32 = 0x2B;
-/// 64-bit encrypted segment information
-pub const LC_ENCRYPTION_INFO_64: u32 = 0x2C;
-/// linker options in MH_OBJECT files
-pub const LC_LINKER_OPTION: u32 = 0x2D;
-/// optimization hints in MH_OBJECT files
-pub const LC_LINKER_OPTIMIZATION_HINT: u32 = 0x2E;
-/// build for AppleTV min OS version
-pub const LC_VERSION_MIN_TVOS: u32 = 0x2F;
-/// build for Watch min OS version
-pub const LC_VERSION_MIN_WATCHOS: u32 = 0x30;
-/// arbitrary data included within a Mach-O file
-pub const LC_NOTE: u32 = 0x31;
-/// build for platform min OS version
-pub const LC_BUILD_VERSION: u32 = 0x32;
-/// used with `LinkeditDataCommand`, payload is trie
-pub const LC_DYLD_EXPORTS_TRIE: u32 = 0x33 | LC_REQ_DYLD;
-/// used with `LinkeditDataCommand`
-pub const LC_DYLD_CHAINED_FIXUPS: u32 = 0x34 | LC_REQ_DYLD;
-/// used with `FilesetEntryCommand`
-pub const LC_FILESET_ENTRY: u32 = 0x35 | LC_REQ_DYLD;
-
-/// A variable length string in a load command.
-///
-/// The strings are stored just after the load command structure and
-/// the offset is from the start of the load command structure. The size
-/// of the string is reflected in the `cmdsize` field of the load command.
-/// Once again any padded bytes to bring the `cmdsize` field to a multiple
-/// of 4 bytes must be zero.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct LcStr<E: Endian> {
- /// offset to the string
- pub offset: U32<E>,
-}
-
-/// 32-bit segment load command.
-///
-/// The segment load command indicates that a part of this file is to be
-/// mapped into the task's address space. The size of this segment in memory,
-/// vmsize, maybe equal to or larger than the amount to map from this file,
-/// filesize. The file is mapped starting at fileoff to the beginning of
-/// the segment in memory, vmaddr. The rest of the memory of the segment,
-/// if any, is allocated zero fill on demand. The segment's maximum virtual
-/// memory protection and initial virtual memory protection are specified
-/// by the maxprot and initprot fields. If the segment has sections then the
-/// `Section32` structures directly follow the segment command and their size is
-/// reflected in `cmdsize`.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SegmentCommand32<E: Endian> {
- /// LC_SEGMENT
- pub cmd: U32<E>,
- /// includes sizeof section structs
- pub cmdsize: U32<E>,
- /// segment name
- pub segname: [u8; 16],
- /// memory address of this segment
- pub vmaddr: U32<E>,
- /// memory size of this segment
- pub vmsize: U32<E>,
- /// file offset of this segment
- pub fileoff: U32<E>,
- /// amount to map from the file
- pub filesize: U32<E>,
- /// maximum VM protection
- pub maxprot: U32<E>,
- /// initial VM protection
- pub initprot: U32<E>,
- /// number of sections in segment
- pub nsects: U32<E>,
- /// flags
- pub flags: U32<E>,
-}
-
-/// 64-bit segment load command.
-///
-/// The 64-bit segment load command indicates that a part of this file is to be
-/// mapped into a 64-bit task's address space. If the 64-bit segment has
-/// sections then `Section64` structures directly follow the 64-bit segment
-/// command and their size is reflected in `cmdsize`.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SegmentCommand64<E: Endian> {
- /// LC_SEGMENT_64
- pub cmd: U32<E>,
- /// includes sizeof section_64 structs
- pub cmdsize: U32<E>,
- /// segment name
- pub segname: [u8; 16],
- /// memory address of this segment
- pub vmaddr: U64<E>,
- /// memory size of this segment
- pub vmsize: U64<E>,
- /// file offset of this segment
- pub fileoff: U64<E>,
- /// amount to map from the file
- pub filesize: U64<E>,
- /// maximum VM protection
- pub maxprot: U32<E>,
- /// initial VM protection
- pub initprot: U32<E>,
- /// number of sections in segment
- pub nsects: U32<E>,
- /// flags
- pub flags: U32<E>,
-}
-
-// Values for `SegmentCommand*::flags`.
-/// the file contents for this segment is for the high part of the VM space, the low part is zero filled (for stacks in core files)
-pub const SG_HIGHVM: u32 = 0x1;
-/// this segment is the VM that is allocated by a fixed VM library, for overlap checking in the link editor
-pub const SG_FVMLIB: u32 = 0x2;
-/// this segment has nothing that was relocated in it and nothing relocated to it, that is it maybe safely replaced without relocation
-pub const SG_NORELOC: u32 = 0x4;
-/// This segment is protected. If the segment starts at file offset 0, the first page of the segment is not protected. All other pages of the segment are protected.
-pub const SG_PROTECTED_VERSION_1: u32 = 0x8;
-/// This segment is made read-only after fixups
-pub const SG_READ_ONLY: u32 = 0x10;
-
-/*
- * A segment is made up of zero or more sections. Non-MH_OBJECT files have
- * all of their segments with the proper sections in each, and padded to the
- * specified segment alignment when produced by the link editor. The first
- * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
- * and load commands of the object file before its first section. The zero
- * fill sections are always last in their segment (in all formats). This
- * allows the zeroed segment padding to be mapped into memory where zero fill
- * sections might be. The gigabyte zero fill sections, those with the section
- * type S_GB_ZEROFILL, can only be in a segment with sections of this type.
- * These segments are then placed after all other segments.
- *
- * The MH_OBJECT format has all of its sections in one segment for
- * compactness. There is no padding to a specified segment boundary and the
- * mach_header and load commands are not part of the segment.
- *
- * Sections with the same section name, sectname, going into the same segment,
- * segname, are combined by the link editor. The resulting section is aligned
- * to the maximum alignment of the combined sections and is the new section's
- * alignment. The combined sections are aligned to their original alignment in
- * the combined section. Any padded bytes to get the specified alignment are
- * zeroed.
- *
- * The format of the relocation entries referenced by the reloff and nreloc
- * fields of the section structure for mach object files is described in the
- * header file <reloc.h>.
- */
-/// 32-bit section.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Section32<E: Endian> {
- /// name of this section
- pub sectname: [u8; 16],
- /// segment this section goes in
- pub segname: [u8; 16],
- /// memory address of this section
- pub addr: U32<E>,
- /// size in bytes of this section
- pub size: U32<E>,
- /// file offset of this section
- pub offset: U32<E>,
- /// section alignment (power of 2)
- pub align: U32<E>,
- /// file offset of relocation entries
- pub reloff: U32<E>,
- /// number of relocation entries
- pub nreloc: U32<E>,
- /// flags (section type and attributes)
- pub flags: U32<E>,
- /// reserved (for offset or index)
- pub reserved1: U32<E>,
- /// reserved (for count or sizeof)
- pub reserved2: U32<E>,
-}
-
-/// 64-bit section.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Section64<E: Endian> {
- /// name of this section
- pub sectname: [u8; 16],
- /// segment this section goes in
- pub segname: [u8; 16],
- /// memory address of this section
- pub addr: U64<E>,
- /// size in bytes of this section
- pub size: U64<E>,
- /// file offset of this section
- pub offset: U32<E>,
- /// section alignment (power of 2)
- pub align: U32<E>,
- /// file offset of relocation entries
- pub reloff: U32<E>,
- /// number of relocation entries
- pub nreloc: U32<E>,
- /// flags (section type and attributes)
- pub flags: U32<E>,
- /// reserved (for offset or index)
- pub reserved1: U32<E>,
- /// reserved (for count or sizeof)
- pub reserved2: U32<E>,
- /// reserved
- pub reserved3: U32<E>,
-}
-
-/*
- * The flags field of a section structure is separated into two parts a section
- * type and section attributes. The section types are mutually exclusive (it
- * can only have one type) but the section attributes are not (it may have more
- * than one attribute).
- */
-/// 256 section types
-pub const SECTION_TYPE: u32 = 0x0000_00ff;
-/// 24 section attributes
-pub const SECTION_ATTRIBUTES: u32 = 0xffff_ff00;
-
-/* Constants for the type of a section */
-/// regular section
-pub const S_REGULAR: u32 = 0x0;
-/// zero fill on demand section
-pub const S_ZEROFILL: u32 = 0x1;
-/// section with only literal C strings
-pub const S_CSTRING_LITERALS: u32 = 0x2;
-/// section with only 4 byte literals
-pub const S_4BYTE_LITERALS: u32 = 0x3;
-/// section with only 8 byte literals
-pub const S_8BYTE_LITERALS: u32 = 0x4;
-/// section with only pointers to literals
-pub const S_LITERAL_POINTERS: u32 = 0x5;
-/*
- * For the two types of symbol pointers sections and the symbol stubs section
- * they have indirect symbol table entries. For each of the entries in the
- * section the indirect symbol table entries, in corresponding order in the
- * indirect symbol table, start at the index stored in the reserved1 field
- * of the section structure. Since the indirect symbol table entries
- * correspond to the entries in the section the number of indirect symbol table
- * entries is inferred from the size of the section divided by the size of the
- * entries in the section. For symbol pointers sections the size of the entries
- * in the section is 4 bytes and for symbol stubs sections the byte size of the
- * stubs is stored in the reserved2 field of the section structure.
- */
-/// section with only non-lazy symbol pointers
-pub const S_NON_LAZY_SYMBOL_POINTERS: u32 = 0x6;
-/// section with only lazy symbol pointers
-pub const S_LAZY_SYMBOL_POINTERS: u32 = 0x7;
-/// section with only symbol stubs, byte size of stub in the reserved2 field
-pub const S_SYMBOL_STUBS: u32 = 0x8;
-/// section with only function pointers for initialization
-pub const S_MOD_INIT_FUNC_POINTERS: u32 = 0x9;
-/// section with only function pointers for termination
-pub const S_MOD_TERM_FUNC_POINTERS: u32 = 0xa;
-/// section contains symbols that are to be coalesced
-pub const S_COALESCED: u32 = 0xb;
-/// zero fill on demand section (that can be larger than 4 gigabytes)
-pub const S_GB_ZEROFILL: u32 = 0xc;
-/// section with only pairs of function pointers for interposing
-pub const S_INTERPOSING: u32 = 0xd;
-/// section with only 16 byte literals
-pub const S_16BYTE_LITERALS: u32 = 0xe;
-/// section contains DTrace Object Format
-pub const S_DTRACE_DOF: u32 = 0xf;
-/// section with only lazy symbol pointers to lazy loaded dylibs
-pub const S_LAZY_DYLIB_SYMBOL_POINTERS: u32 = 0x10;
-/*
- * Section types to support thread local variables
- */
-/// template of initial values for TLVs
-pub const S_THREAD_LOCAL_REGULAR: u32 = 0x11;
-/// template of initial values for TLVs
-pub const S_THREAD_LOCAL_ZEROFILL: u32 = 0x12;
-/// TLV descriptors
-pub const S_THREAD_LOCAL_VARIABLES: u32 = 0x13;
-/// pointers to TLV descriptors
-pub const S_THREAD_LOCAL_VARIABLE_POINTERS: u32 = 0x14;
-/// functions to call to initialize TLV values
-pub const S_THREAD_LOCAL_INIT_FUNCTION_POINTERS: u32 = 0x15;
-/// 32-bit offsets to initializers
-pub const S_INIT_FUNC_OFFSETS: u32 = 0x16;
-
-/*
- * Constants for the section attributes part of the flags field of a section
- * structure.
- */
-/// User setable attributes
-pub const SECTION_ATTRIBUTES_USR: u32 = 0xff00_0000;
-/// section contains only true machine instructions
-pub const S_ATTR_PURE_INSTRUCTIONS: u32 = 0x8000_0000;
-/// section contains coalesced symbols that are not to be in a ranlib table of contents
-pub const S_ATTR_NO_TOC: u32 = 0x4000_0000;
-/// ok to strip static symbols in this section in files with the MH_DYLDLINK flag
-pub const S_ATTR_STRIP_STATIC_SYMS: u32 = 0x2000_0000;
-/// no dead stripping
-pub const S_ATTR_NO_DEAD_STRIP: u32 = 0x1000_0000;
-/// blocks are live if they reference live blocks
-pub const S_ATTR_LIVE_SUPPORT: u32 = 0x0800_0000;
-/// Used with i386 code stubs written on by dyld
-pub const S_ATTR_SELF_MODIFYING_CODE: u32 = 0x0400_0000;
-/*
- * If a segment contains any sections marked with S_ATTR_DEBUG then all
- * sections in that segment must have this attribute. No section other than
- * a section marked with this attribute may reference the contents of this
- * section. A section with this attribute may contain no symbols and must have
- * a section type S_REGULAR. The static linker will not copy section contents
- * from sections with this attribute into its output file. These sections
- * generally contain DWARF debugging info.
- */
-/// a debug section
-pub const S_ATTR_DEBUG: u32 = 0x0200_0000;
-/// system setable attributes
-pub const SECTION_ATTRIBUTES_SYS: u32 = 0x00ff_ff00;
-/// section contains some machine instructions
-pub const S_ATTR_SOME_INSTRUCTIONS: u32 = 0x0000_0400;
-/// section has external relocation entries
-pub const S_ATTR_EXT_RELOC: u32 = 0x0000_0200;
-/// section has local relocation entries
-pub const S_ATTR_LOC_RELOC: u32 = 0x0000_0100;
-
-/*
- * The names of segments and sections in them are mostly meaningless to the
- * link-editor. But there are few things to support traditional UNIX
- * executables that require the link-editor and assembler to use some names
- * agreed upon by convention.
- *
- * The initial protection of the "__TEXT" segment has write protection turned
- * off (not writeable).
- *
- * The link-editor will allocate common symbols at the end of the "__common"
- * section in the "__DATA" segment. It will create the section and segment
- * if needed.
- */
-
-/* The currently known segment names and the section names in those segments */
-
-/// the pagezero segment which has no protections and catches NULL references for MH_EXECUTE files
-pub const SEG_PAGEZERO: &str = "__PAGEZERO";
-
-/// the tradition UNIX text segment
-pub const SEG_TEXT: &str = "__TEXT";
-/// the real text part of the text section no headers, and no padding
-pub const SECT_TEXT: &str = "__text";
-/// the fvmlib initialization section
-pub const SECT_FVMLIB_INIT0: &str = "__fvmlib_init0";
-/// the section following the fvmlib initialization section
-pub const SECT_FVMLIB_INIT1: &str = "__fvmlib_init1";
-
-/// the tradition UNIX data segment
-pub const SEG_DATA: &str = "__DATA";
-/// the real initialized data section no padding, no bss overlap
-pub const SECT_DATA: &str = "__data";
-/// the real uninitialized data section no padding
-pub const SECT_BSS: &str = "__bss";
-/// the section common symbols are allocated in by the link editor
-pub const SECT_COMMON: &str = "__common";
-
-/// objective-C runtime segment
-pub const SEG_OBJC: &str = "__OBJC";
-/// symbol table
-pub const SECT_OBJC_SYMBOLS: &str = "__symbol_table";
-/// module information
-pub const SECT_OBJC_MODULES: &str = "__module_info";
-/// string table
-pub const SECT_OBJC_STRINGS: &str = "__selector_strs";
-/// string table
-pub const SECT_OBJC_REFS: &str = "__selector_refs";
-
-/// the icon segment
-pub const SEG_ICON: &str = "__ICON";
-/// the icon headers
-pub const SECT_ICON_HEADER: &str = "__header";
-/// the icons in tiff format
-pub const SECT_ICON_TIFF: &str = "__tiff";
-
-/// the segment containing all structs created and maintained by the link editor. Created with -seglinkedit option to ld(1) for MH_EXECUTE and FVMLIB file types only
-pub const SEG_LINKEDIT: &str = "__LINKEDIT";
-
-/// the segment overlapping with linkedit containing linking information
-pub const SEG_LINKINFO: &str = "__LINKINFO";
-
-/// the unix stack segment
-pub const SEG_UNIXSTACK: &str = "__UNIXSTACK";
-
-/// the segment for the self (dyld) modifying code stubs that has read, write and execute permissions
-pub const SEG_IMPORT: &str = "__IMPORT";
-
-/*
- * Fixed virtual memory shared libraries are identified by two things. The
- * target pathname (the name of the library as found for execution), and the
- * minor version number. The address of where the headers are loaded is in
- * header_addr. (THIS IS OBSOLETE and no longer supported).
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Fvmlib<E: Endian> {
- /// library's target pathname
- pub name: LcStr<E>,
- /// library's minor version number
- pub minor_version: U32<E>,
- /// library's header address
- pub header_addr: U32<E>,
-}
-
-/*
- * A fixed virtual shared library (filetype == MH_FVMLIB in the mach header)
- * contains a `FvmlibCommand` (cmd == LC_IDFVMLIB) to identify the library.
- * An object that uses a fixed virtual shared library also contains a
- * `FvmlibCommand` (cmd == LC_LOADFVMLIB) for each library it uses.
- * (THIS IS OBSOLETE and no longer supported).
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct FvmlibCommand<E: Endian> {
- /// LC_IDFVMLIB or LC_LOADFVMLIB
- pub cmd: U32<E>,
- /// includes pathname string
- pub cmdsize: U32<E>,
- /// the library identification
- pub fvmlib: Fvmlib<E>,
-}
-
-/*
- * Dynamically linked shared libraries are identified by two things. The
- * pathname (the name of the library as found for execution), and the
- * compatibility version number. The pathname must match and the compatibility
- * number in the user of the library must be greater than or equal to the
- * library being used. The time stamp is used to record the time a library was
- * built and copied into user so it can be use to determined if the library used
- * at runtime is exactly the same as used to built the program.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Dylib<E: Endian> {
- /// library's path name
- pub name: LcStr<E>,
- /// library's build time stamp
- pub timestamp: U32<E>,
- /// library's current version number
- pub current_version: U32<E>,
- /// library's compatibility vers number
- pub compatibility_version: U32<E>,
-}
-
-/*
- * A dynamically linked shared library (filetype == MH_DYLIB in the mach header)
- * contains a `DylibCommand` (cmd == LC_ID_DYLIB) to identify the library.
- * An object that uses a dynamically linked shared library also contains a
- * `DylibCommand` (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or
- * LC_REEXPORT_DYLIB) for each library it uses.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DylibCommand<E: Endian> {
- /// LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB, LC_REEXPORT_DYLIB
- pub cmd: U32<E>,
- /// includes pathname string
- pub cmdsize: U32<E>,
- /// the library identification
- pub dylib: Dylib<E>,
-}
-
-/*
- * A dynamically linked shared library may be a subframework of an umbrella
- * framework. If so it will be linked with "-umbrella umbrella_name" where
- * Where "umbrella_name" is the name of the umbrella framework. A subframework
- * can only be linked against by its umbrella framework or other subframeworks
- * that are part of the same umbrella framework. Otherwise the static link
- * editor produces an error and states to link against the umbrella framework.
- * The name of the umbrella framework for subframeworks is recorded in the
- * following structure.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SubFrameworkCommand<E: Endian> {
- /// LC_SUB_FRAMEWORK
- pub cmd: U32<E>,
- /// includes umbrella string
- pub cmdsize: U32<E>,
- /// the umbrella framework name
- pub umbrella: LcStr<E>,
-}
-
-/*
- * For dynamically linked shared libraries that are subframework of an umbrella
- * framework they can allow clients other than the umbrella framework or other
- * subframeworks in the same umbrella framework. To do this the subframework
- * is built with "-allowable_client client_name" and an LC_SUB_CLIENT load
- * command is created for each -allowable_client flag. The client_name is
- * usually a framework name. It can also be a name used for bundles clients
- * where the bundle is built with "-client_name client_name".
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SubClientCommand<E: Endian> {
- /// LC_SUB_CLIENT
- pub cmd: U32<E>,
- /// includes client string
- pub cmdsize: U32<E>,
- /// the client name
- pub client: LcStr<E>,
-}
-
-/*
- * A dynamically linked shared library may be a sub_umbrella of an umbrella
- * framework. If so it will be linked with "-sub_umbrella umbrella_name" where
- * Where "umbrella_name" is the name of the sub_umbrella framework. When
- * statically linking when -twolevel_namespace is in effect a twolevel namespace
- * umbrella framework will only cause its subframeworks and those frameworks
- * listed as sub_umbrella frameworks to be implicited linked in. Any other
- * dependent dynamic libraries will not be linked it when -twolevel_namespace
- * is in effect. The primary library recorded by the static linker when
- * resolving a symbol in these libraries will be the umbrella framework.
- * Zero or more sub_umbrella frameworks may be use by an umbrella framework.
- * The name of a sub_umbrella framework is recorded in the following structure.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SubUmbrellaCommand<E: Endian> {
- /// LC_SUB_UMBRELLA
- pub cmd: U32<E>,
- /// includes sub_umbrella string
- pub cmdsize: U32<E>,
- /// the sub_umbrella framework name
- pub sub_umbrella: LcStr<E>,
-}
-
-/*
- * A dynamically linked shared library may be a sub_library of another shared
- * library. If so it will be linked with "-sub_library library_name" where
- * Where "library_name" is the name of the sub_library shared library. When
- * statically linking when -twolevel_namespace is in effect a twolevel namespace
- * shared library will only cause its subframeworks and those frameworks
- * listed as sub_umbrella frameworks and libraries listed as sub_libraries to
- * be implicited linked in. Any other dependent dynamic libraries will not be
- * linked it when -twolevel_namespace is in effect. The primary library
- * recorded by the static linker when resolving a symbol in these libraries
- * will be the umbrella framework (or dynamic library). Zero or more sub_library
- * shared libraries may be use by an umbrella framework or (or dynamic library).
- * The name of a sub_library framework is recorded in the following structure.
- * For example /usr/lib/libobjc_profile.A.dylib would be recorded as "libobjc".
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SubLibraryCommand<E: Endian> {
- /// LC_SUB_LIBRARY
- pub cmd: U32<E>,
- /// includes sub_library string
- pub cmdsize: U32<E>,
- /// the sub_library name
- pub sub_library: LcStr<E>,
-}
-
-/*
- * A program (filetype == MH_EXECUTE) that is
- * prebound to its dynamic libraries has one of these for each library that
- * the static linker used in prebinding. It contains a bit vector for the
- * modules in the library. The bits indicate which modules are bound (1) and
- * which are not (0) from the library. The bit for module 0 is the low bit
- * of the first byte. So the bit for the Nth module is:
- * (linked_modules[N/8] >> N%8) & 1
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct PreboundDylibCommand<E: Endian> {
- /// LC_PREBOUND_DYLIB
- pub cmd: U32<E>,
- /// includes strings
- pub cmdsize: U32<E>,
- /// library's path name
- pub name: LcStr<E>,
- /// number of modules in library
- pub nmodules: U32<E>,
- /// bit vector of linked modules
- pub linked_modules: LcStr<E>,
-}
-
-/*
- * A program that uses a dynamic linker contains a `DylinkerCommand` to identify
- * the name of the dynamic linker (LC_LOAD_DYLINKER). And a dynamic linker
- * contains a `DylinkerCommand` to identify the dynamic linker (LC_ID_DYLINKER).
- * A file can have at most one of these.
- * This struct is also used for the LC_DYLD_ENVIRONMENT load command and
- * contains string for dyld to treat like environment variable.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DylinkerCommand<E: Endian> {
- /// LC_ID_DYLINKER, LC_LOAD_DYLINKER or LC_DYLD_ENVIRONMENT
- pub cmd: U32<E>,
- /// includes pathname string
- pub cmdsize: U32<E>,
- /// dynamic linker's path name
- pub name: LcStr<E>,
-}
-
-/*
- * Thread commands contain machine-specific data structures suitable for
- * use in the thread state primitives. The machine specific data structures
- * follow the struct `ThreadCommand` as follows.
- * Each flavor of machine specific data structure is preceded by an uint32_t
- * constant for the flavor of that data structure, an uint32_t that is the
- * count of uint32_t's of the size of the state data structure and then
- * the state data structure follows. This triple may be repeated for many
- * flavors. The constants for the flavors, counts and state data structure
- * definitions are expected to be in the header file <machine/thread_status.h>.
- * These machine specific data structures sizes must be multiples of
- * 4 bytes. The `cmdsize` reflects the total size of the `ThreadCommand`
- * and all of the sizes of the constants for the flavors, counts and state
- * data structures.
- *
- * For executable objects that are unix processes there will be one
- * `ThreadCommand` (cmd == LC_UNIXTHREAD) created for it by the link-editor.
- * This is the same as a LC_THREAD, except that a stack is automatically
- * created (based on the shell's limit for the stack size). Command arguments
- * and environment variables are copied onto that stack.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct ThreadCommand<E: Endian> {
- /// LC_THREAD or LC_UNIXTHREAD
- pub cmd: U32<E>,
- /// total size of this command
- pub cmdsize: U32<E>,
- /* uint32_t flavor flavor of thread state */
- /* uint32_t count count of uint32_t's in thread state */
- /* struct XXX_thread_state state thread state for this flavor */
- /* ... */
-}
-
-/*
- * The routines command contains the address of the dynamic shared library
- * initialization routine and an index into the module table for the module
- * that defines the routine. Before any modules are used from the library the
- * dynamic linker fully binds the module that defines the initialization routine
- * and then calls it. This gets called before any module initialization
- * routines (used for C++ static constructors) in the library.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct RoutinesCommand32<E: Endian> {
- /* for 32-bit architectures */
- /// LC_ROUTINES
- pub cmd: U32<E>,
- /// total size of this command
- pub cmdsize: U32<E>,
- /// address of initialization routine
- pub init_address: U32<E>,
- /// index into the module table that the init routine is defined in
- pub init_module: U32<E>,
- pub reserved1: U32<E>,
- pub reserved2: U32<E>,
- pub reserved3: U32<E>,
- pub reserved4: U32<E>,
- pub reserved5: U32<E>,
- pub reserved6: U32<E>,
-}
-
-/*
- * The 64-bit routines command. Same use as above.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct RoutinesCommand64<E: Endian> {
- /* for 64-bit architectures */
- /// LC_ROUTINES_64
- pub cmd: U32<E>,
- /// total size of this command
- pub cmdsize: U32<E>,
- /// address of initialization routine
- pub init_address: U64<E>,
- /// index into the module table that the init routine is defined in
- pub init_module: U64<E>,
- pub reserved1: U64<E>,
- pub reserved2: U64<E>,
- pub reserved3: U64<E>,
- pub reserved4: U64<E>,
- pub reserved5: U64<E>,
- pub reserved6: U64<E>,
-}
-
-/*
- * The `SymtabCommand` contains the offsets and sizes of the link-edit 4.3BSD
- * "stab" style symbol table information as described in the header files
- * <nlist.h> and <stab.h>.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SymtabCommand<E: Endian> {
- /// LC_SYMTAB
- pub cmd: U32<E>,
- /// sizeof(struct SymtabCommand)
- pub cmdsize: U32<E>,
- /// symbol table offset
- pub symoff: U32<E>,
- /// number of symbol table entries
- pub nsyms: U32<E>,
- /// string table offset
- pub stroff: U32<E>,
- /// string table size in bytes
- pub strsize: U32<E>,
-}
-
-/*
- * This is the second set of the symbolic information which is used to support
- * the data structures for the dynamically link editor.
- *
- * The original set of symbolic information in the `SymtabCommand` which contains
- * the symbol and string tables must also be present when this load command is
- * present. When this load command is present the symbol table is organized
- * into three groups of symbols:
- * local symbols (static and debugging symbols) - grouped by module
- * defined external symbols - grouped by module (sorted by name if not lib)
- * undefined external symbols (sorted by name if MH_BINDATLOAD is not set,
- * and in order the were seen by the static
- * linker if MH_BINDATLOAD is set)
- * In this load command there are offsets and counts to each of the three groups
- * of symbols.
- *
- * This load command contains a the offsets and sizes of the following new
- * symbolic information tables:
- * table of contents
- * module table
- * reference symbol table
- * indirect symbol table
- * The first three tables above (the table of contents, module table and
- * reference symbol table) are only present if the file is a dynamically linked
- * shared library. For executable and object modules, which are files
- * containing only one module, the information that would be in these three
- * tables is determined as follows:
- * table of contents - the defined external symbols are sorted by name
- * module table - the file contains only one module so everything in the
- * file is part of the module.
- * reference symbol table - is the defined and undefined external symbols
- *
- * For dynamically linked shared library files this load command also contains
- * offsets and sizes to the pool of relocation entries for all sections
- * separated into two groups:
- * external relocation entries
- * local relocation entries
- * For executable and object modules the relocation entries continue to hang
- * off the section structures.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DysymtabCommand<E: Endian> {
- /// LC_DYSYMTAB
- pub cmd: U32<E>,
- /// sizeof(struct DysymtabCommand)
- pub cmdsize: U32<E>,
-
- /*
- * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command
- * are grouped into the following three groups:
- * local symbols (further grouped by the module they are from)
- * defined external symbols (further grouped by the module they are from)
- * undefined symbols
- *
- * The local symbols are used only for debugging. The dynamic binding
- * process may have to use them to indicate to the debugger the local
- * symbols for a module that is being bound.
- *
- * The last two groups are used by the dynamic binding process to do the
- * binding (indirectly through the module table and the reference symbol
- * table when this is a dynamically linked shared library file).
- */
- /// index to local symbols
- pub ilocalsym: U32<E>,
- /// number of local symbols
- pub nlocalsym: U32<E>,
-
- /// index to externally defined symbols
- pub iextdefsym: U32<E>,
- /// number of externally defined symbols
- pub nextdefsym: U32<E>,
-
- /// index to undefined symbols
- pub iundefsym: U32<E>,
- /// number of undefined symbols
- pub nundefsym: U32<E>,
-
- /*
- * For the for the dynamic binding process to find which module a symbol
- * is defined in the table of contents is used (analogous to the ranlib
- * structure in an archive) which maps defined external symbols to modules
- * they are defined in. This exists only in a dynamically linked shared
- * library file. For executable and object modules the defined external
- * symbols are sorted by name and is use as the table of contents.
- */
- /// file offset to table of contents
- pub tocoff: U32<E>,
- /// number of entries in table of contents
- pub ntoc: U32<E>,
-
- /*
- * To support dynamic binding of "modules" (whole object files) the symbol
- * table must reflect the modules that the file was created from. This is
- * done by having a module table that has indexes and counts into the merged
- * tables for each module. The module structure that these two entries
- * refer to is described below. This exists only in a dynamically linked
- * shared library file. For executable and object modules the file only
- * contains one module so everything in the file belongs to the module.
- */
- /// file offset to module table
- pub modtaboff: U32<E>,
- /// number of module table entries
- pub nmodtab: U32<E>,
-
- /*
- * To support dynamic module binding the module structure for each module
- * indicates the external references (defined and undefined) each module
- * makes. For each module there is an offset and a count into the
- * reference symbol table for the symbols that the module references.
- * This exists only in a dynamically linked shared library file. For
- * executable and object modules the defined external symbols and the
- * undefined external symbols indicates the external references.
- */
- /// offset to referenced symbol table
- pub extrefsymoff: U32<E>,
- /// number of referenced symbol table entries
- pub nextrefsyms: U32<E>,
-
- /*
- * The sections that contain "symbol pointers" and "routine stubs" have
- * indexes and (implied counts based on the size of the section and fixed
- * size of the entry) into the "indirect symbol" table for each pointer
- * and stub. For every section of these two types the index into the
- * indirect symbol table is stored in the section header in the field
- * reserved1. An indirect symbol table entry is simply a 32bit index into
- * the symbol table to the symbol that the pointer or stub is referring to.
- * The indirect symbol table is ordered to match the entries in the section.
- */
- /// file offset to the indirect symbol table
- pub indirectsymoff: U32<E>,
- /// number of indirect symbol table entries
- pub nindirectsyms: U32<E>,
-
- /*
- * To support relocating an individual module in a library file quickly the
- * external relocation entries for each module in the library need to be
- * accessed efficiently. Since the relocation entries can't be accessed
- * through the section headers for a library file they are separated into
- * groups of local and external entries further grouped by module. In this
- * case the presents of this load command who's extreloff, nextrel,
- * locreloff and nlocrel fields are non-zero indicates that the relocation
- * entries of non-merged sections are not referenced through the section
- * structures (and the reloff and nreloc fields in the section headers are
- * set to zero).
- *
- * Since the relocation entries are not accessed through the section headers
- * this requires the r_address field to be something other than a section
- * offset to identify the item to be relocated. In this case r_address is
- * set to the offset from the vmaddr of the first LC_SEGMENT command.
- * For MH_SPLIT_SEGS images r_address is set to the the offset from the
- * vmaddr of the first read-write LC_SEGMENT command.
- *
- * The relocation entries are grouped by module and the module table
- * entries have indexes and counts into them for the group of external
- * relocation entries for that the module.
- *
- * For sections that are merged across modules there must not be any
- * remaining external relocation entries for them (for merged sections
- * remaining relocation entries must be local).
- */
- /// offset to external relocation entries
- pub extreloff: U32<E>,
- /// number of external relocation entries
- pub nextrel: U32<E>,
-
- /*
- * All the local relocation entries are grouped together (they are not
- * grouped by their module since they are only used if the object is moved
- * from it statically link edited address).
- */
- /// offset to local relocation entries
- pub locreloff: U32<E>,
- /// number of local relocation entries
- pub nlocrel: U32<E>,
-}
-
-/*
- * An indirect symbol table entry is simply a 32bit index into the symbol table
- * to the symbol that the pointer or stub is referring to. Unless it is for a
- * non-lazy symbol pointer section for a defined symbol which strip(1) as
- * removed. In which case it has the value INDIRECT_SYMBOL_LOCAL. If the
- * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that.
- */
-pub const INDIRECT_SYMBOL_LOCAL: u32 = 0x8000_0000;
-pub const INDIRECT_SYMBOL_ABS: u32 = 0x4000_0000;
-
-/* a table of contents entry */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DylibTableOfContents<E: Endian> {
- /// the defined external symbol (index into the symbol table)
- pub symbol_index: U32<E>,
- /// index into the module table this symbol is defined in
- pub module_index: U32<E>,
-}
-
-/* a module table entry */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DylibModule32<E: Endian> {
- /// the module name (index into string table)
- pub module_name: U32<E>,
-
- /// index into externally defined symbols
- pub iextdefsym: U32<E>,
- /// number of externally defined symbols
- pub nextdefsym: U32<E>,
- /// index into reference symbol table
- pub irefsym: U32<E>,
- /// number of reference symbol table entries
- pub nrefsym: U32<E>,
- /// index into symbols for local symbols
- pub ilocalsym: U32<E>,
- /// number of local symbols
- pub nlocalsym: U32<E>,
-
- /// index into external relocation entries
- pub iextrel: U32<E>,
- /// number of external relocation entries
- pub nextrel: U32<E>,
-
- /// low 16 bits are the index into the init section, high 16 bits are the index into the term section
- pub iinit_iterm: U32<E>,
- /// low 16 bits are the number of init section entries, high 16 bits are the number of term section entries
- pub ninit_nterm: U32<E>,
-
- /// for this module address of the start of the (__OBJC,__module_info) section
- pub objc_module_info_addr: U32<E>,
- /// for this module size of the (__OBJC,__module_info) section
- pub objc_module_info_size: U32<E>,
-}
-
-/* a 64-bit module table entry */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DylibModule64<E: Endian> {
- /// the module name (index into string table)
- pub module_name: U32<E>,
-
- /// index into externally defined symbols
- pub iextdefsym: U32<E>,
- /// number of externally defined symbols
- pub nextdefsym: U32<E>,
- /// index into reference symbol table
- pub irefsym: U32<E>,
- /// number of reference symbol table entries
- pub nrefsym: U32<E>,
- /// index into symbols for local symbols
- pub ilocalsym: U32<E>,
- /// number of local symbols
- pub nlocalsym: U32<E>,
-
- /// index into external relocation entries
- pub iextrel: U32<E>,
- /// number of external relocation entries
- pub nextrel: U32<E>,
-
- /// low 16 bits are the index into the init section, high 16 bits are the index into the term section
- pub iinit_iterm: U32<E>,
- /// low 16 bits are the number of init section entries, high 16 bits are the number of term section entries
- pub ninit_nterm: U32<E>,
-
- /// for this module size of the (__OBJC,__module_info) section
- pub objc_module_info_size: U32<E>,
- /// for this module address of the start of the (__OBJC,__module_info) section
- pub objc_module_info_addr: U64<E>,
-}
-
-/*
- * The entries in the reference symbol table are used when loading the module
- * (both by the static and dynamic link editors) and if the module is unloaded
- * or replaced. Therefore all external symbols (defined and undefined) are
- * listed in the module's reference table. The flags describe the type of
- * reference that is being made. The constants for the flags are defined in
- * <mach-o/nlist.h> as they are also used for symbol table entries.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DylibReference<E: Endian> {
- /* TODO:
- uint32_t isym:24, /* index into the symbol table */
- flags:8; /* flags to indicate the type of reference */
- */
- pub bitfield: U32<E>,
-}
-
-/*
- * The TwolevelHintsCommand contains the offset and number of hints in the
- * two-level namespace lookup hints table.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct TwolevelHintsCommand<E: Endian> {
- /// LC_TWOLEVEL_HINTS
- pub cmd: U32<E>,
- /// sizeof(struct TwolevelHintsCommand)
- pub cmdsize: U32<E>,
- /// offset to the hint table
- pub offset: U32<E>,
- /// number of hints in the hint table
- pub nhints: U32<E>,
-}
-
-/*
- * The entries in the two-level namespace lookup hints table are TwolevelHint
- * structs. These provide hints to the dynamic link editor where to start
- * looking for an undefined symbol in a two-level namespace image. The
- * isub_image field is an index into the sub-images (sub-frameworks and
- * sub-umbrellas list) that made up the two-level image that the undefined
- * symbol was found in when it was built by the static link editor. If
- * isub-image is 0 the the symbol is expected to be defined in library and not
- * in the sub-images. If isub-image is non-zero it is an index into the array
- * of sub-images for the umbrella with the first index in the sub-images being
- * 1. The array of sub-images is the ordered list of sub-images of the umbrella
- * that would be searched for a symbol that has the umbrella recorded as its
- * primary library. The table of contents index is an index into the
- * library's table of contents. This is used as the starting point of the
- * binary search or a directed linear search.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct TwolevelHint<E: Endian> {
- /* TODO:
- uint32_t
- isub_image:8, /* index into the sub images */
- itoc:24; /* index into the table of contents */
- */
- pub bitfield: U32<E>,
-}
-
-/*
- * The PrebindCksumCommand contains the value of the original check sum for
- * prebound files or zero. When a prebound file is first created or modified
- * for other than updating its prebinding information the value of the check sum
- * is set to zero. When the file has it prebinding re-done and if the value of
- * the check sum is zero the original check sum is calculated and stored in
- * cksum field of this load command in the output file. If when the prebinding
- * is re-done and the cksum field is non-zero it is left unchanged from the
- * input file.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct PrebindCksumCommand<E: Endian> {
- /// LC_PREBIND_CKSUM
- pub cmd: U32<E>,
- /// sizeof(struct PrebindCksumCommand)
- pub cmdsize: U32<E>,
- /// the check sum or zero
- pub cksum: U32<E>,
-}
-
-/*
- * The uuid load command contains a single 128-bit unique random number that
- * identifies an object produced by the static link editor.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct UuidCommand<E: Endian> {
- /// LC_UUID
- pub cmd: U32<E>,
- /// sizeof(struct UuidCommand)
- pub cmdsize: U32<E>,
- /// the 128-bit uuid
- pub uuid: [u8; 16],
-}
-
-/*
- * The RpathCommand contains a path which at runtime should be added to
- * the current run path used to find @rpath prefixed dylibs.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct RpathCommand<E: Endian> {
- /// LC_RPATH
- pub cmd: U32<E>,
- /// includes string
- pub cmdsize: U32<E>,
- /// path to add to run path
- pub path: LcStr<E>,
-}
-
-/*
- * The LinkeditDataCommand contains the offsets and sizes of a blob
- * of data in the __LINKEDIT segment.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct LinkeditDataCommand<E: Endian> {
- /// `LC_CODE_SIGNATURE`, `LC_SEGMENT_SPLIT_INFO`, `LC_FUNCTION_STARTS`,
- /// `LC_DATA_IN_CODE`, `LC_DYLIB_CODE_SIGN_DRS`, `LC_LINKER_OPTIMIZATION_HINT`,
- /// `LC_DYLD_EXPORTS_TRIE`, or `LC_DYLD_CHAINED_FIXUPS`.
- pub cmd: U32<E>,
- /// sizeof(struct LinkeditDataCommand)
- pub cmdsize: U32<E>,
- /// file offset of data in __LINKEDIT segment
- pub dataoff: U32<E>,
- /// file size of data in __LINKEDIT segment
- pub datasize: U32<E>,
-}
-
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct FilesetEntryCommand<E: Endian> {
- // LC_FILESET_ENTRY
- pub cmd: U32<E>,
- /// includes id string
- pub cmdsize: U32<E>,
- /// memory address of the dylib
- pub vmaddr: U64<E>,
- /// file offset of the dylib
- pub fileoff: U64<E>,
- /// contained entry id
- pub entry_id: LcStr<E>,
- /// entry_id is 32-bits long, so this is the reserved padding
- pub reserved: U32<E>,
-}
-
-/*
- * The EncryptionInfoCommand32 contains the file offset and size of an
- * of an encrypted segment.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct EncryptionInfoCommand32<E: Endian> {
- /// LC_ENCRYPTION_INFO
- pub cmd: U32<E>,
- /// sizeof(struct EncryptionInfoCommand32)
- pub cmdsize: U32<E>,
- /// file offset of encrypted range
- pub cryptoff: U32<E>,
- /// file size of encrypted range
- pub cryptsize: U32<E>,
- /// which enryption system, 0 means not-encrypted yet
- pub cryptid: U32<E>,
-}
-
-/*
- * The EncryptionInfoCommand64 contains the file offset and size of an
- * of an encrypted segment (for use in x86_64 targets).
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct EncryptionInfoCommand64<E: Endian> {
- /// LC_ENCRYPTION_INFO_64
- pub cmd: U32<E>,
- /// sizeof(struct EncryptionInfoCommand64)
- pub cmdsize: U32<E>,
- /// file offset of encrypted range
- pub cryptoff: U32<E>,
- /// file size of encrypted range
- pub cryptsize: U32<E>,
- /// which enryption system, 0 means not-encrypted yet
- pub cryptid: U32<E>,
- /// padding to make this struct's size a multiple of 8 bytes
- pub pad: U32<E>,
-}
-
-/*
- * The VersionMinCommand contains the min OS version on which this
- * binary was built to run.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct VersionMinCommand<E: Endian> {
- /// LC_VERSION_MIN_MACOSX or LC_VERSION_MIN_IPHONEOS or LC_VERSION_MIN_WATCHOS or LC_VERSION_MIN_TVOS
- pub cmd: U32<E>,
- /// sizeof(struct VersionMinCommand)
- pub cmdsize: U32<E>,
- /// X.Y.Z is encoded in nibbles xxxx.yy.zz
- pub version: U32<E>,
- /// X.Y.Z is encoded in nibbles xxxx.yy.zz
- pub sdk: U32<E>,
-}
-
-/*
- * The BuildVersionCommand contains the min OS version on which this
- * binary was built to run for its platform. The list of known platforms and
- * tool values following it.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct BuildVersionCommand<E: Endian> {
- /// LC_BUILD_VERSION
- pub cmd: U32<E>,
- /// sizeof(struct BuildVersionCommand) plus ntools * sizeof(struct BuildToolVersion)
- pub cmdsize: U32<E>,
- /// platform
- pub platform: U32<E>,
- /// X.Y.Z is encoded in nibbles xxxx.yy.zz
- pub minos: U32<E>,
- /// X.Y.Z is encoded in nibbles xxxx.yy.zz
- pub sdk: U32<E>,
- /// number of tool entries following this
- pub ntools: U32<E>,
-}
-
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct BuildToolVersion<E: Endian> {
- /// enum for the tool
- pub tool: U32<E>,
- /// version number of the tool
- pub version: U32<E>,
-}
-
-/* Known values for the platform field above. */
-pub const PLATFORM_MACOS: u32 = 1;
-pub const PLATFORM_IOS: u32 = 2;
-pub const PLATFORM_TVOS: u32 = 3;
-pub const PLATFORM_WATCHOS: u32 = 4;
-pub const PLATFORM_BRIDGEOS: u32 = 5;
-pub const PLATFORM_MACCATALYST: u32 = 6;
-pub const PLATFORM_IOSSIMULATOR: u32 = 7;
-pub const PLATFORM_TVOSSIMULATOR: u32 = 8;
-pub const PLATFORM_WATCHOSSIMULATOR: u32 = 9;
-pub const PLATFORM_DRIVERKIT: u32 = 10;
-
-/* Known values for the tool field above. */
-pub const TOOL_CLANG: u32 = 1;
-pub const TOOL_SWIFT: u32 = 2;
-pub const TOOL_LD: u32 = 3;
-
-/*
- * The DyldInfoCommand contains the file offsets and sizes of
- * the new compressed form of the information dyld needs to
- * load the image. This information is used by dyld on Mac OS X
- * 10.6 and later. All information pointed to by this command
- * is encoded using byte streams, so no endian swapping is needed
- * to interpret it.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DyldInfoCommand<E: Endian> {
- /// LC_DYLD_INFO or LC_DYLD_INFO_ONLY
- pub cmd: U32<E>,
- /// sizeof(struct DyldInfoCommand)
- pub cmdsize: U32<E>,
-
- /*
- * Dyld rebases an image whenever dyld loads it at an address different
- * from its preferred address. The rebase information is a stream
- * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_.
- * Conceptually the rebase information is a table of tuples:
- * <seg-index, seg-offset, type>
- * The opcodes are a compressed way to encode the table by only
- * encoding when a column changes. In addition simple patterns
- * like "every n'th offset for m times" can be encoded in a few
- * bytes.
- */
- /// file offset to rebase info
- pub rebase_off: U32<E>,
- /// size of rebase info
- pub rebase_size: U32<E>,
-
- /*
- * Dyld binds an image during the loading process, if the image
- * requires any pointers to be initialized to symbols in other images.
- * The bind information is a stream of byte sized
- * opcodes whose symbolic names start with BIND_OPCODE_.
- * Conceptually the bind information is a table of tuples:
- * <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend>
- * The opcodes are a compressed way to encode the table by only
- * encoding when a column changes. In addition simple patterns
- * like for runs of pointers initialized to the same value can be
- * encoded in a few bytes.
- */
- /// file offset to binding info
- pub bind_off: U32<E>,
- /// size of binding info
- pub bind_size: U32<E>,
-
- /*
- * Some C++ programs require dyld to unique symbols so that all
- * images in the process use the same copy of some code/data.
- * This step is done after binding. The content of the weak_bind
- * info is an opcode stream like the bind_info. But it is sorted
- * alphabetically by symbol name. This enable dyld to walk
- * all images with weak binding information in order and look
- * for collisions. If there are no collisions, dyld does
- * no updating. That means that some fixups are also encoded
- * in the bind_info. For instance, all calls to "operator new"
- * are first bound to libstdc++.dylib using the information
- * in bind_info. Then if some image overrides operator new
- * that is detected when the weak_bind information is processed
- * and the call to operator new is then rebound.
- */
- /// file offset to weak binding info
- pub weak_bind_off: U32<E>,
- /// size of weak binding info
- pub weak_bind_size: U32<E>,
-
- /*
- * Some uses of external symbols do not need to be bound immediately.
- * Instead they can be lazily bound on first use. The lazy_bind
- * are contains a stream of BIND opcodes to bind all lazy symbols.
- * Normal use is that dyld ignores the lazy_bind section when
- * loading an image. Instead the static linker arranged for the
- * lazy pointer to initially point to a helper function which
- * pushes the offset into the lazy_bind area for the symbol
- * needing to be bound, then jumps to dyld which simply adds
- * the offset to lazy_bind_off to get the information on what
- * to bind.
- */
- /// file offset to lazy binding info
- pub lazy_bind_off: U32<E>,
- /// size of lazy binding infs
- pub lazy_bind_size: U32<E>,
-
- /*
- * The symbols exported by a dylib are encoded in a trie. This
- * is a compact representation that factors out common prefixes.
- * It also reduces LINKEDIT pages in RAM because it encodes all
- * information (name, address, flags) in one small, contiguous range.
- * The export area is a stream of nodes. The first node sequentially
- * is the start node for the trie.
- *
- * Nodes for a symbol start with a uleb128 that is the length of
- * the exported symbol information for the string so far.
- * If there is no exported symbol, the node starts with a zero byte.
- * If there is exported info, it follows the length.
- *
- * First is a uleb128 containing flags. Normally, it is followed by
- * a uleb128 encoded offset which is location of the content named
- * by the symbol from the mach_header for the image. If the flags
- * is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
- * a uleb128 encoded library ordinal, then a zero terminated
- * UTF8 string. If the string is zero length, then the symbol
- * is re-export from the specified dylib with the same name.
- * If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
- * the flags is two uleb128s: the stub offset and the resolver offset.
- * The stub is used by non-lazy pointers. The resolver is used
- * by lazy pointers and must be called to get the actual address to use.
- *
- * After the optional exported symbol information is a byte of
- * how many edges (0-255) that this node has leaving it,
- * followed by each edge.
- * Each edge is a zero terminated UTF8 of the addition chars
- * in the symbol, followed by a uleb128 offset for the node that
- * edge points to.
- *
- */
- /// file offset to lazy binding info
- pub export_off: U32<E>,
- /// size of lazy binding infs
- pub export_size: U32<E>,
-}
-
-/*
- * The following are used to encode rebasing information
- */
-pub const REBASE_TYPE_POINTER: u8 = 1;
-pub const REBASE_TYPE_TEXT_ABSOLUTE32: u8 = 2;
-pub const REBASE_TYPE_TEXT_PCREL32: u8 = 3;
-
-pub const REBASE_OPCODE_MASK: u8 = 0xF0;
-pub const REBASE_IMMEDIATE_MASK: u8 = 0x0F;
-pub const REBASE_OPCODE_DONE: u8 = 0x00;
-pub const REBASE_OPCODE_SET_TYPE_IMM: u8 = 0x10;
-pub const REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: u8 = 0x20;
-pub const REBASE_OPCODE_ADD_ADDR_ULEB: u8 = 0x30;
-pub const REBASE_OPCODE_ADD_ADDR_IMM_SCALED: u8 = 0x40;
-pub const REBASE_OPCODE_DO_REBASE_IMM_TIMES: u8 = 0x50;
-pub const REBASE_OPCODE_DO_REBASE_ULEB_TIMES: u8 = 0x60;
-pub const REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB: u8 = 0x70;
-pub const REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB: u8 = 0x80;
-
-/*
- * The following are used to encode binding information
- */
-pub const BIND_TYPE_POINTER: u8 = 1;
-pub const BIND_TYPE_TEXT_ABSOLUTE32: u8 = 2;
-pub const BIND_TYPE_TEXT_PCREL32: u8 = 3;
-
-pub const BIND_SPECIAL_DYLIB_SELF: i8 = 0;
-pub const BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE: i8 = -1;
-pub const BIND_SPECIAL_DYLIB_FLAT_LOOKUP: i8 = -2;
-pub const BIND_SPECIAL_DYLIB_WEAK_LOOKUP: i8 = -3;
-
-pub const BIND_SYMBOL_FLAGS_WEAK_IMPORT: u8 = 0x1;
-pub const BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION: u8 = 0x8;
-
-pub const BIND_OPCODE_MASK: u8 = 0xF0;
-pub const BIND_IMMEDIATE_MASK: u8 = 0x0F;
-pub const BIND_OPCODE_DONE: u8 = 0x00;
-pub const BIND_OPCODE_SET_DYLIB_ORDINAL_IMM: u8 = 0x10;
-pub const BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB: u8 = 0x20;
-pub const BIND_OPCODE_SET_DYLIB_SPECIAL_IMM: u8 = 0x30;
-pub const BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM: u8 = 0x40;
-pub const BIND_OPCODE_SET_TYPE_IMM: u8 = 0x50;
-pub const BIND_OPCODE_SET_ADDEND_SLEB: u8 = 0x60;
-pub const BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: u8 = 0x70;
-pub const BIND_OPCODE_ADD_ADDR_ULEB: u8 = 0x80;
-pub const BIND_OPCODE_DO_BIND: u8 = 0x90;
-pub const BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: u8 = 0xA0;
-pub const BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: u8 = 0xB0;
-pub const BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: u8 = 0xC0;
-pub const BIND_OPCODE_THREADED: u8 = 0xD0;
-pub const BIND_SUBOPCODE_THREADED_SET_BIND_ORDINAL_TABLE_SIZE_ULEB: u8 = 0x00;
-pub const BIND_SUBOPCODE_THREADED_APPLY: u8 = 0x01;
-
-/*
- * The following are used on the flags byte of a terminal node
- * in the export information.
- */
-pub const EXPORT_SYMBOL_FLAGS_KIND_MASK: u32 = 0x03;
-pub const EXPORT_SYMBOL_FLAGS_KIND_REGULAR: u32 = 0x00;
-pub const EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL: u32 = 0x01;
-pub const EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE: u32 = 0x02;
-pub const EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION: u32 = 0x04;
-pub const EXPORT_SYMBOL_FLAGS_REEXPORT: u32 = 0x08;
-pub const EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER: u32 = 0x10;
-
-/*
- * The LinkerOptionCommand contains linker options embedded in object files.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct LinkerOptionCommand<E: Endian> {
- /// LC_LINKER_OPTION only used in MH_OBJECT filetypes
- pub cmd: U32<E>,
- pub cmdsize: U32<E>,
- /// number of strings
- pub count: U32<E>,
- /* concatenation of zero terminated UTF8 strings.
- Zero filled at end to align */
-}
-
-/*
- * The SymsegCommand contains the offset and size of the GNU style
- * symbol table information as described in the header file <symseg.h>.
- * The symbol roots of the symbol segments must also be aligned properly
- * in the file. So the requirement of keeping the offsets aligned to a
- * multiple of a 4 bytes translates to the length field of the symbol
- * roots also being a multiple of a long. Also the padding must again be
- * zeroed. (THIS IS OBSOLETE and no longer supported).
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SymsegCommand<E: Endian> {
- /// LC_SYMSEG
- pub cmd: U32<E>,
- /// sizeof(struct SymsegCommand)
- pub cmdsize: U32<E>,
- /// symbol segment offset
- pub offset: U32<E>,
- /// symbol segment size in bytes
- pub size: U32<E>,
-}
-
-/*
- * The IdentCommand contains a free format string table following the
- * IdentCommand structure. The strings are null terminated and the size of
- * the command is padded out with zero bytes to a multiple of 4 bytes/
- * (THIS IS OBSOLETE and no longer supported).
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct IdentCommand<E: Endian> {
- /// LC_IDENT
- pub cmd: U32<E>,
- /// strings that follow this command
- pub cmdsize: U32<E>,
-}
-
-/*
- * The FvmfileCommand contains a reference to a file to be loaded at the
- * specified virtual address. (Presently, this command is reserved for
- * internal use. The kernel ignores this command when loading a program into
- * memory).
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct FvmfileCommand<E: Endian> {
- /// LC_FVMFILE
- pub cmd: U32<E>,
- /// includes pathname string
- pub cmdsize: U32<E>,
- /// files pathname
- pub name: LcStr<E>,
- /// files virtual address
- pub header_addr: U32<E>,
-}
-
-/*
- * The EntryPointCommand is a replacement for thread_command.
- * It is used for main executables to specify the location (file offset)
- * of main(). If -stack_size was used at link time, the stacksize
- * field will contain the stack size need for the main thread.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct EntryPointCommand<E: Endian> {
- /// LC_MAIN only used in MH_EXECUTE filetypes
- pub cmd: U32<E>,
- /// 24
- pub cmdsize: U32<E>,
- /// file (__TEXT) offset of main()
- pub entryoff: U64<E>,
- /// if not zero, initial stack size
- pub stacksize: U64<E>,
-}
-
-/*
- * The SourceVersionCommand is an optional load command containing
- * the version of the sources used to build the binary.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct SourceVersionCommand<E: Endian> {
- /// LC_SOURCE_VERSION
- pub cmd: U32<E>,
- /// 16
- pub cmdsize: U32<E>,
- /// A.B.C.D.E packed as a24.b10.c10.d10.e10
- pub version: U64<E>,
-}
-
-/*
- * The LC_DATA_IN_CODE load commands uses a LinkeditDataCommand
- * to point to an array of DataInCodeEntry entries. Each entry
- * describes a range of data in a code section.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct DataInCodeEntry<E: Endian> {
- /// from mach_header to start of data range
- pub offset: U32<E>,
- /// number of bytes in data range
- pub length: U16<E>,
- /// a DICE_KIND_* value
- pub kind: U16<E>,
-}
-pub const DICE_KIND_DATA: u32 = 0x0001;
-pub const DICE_KIND_JUMP_TABLE8: u32 = 0x0002;
-pub const DICE_KIND_JUMP_TABLE16: u32 = 0x0003;
-pub const DICE_KIND_JUMP_TABLE32: u32 = 0x0004;
-pub const DICE_KIND_ABS_JUMP_TABLE32: u32 = 0x0005;
-
-/*
- * Sections of type S_THREAD_LOCAL_VARIABLES contain an array
- * of TlvDescriptor structures.
- */
-/* TODO:
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct TlvDescriptor<E: Endian>
-{
- void* (*thunk)(struct TlvDescriptor*);
- unsigned long key;
- unsigned long offset;
-}
-*/
-
-/*
- * LC_NOTE commands describe a region of arbitrary data included in a Mach-O
- * file. Its initial use is to record extra data in MH_CORE files.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct NoteCommand<E: Endian> {
- /// LC_NOTE
- pub cmd: U32<E>,
- /// sizeof(struct NoteCommand)
- pub cmdsize: U32<E>,
- /// owner name for this LC_NOTE
- pub data_owner: [u8; 16],
- /// file offset of this data
- pub offset: U64<E>,
- /// length of data region
- pub size: U64<E>,
-}
-
-// Definitions from "/usr/include/mach-o/nlist.h".
-
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Nlist32<E: Endian> {
- /// index into the string table
- pub n_strx: U32<E>,
- /// type flag, see below
- pub n_type: u8,
- /// section number or NO_SECT
- pub n_sect: u8,
- /// see <mach-o/stab.h>
- pub n_desc: U16<E>,
- /// value of this symbol (or stab offset)
- pub n_value: U32<E>,
-}
-
-/*
- * This is the symbol table entry structure for 64-bit architectures.
- */
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Nlist64<E: Endian> {
- /// index into the string table
- pub n_strx: U32<E>,
- /// type flag, see below
- pub n_type: u8,
- /// section number or NO_SECT
- pub n_sect: u8,
- /// see <mach-o/stab.h>
- pub n_desc: U16<E>,
- /// value of this symbol (or stab offset)
- // Note: 4 byte alignment has been observed in practice.
- pub n_value: U64Bytes<E>,
-}
-
-/*
- * Symbols with a index into the string table of zero (n_un.n_strx == 0) are
- * defined to have a null, "", name. Therefore all string indexes to non null
- * names must not have a zero string index. This is bit historical information
- * that has never been well documented.
- */
-
-/*
- * The n_type field really contains four fields:
- * unsigned char N_STAB:3,
- * N_PEXT:1,
- * N_TYPE:3,
- * N_EXT:1;
- * which are used via the following masks.
- */
-/// if any of these bits set, a symbolic debugging entry
-pub const N_STAB: u8 = 0xe0;
-/// private external symbol bit
-pub const N_PEXT: u8 = 0x10;
-/// mask for the type bits
-pub const N_TYPE: u8 = 0x0e;
-/// external symbol bit, set for external symbols
-pub const N_EXT: u8 = 0x01;
-
-/*
- * Only symbolic debugging entries have some of the N_STAB bits set and if any
- * of these bits are set then it is a symbolic debugging entry (a stab). In
- * which case then the values of the n_type field (the entire field) are given
- * in <mach-o/stab.h>
- */
-
-/*
- * Values for N_TYPE bits of the n_type field.
- */
-/// undefined, n_sect == NO_SECT
-pub const N_UNDF: u8 = 0x0;
-/// absolute, n_sect == NO_SECT
-pub const N_ABS: u8 = 0x2;
-/// defined in section number n_sect
-pub const N_SECT: u8 = 0xe;
-/// prebound undefined (defined in a dylib)
-pub const N_PBUD: u8 = 0xc;
-/// indirect
-pub const N_INDR: u8 = 0xa;
-
-/*
- * If the type is N_INDR then the symbol is defined to be the same as another
- * symbol. In this case the n_value field is an index into the string table
- * of the other symbol's name. When the other symbol is defined then they both
- * take on the defined type and value.
- */
-
-/*
- * If the type is N_SECT then the n_sect field contains an ordinal of the
- * section the symbol is defined in. The sections are numbered from 1 and
- * refer to sections in order they appear in the load commands for the file
- * they are in. This means the same ordinal may very well refer to different
- * sections in different files.
- *
- * The n_value field for all symbol table entries (including N_STAB's) gets
- * updated by the link editor based on the value of it's n_sect field and where
- * the section n_sect references gets relocated. If the value of the n_sect
- * field is NO_SECT then it's n_value field is not changed by the link editor.
- */
-/// symbol is not in any section
-pub const NO_SECT: u8 = 0;
-/// 1 thru 255 inclusive
-pub const MAX_SECT: u8 = 255;
-
-/*
- * Common symbols are represented by undefined (N_UNDF) external (N_EXT) types
- * who's values (n_value) are non-zero. In which case the value of the n_value
- * field is the size (in bytes) of the common symbol. The n_sect field is set
- * to NO_SECT. The alignment of a common symbol may be set as a power of 2
- * between 2^1 and 2^15 as part of the n_desc field using the macros below. If
- * the alignment is not set (a value of zero) then natural alignment based on
- * the size is used.
- */
-/* TODO:
-#define GET_COMM_ALIGN(n_desc) (((n_desc) >> 8) & 0x0f)
-#define SET_COMM_ALIGN(n_desc,align) \
- (n_desc) = (((n_desc) & 0xf0ff) | (((align) & 0x0f) << 8))
- */
-
-/*
- * To support the lazy binding of undefined symbols in the dynamic link-editor,
- * the undefined symbols in the symbol table (the nlist structures) are marked
- * with the indication if the undefined reference is a lazy reference or
- * non-lazy reference. If both a non-lazy reference and a lazy reference is
- * made to the same symbol the non-lazy reference takes precedence. A reference
- * is lazy only when all references to that symbol are made through a symbol
- * pointer in a lazy symbol pointer section.
- *
- * The implementation of marking nlist structures in the symbol table for
- * undefined symbols will be to use some of the bits of the n_desc field as a
- * reference type. The mask REFERENCE_TYPE will be applied to the n_desc field
- * of an nlist structure for an undefined symbol to determine the type of
- * undefined reference (lazy or non-lazy).
- *
- * The constants for the REFERENCE FLAGS are propagated to the reference table
- * in a shared library file. In that case the constant for a defined symbol,
- * REFERENCE_FLAG_DEFINED, is also used.
- */
-/* Reference type bits of the n_desc field of undefined symbols */
-pub const REFERENCE_TYPE: u16 = 0x7;
-/* types of references */
-pub const REFERENCE_FLAG_UNDEFINED_NON_LAZY: u16 = 0;
-pub const REFERENCE_FLAG_UNDEFINED_LAZY: u16 = 1;
-pub const REFERENCE_FLAG_DEFINED: u16 = 2;
-pub const REFERENCE_FLAG_PRIVATE_DEFINED: u16 = 3;
-pub const REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY: u16 = 4;
-pub const REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY: u16 = 5;
-
-/*
- * To simplify stripping of objects that use are used with the dynamic link
- * editor, the static link editor marks the symbols defined an object that are
- * referenced by a dynamically bound object (dynamic shared libraries, bundles).
- * With this marking strip knows not to strip these symbols.
- */
-pub const REFERENCED_DYNAMICALLY: u16 = 0x0010;
-
-/*
- * For images created by the static link editor with the -twolevel_namespace
- * option in effect the flags field of the mach header is marked with
- * MH_TWOLEVEL. And the binding of the undefined references of the image are
- * determined by the static link editor. Which library an undefined symbol is
- * bound to is recorded by the static linker in the high 8 bits of the n_desc
- * field using the SET_LIBRARY_ORDINAL macro below. The ordinal recorded
- * references the libraries listed in the Mach-O's LC_LOAD_DYLIB,
- * LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB, LC_LOAD_UPWARD_DYLIB, and
- * LC_LAZY_LOAD_DYLIB, etc. load commands in the order they appear in the
- * headers. The library ordinals start from 1.
- * For a dynamic library that is built as a two-level namespace image the
- * undefined references from module defined in another use the same nlist struct
- * an in that case SELF_LIBRARY_ORDINAL is used as the library ordinal. For
- * defined symbols in all images they also must have the library ordinal set to
- * SELF_LIBRARY_ORDINAL. The EXECUTABLE_ORDINAL refers to the executable
- * image for references from plugins that refer to the executable that loads
- * them.
- *
- * The DYNAMIC_LOOKUP_ORDINAL is for undefined symbols in a two-level namespace
- * image that are looked up by the dynamic linker with flat namespace semantics.
- * This ordinal was added as a feature in Mac OS X 10.3 by reducing the
- * value of MAX_LIBRARY_ORDINAL by one. So it is legal for existing binaries
- * or binaries built with older tools to have 0xfe (254) dynamic libraries. In
- * this case the ordinal value 0xfe (254) must be treated as a library ordinal
- * for compatibility.
- */
-/* TODO:
-#define GET_LIBRARY_ORDINAL(n_desc) (((n_desc) >> 8) & 0xff)
-#define SET_LIBRARY_ORDINAL(n_desc,ordinal) \
- (n_desc) = (((n_desc) & 0x00ff) | (((ordinal) & 0xff) << 8))
- */
-pub const SELF_LIBRARY_ORDINAL: u8 = 0x0;
-pub const MAX_LIBRARY_ORDINAL: u8 = 0xfd;
-pub const DYNAMIC_LOOKUP_ORDINAL: u8 = 0xfe;
-pub const EXECUTABLE_ORDINAL: u8 = 0xff;
-
-/*
- * The bit 0x0020 of the n_desc field is used for two non-overlapping purposes
- * and has two different symbolic names, N_NO_DEAD_STRIP and N_DESC_DISCARDED.
- */
-
-/*
- * The N_NO_DEAD_STRIP bit of the n_desc field only ever appears in a
- * relocatable .o file (MH_OBJECT filetype). And is used to indicate to the
- * static link editor it is never to dead strip the symbol.
- */
-/// symbol is not to be dead stripped
-pub const N_NO_DEAD_STRIP: u16 = 0x0020;
-
-/*
- * The N_DESC_DISCARDED bit of the n_desc field never appears in linked image.
- * But is used in very rare cases by the dynamic link editor to mark an in
- * memory symbol as discared and longer used for linking.
- */
-/// symbol is discarded
-pub const N_DESC_DISCARDED: u16 = 0x0020;
-
-/*
- * The N_WEAK_REF bit of the n_desc field indicates to the dynamic linker that
- * the undefined symbol is allowed to be missing and is to have the address of
- * zero when missing.
- */
-/// symbol is weak referenced
-pub const N_WEAK_REF: u16 = 0x0040;
-
-/*
- * The N_WEAK_DEF bit of the n_desc field indicates to the static and dynamic
- * linkers that the symbol definition is weak, allowing a non-weak symbol to
- * also be used which causes the weak definition to be discared. Currently this
- * is only supported for symbols in coalesced sections.
- */
-/// coalesced symbol is a weak definition
-pub const N_WEAK_DEF: u16 = 0x0080;
-
-/*
- * The N_REF_TO_WEAK bit of the n_desc field indicates to the dynamic linker
- * that the undefined symbol should be resolved using flat namespace searching.
- */
-/// reference to a weak symbol
-pub const N_REF_TO_WEAK: u16 = 0x0080;
-
-/*
- * The N_ARM_THUMB_DEF bit of the n_desc field indicates that the symbol is
- * a definition of a Thumb function.
- */
-/// symbol is a Thumb function (ARM)
-pub const N_ARM_THUMB_DEF: u16 = 0x0008;
-
-/*
- * The N_SYMBOL_RESOLVER bit of the n_desc field indicates that the
- * that the function is actually a resolver function and should
- * be called to get the address of the real function to use.
- * This bit is only available in .o files (MH_OBJECT filetype)
- */
-pub const N_SYMBOL_RESOLVER: u16 = 0x0100;
-
-/*
- * The N_ALT_ENTRY bit of the n_desc field indicates that the
- * symbol is pinned to the previous content.
- */
-pub const N_ALT_ENTRY: u16 = 0x0200;
-
-// Definitions from "/usr/include/mach-o/stab.h".
-
-/*
- * This file gives definitions supplementing <nlist.h> for permanent symbol
- * table entries of Mach-O files. Modified from the BSD definitions. The
- * modifications from the original definitions were changing what the values of
- * what was the n_other field (an unused field) which is now the n_sect field.
- * These modifications are required to support symbols in an arbitrary number of
- * sections not just the three sections (text, data and bss) in a BSD file.
- * The values of the defined constants have NOT been changed.
- *
- * These must have one of the N_STAB bits on. The n_value fields are subject
- * to relocation according to the value of their n_sect field. So for types
- * that refer to things in sections the n_sect field must be filled in with the
- * proper section ordinal. For types that are not to have their n_value field
- * relocatated the n_sect field must be NO_SECT.
- */
-
-/*
- * Symbolic debugger symbols. The comments give the conventional use for
- *
- * .stabs "n_name", n_type, n_sect, n_desc, n_value
- *
- * where n_type is the defined constant and not listed in the comment. Other
- * fields not listed are zero. n_sect is the section ordinal the entry is
- * referring to.
- */
-/// global symbol: name,,NO_SECT,type,0
-pub const N_GSYM: u8 = 0x20;
-/// procedure name (f77 kludge): name,,NO_SECT,0,0
-pub const N_FNAME: u8 = 0x22;
-/// procedure: name,,n_sect,linenumber,address
-pub const N_FUN: u8 = 0x24;
-/// static symbol: name,,n_sect,type,address
-pub const N_STSYM: u8 = 0x26;
-/// .lcomm symbol: name,,n_sect,type,address
-pub const N_LCSYM: u8 = 0x28;
-/// begin nsect sym: 0,,n_sect,0,address
-pub const N_BNSYM: u8 = 0x2e;
-/// AST file path: name,,NO_SECT,0,0
-pub const N_AST: u8 = 0x32;
-/// emitted with gcc2_compiled and in gcc source
-pub const N_OPT: u8 = 0x3c;
-/// register sym: name,,NO_SECT,type,register
-pub const N_RSYM: u8 = 0x40;
-/// src line: 0,,n_sect,linenumber,address
-pub const N_SLINE: u8 = 0x44;
-/// end nsect sym: 0,,n_sect,0,address
-pub const N_ENSYM: u8 = 0x4e;
-/// structure elt: name,,NO_SECT,type,struct_offset
-pub const N_SSYM: u8 = 0x60;
-/// source file name: name,,n_sect,0,address
-pub const N_SO: u8 = 0x64;
-/// object file name: name,,0,0,st_mtime
-pub const N_OSO: u8 = 0x66;
-/// local sym: name,,NO_SECT,type,offset
-pub const N_LSYM: u8 = 0x80;
-/// include file beginning: name,,NO_SECT,0,sum
-pub const N_BINCL: u8 = 0x82;
-/// #included file name: name,,n_sect,0,address
-pub const N_SOL: u8 = 0x84;
-/// compiler parameters: name,,NO_SECT,0,0
-pub const N_PARAMS: u8 = 0x86;
-/// compiler version: name,,NO_SECT,0,0
-pub const N_VERSION: u8 = 0x88;
-/// compiler -O level: name,,NO_SECT,0,0
-pub const N_OLEVEL: u8 = 0x8A;
-/// parameter: name,,NO_SECT,type,offset
-pub const N_PSYM: u8 = 0xa0;
-/// include file end: name,,NO_SECT,0,0
-pub const N_EINCL: u8 = 0xa2;
-/// alternate entry: name,,n_sect,linenumber,address
-pub const N_ENTRY: u8 = 0xa4;
-/// left bracket: 0,,NO_SECT,nesting level,address
-pub const N_LBRAC: u8 = 0xc0;
-/// deleted include file: name,,NO_SECT,0,sum
-pub const N_EXCL: u8 = 0xc2;
-/// right bracket: 0,,NO_SECT,nesting level,address
-pub const N_RBRAC: u8 = 0xe0;
-/// begin common: name,,NO_SECT,0,0
-pub const N_BCOMM: u8 = 0xe2;
-/// end common: name,,n_sect,0,0
-pub const N_ECOMM: u8 = 0xe4;
-/// end common (local name): 0,,n_sect,0,address
-pub const N_ECOML: u8 = 0xe8;
-/// second stab entry with length information
-pub const N_LENG: u8 = 0xfe;
-
-/*
- * for the berkeley pascal compiler, pc(1):
- */
-/// global pascal symbol: name,,NO_SECT,subtype,line
-pub const N_PC: u8 = 0x30;
-
-// Definitions from "/usr/include/mach-o/reloc.h".
-
-/// A relocation entry.
-///
-/// Mach-O relocations have plain and scattered variants, with the
-/// meaning of the fields depending on the variant.
-///
-/// This type provides functions for determining whether the relocation
-/// is scattered, and for accessing the fields of each variant.
-#[derive(Debug, Clone, Copy)]
-#[repr(C)]
-pub struct Relocation<E: Endian> {
- pub r_word0: U32<E>,
- pub r_word1: U32<E>,
-}
-
-impl<E: Endian> Relocation<E> {
- /// Determine whether this is a scattered relocation.
- #[inline]
- pub fn r_scattered(self, endian: E, cputype: u32) -> bool {
- if cputype == CPU_TYPE_X86_64 {
- false
- } else {
- self.r_word0.get(endian) & R_SCATTERED != 0
- }
- }
-
- /// Return the fields of a plain relocation.
- pub fn info(self, endian: E) -> RelocationInfo {
- let r_address = self.r_word0.get(endian);
- let r_word1 = self.r_word1.get(endian);
- if endian.is_little_endian() {
- RelocationInfo {
- r_address,
- r_symbolnum: r_word1 & 0x00ff_ffff,
- r_pcrel: ((r_word1 >> 24) & 0x1) != 0,
- r_length: ((r_word1 >> 25) & 0x3) as u8,
- r_extern: ((r_word1 >> 27) & 0x1) != 0,
- r_type: (r_word1 >> 28) as u8,
- }
- } else {
- RelocationInfo {
- r_address,
- r_symbolnum: r_word1 >> 8,
- r_pcrel: ((r_word1 >> 7) & 0x1) != 0,
- r_length: ((r_word1 >> 5) & 0x3) as u8,
- r_extern: ((r_word1 >> 4) & 0x1) != 0,
- r_type: (r_word1 & 0xf) as u8,
- }
- }
- }
-
- /// Return the fields of a scattered relocation.
- pub fn scattered_info(self, endian: E) -> ScatteredRelocationInfo {
- let r_word0 = self.r_word0.get(endian);
- let r_value = self.r_word1.get(endian);
- ScatteredRelocationInfo {
- r_address: r_word0 & 0x00ff_ffff,
- r_type: ((r_word0 >> 24) & 0xf) as u8,
- r_length: ((r_word0 >> 28) & 0x3) as u8,
- r_pcrel: ((r_word0 >> 30) & 0x1) != 0,
- r_value,
- }
- }
-}
-
-/*
- * Format of a relocation entry of a Mach-O file. Modified from the 4.3BSD
- * format. The modifications from the original format were changing the value
- * of the r_symbolnum field for "local" (r_extern == 0) relocation entries.
- * This modification is required to support symbols in an arbitrary number of
- * sections not just the three sections (text, data and bss) in a 4.3BSD file.
- * Also the last 4 bits have had the r_type tag added to them.
- */
-
-#[derive(Debug, Clone, Copy)]
-pub struct RelocationInfo {
- /// offset in the section to what is being relocated
- pub r_address: u32,
- /// symbol index if r_extern == 1 or section ordinal if r_extern == 0
- pub r_symbolnum: u32,
- /// was relocated pc relative already
- pub r_pcrel: bool,
- /// 0=byte, 1=word, 2=long, 3=quad
- pub r_length: u8,
- /// does not include value of sym referenced
- pub r_extern: bool,
- /// if not 0, machine specific relocation type
- pub r_type: u8,
-}
-
-impl RelocationInfo {
- /// Combine the fields into a `Relocation`.
- pub fn relocation<E: Endian>(self, endian: E) -> Relocation<E> {
- let r_word0 = U32::new(endian, self.r_address);
- let r_word1 = U32::new(
- endian,
- if endian.is_little_endian() {
- self.r_symbolnum & 0x00ff_ffff
- | u32::from(self.r_pcrel) << 24
- | u32::from(self.r_length & 0x3) << 25
- | u32::from(self.r_extern) << 27
- | u32::from(self.r_type) << 28
- } else {
- self.r_symbolnum >> 8
- | u32::from(self.r_pcrel) << 7
- | u32::from(self.r_length & 0x3) << 5
- | u32::from(self.r_extern) << 4
- | u32::from(self.r_type) & 0xf
- },
- );
- Relocation { r_word0, r_word1 }
- }
-}
-
-/// absolute relocation type for Mach-O files
-pub const R_ABS: u8 = 0;
-
-/*
- * The r_address is not really the address as it's name indicates but an offset.
- * In 4.3BSD a.out objects this offset is from the start of the "segment" for
- * which relocation entry is for (text or data). For Mach-O object files it is
- * also an offset but from the start of the "section" for which the relocation
- * entry is for. See comments in <mach-o/loader.h> about the r_address feild
- * in images for used with the dynamic linker.
- *
- * In 4.3BSD a.out objects if r_extern is zero then r_symbolnum is an ordinal
- * for the segment the symbol being relocated is in. These ordinals are the
- * symbol types N_TEXT, N_DATA, N_BSS or N_ABS. In Mach-O object files these
- * ordinals refer to the sections in the object file in the order their section
- * structures appear in the headers of the object file they are in. The first
- * section has the ordinal 1, the second 2, and so on. This means that the
- * same ordinal in two different object files could refer to two different
- * sections. And further could have still different ordinals when combined
- * by the link-editor. The value R_ABS is used for relocation entries for
- * absolute symbols which need no further relocation.
- */
-
-/*
- * For RISC machines some of the references are split across two instructions
- * and the instruction does not contain the complete value of the reference.
- * In these cases a second, or paired relocation entry, follows each of these
- * relocation entries, using a PAIR r_type, which contains the other part of the
- * reference not contained in the instruction. This other part is stored in the
- * pair's r_address field. The exact number of bits of the other part of the
- * reference store in the r_address field is dependent on the particular
- * relocation type for the particular architecture.
- */
-
-/*
- * To make scattered loading by the link editor work correctly "local"
- * relocation entries can't be used when the item to be relocated is the value
- * of a symbol plus an offset (where the resulting expression is outside the
- * block the link editor is moving, a blocks are divided at symbol addresses).
- * In this case. where the item is a symbol value plus offset, the link editor
- * needs to know more than just the section the symbol was defined. What is
- * needed is the actual value of the symbol without the offset so it can do the
- * relocation correctly based on where the value of the symbol got relocated to
- * not the value of the expression (with the offset added to the symbol value).
- * So for the NeXT 2.0 release no "local" relocation entries are ever used when
- * there is a non-zero offset added to a symbol. The "external" and "local"
- * relocation entries remain unchanged.
- *
- * The implementation is quite messy given the compatibility with the existing
- * relocation entry format. The ASSUMPTION is that a section will never be
- * bigger than 2**24 - 1 (0x00ffffff or 16,777,215) bytes. This assumption
- * allows the r_address (which is really an offset) to fit in 24 bits and high
- * bit of the r_address field in the relocation_info structure to indicate
- * it is really a scattered_relocation_info structure. Since these are only
- * used in places where "local" relocation entries are used and not where
- * "external" relocation entries are used the r_extern field has been removed.
- *
- * For scattered loading to work on a RISC machine where some of the references
- * are split across two instructions the link editor needs to be assured that
- * each reference has a unique 32 bit reference (that more than one reference is
- * NOT sharing the same high 16 bits for example) so it move each referenced
- * item independent of each other. Some compilers guarantees this but the
- * compilers don't so scattered loading can be done on those that do guarantee
- * this.
- */
-
-/// Bit set in `Relocation::r_word0` for scattered relocations.
-pub const R_SCATTERED: u32 = 0x8000_0000;
-
-#[derive(Debug, Clone, Copy)]
-pub struct ScatteredRelocationInfo {
- /// offset in the section to what is being relocated
- pub r_address: u32,
- /// if not 0, machine specific relocation type
- pub r_type: u8,
- /// 0=byte, 1=word, 2=long, 3=quad
- pub r_length: u8,
- /// was relocated pc relative already
- pub r_pcrel: bool,
- /// the value the item to be relocated is referring to (without any offset added)
- pub r_value: u32,
-}
-
-impl ScatteredRelocationInfo {
- /// Combine the fields into a `Relocation`.
- pub fn relocation<E: Endian>(self, endian: E) -> Relocation<E> {
- let r_word0 = U32::new(
- endian,
- self.r_address & 0x00ff_ffff
- | u32::from(self.r_type & 0xf) << 24
- | u32::from(self.r_length & 0x3) << 28
- | u32::from(self.r_pcrel) << 30
- | R_SCATTERED,
- );
- let r_word1 = U32::new(endian, self.r_value);
- Relocation { r_word0, r_word1 }
- }
-}
-
-/*
- * Relocation types used in a generic implementation. Relocation entries for
- * normal things use the generic relocation as described above and their r_type
- * is GENERIC_RELOC_VANILLA (a value of zero).
- *
- * Another type of generic relocation, GENERIC_RELOC_SECTDIFF, is to support
- * the difference of two symbols defined in different sections. That is the
- * expression "symbol1 - symbol2 + constant" is a relocatable expression when
- * both symbols are defined in some section. For this type of relocation the
- * both relocations entries are scattered relocation entries. The value of
- * symbol1 is stored in the first relocation entry's r_value field and the
- * value of symbol2 is stored in the pair's r_value field.
- *
- * A special case for a prebound lazy pointer is needed to beable to set the
- * value of the lazy pointer back to its non-prebound state. This is done
- * using the GENERIC_RELOC_PB_LA_PTR r_type. This is a scattered relocation
- * entry where the r_value feild is the value of the lazy pointer not prebound.
- */
-/// generic relocation as described above
-pub const GENERIC_RELOC_VANILLA: u8 = 0;
-/// Only follows a GENERIC_RELOC_SECTDIFF
-pub const GENERIC_RELOC_PAIR: u8 = 1;
-pub const GENERIC_RELOC_SECTDIFF: u8 = 2;
-/// prebound lazy pointer
-pub const GENERIC_RELOC_PB_LA_PTR: u8 = 3;
-pub const GENERIC_RELOC_LOCAL_SECTDIFF: u8 = 4;
-/// thread local variables
-pub const GENERIC_RELOC_TLV: u8 = 5;
-
-// Definitions from "/usr/include/mach-o/arm/reloc.h".
-
-/*
- * Relocation types used in the arm implementation. Relocation entries for
- * things other than instructions use the same generic relocation as described
- * in <mach-o/reloc.h> and their r_type is ARM_RELOC_VANILLA, one of the
- * *_SECTDIFF or the *_PB_LA_PTR types. The rest of the relocation types are
- * for instructions. Since they are for instructions the r_address field
- * indicates the 32 bit instruction that the relocation is to be performed on.
- */
-/// generic relocation as described above
-pub const ARM_RELOC_VANILLA: u8 = 0;
-/// the second relocation entry of a pair
-pub const ARM_RELOC_PAIR: u8 = 1;
-/// a PAIR follows with subtract symbol value
-pub const ARM_RELOC_SECTDIFF: u8 = 2;
-/// like ARM_RELOC_SECTDIFF, but the symbol referenced was local.
-pub const ARM_RELOC_LOCAL_SECTDIFF: u8 = 3;
-/// prebound lazy pointer
-pub const ARM_RELOC_PB_LA_PTR: u8 = 4;
-/// 24 bit branch displacement (to a word address)
-pub const ARM_RELOC_BR24: u8 = 5;
-/// 22 bit branch displacement (to a half-word address)
-pub const ARM_THUMB_RELOC_BR22: u8 = 6;
-/// obsolete - a thumb 32-bit branch instruction possibly needing page-spanning branch workaround
-pub const ARM_THUMB_32BIT_BRANCH: u8 = 7;
-
-/*
- * For these two r_type relocations they always have a pair following them
- * and the r_length bits are used differently. The encoding of the
- * r_length is as follows:
- * low bit of r_length:
- * 0 - :lower16: for movw instructions
- * 1 - :upper16: for movt instructions
- * high bit of r_length:
- * 0 - arm instructions
- * 1 - thumb instructions
- * the other half of the relocated expression is in the following pair
- * relocation entry in the the low 16 bits of r_address field.
- */
-pub const ARM_RELOC_HALF: u8 = 8;
-pub const ARM_RELOC_HALF_SECTDIFF: u8 = 9;
-
-// Definitions from "/usr/include/mach-o/arm64/reloc.h".
-
-/*
- * Relocation types used in the arm64 implementation.
- */
-/// for pointers
-pub const ARM64_RELOC_UNSIGNED: u8 = 0;
-/// must be followed by a ARM64_RELOC_UNSIGNED
-pub const ARM64_RELOC_SUBTRACTOR: u8 = 1;
-/// a B/BL instruction with 26-bit displacement
-pub const ARM64_RELOC_BRANCH26: u8 = 2;
-/// pc-rel distance to page of target
-pub const ARM64_RELOC_PAGE21: u8 = 3;
-/// offset within page, scaled by r_length
-pub const ARM64_RELOC_PAGEOFF12: u8 = 4;
-/// pc-rel distance to page of GOT slot
-pub const ARM64_RELOC_GOT_LOAD_PAGE21: u8 = 5;
-/// offset within page of GOT slot, scaled by r_length
-pub const ARM64_RELOC_GOT_LOAD_PAGEOFF12: u8 = 6;
-/// for pointers to GOT slots
-pub const ARM64_RELOC_POINTER_TO_GOT: u8 = 7;
-/// pc-rel distance to page of TLVP slot
-pub const ARM64_RELOC_TLVP_LOAD_PAGE21: u8 = 8;
-/// offset within page of TLVP slot, scaled by r_length
-pub const ARM64_RELOC_TLVP_LOAD_PAGEOFF12: u8 = 9;
-/// must be followed by PAGE21 or PAGEOFF12
-pub const ARM64_RELOC_ADDEND: u8 = 10;
-
-// An arm64e authenticated pointer.
-//
-// Represents a pointer to a symbol (like ARM64_RELOC_UNSIGNED).
-// Additionally, the resulting pointer is signed. The signature is
-// specified in the target location: the addend is restricted to the lower
-// 32 bits (instead of the full 64 bits for ARM64_RELOC_UNSIGNED):
-//
-// |63|62|61-51|50-49| 48 |47 - 32|31 - 0|
-// | 1| 0| 0 | key | addr | discriminator | addend |
-//
-// The key is one of:
-// IA: 00 IB: 01
-// DA: 10 DB: 11
-//
-// The discriminator field is used as extra signature diversification.
-//
-// The addr field indicates whether the target address should be blended
-// into the discriminator.
-//
-pub const ARM64_RELOC_AUTHENTICATED_POINTER: u8 = 11;
-
-// Definitions from "/usr/include/mach-o/ppc/reloc.h".
-
-/*
- * Relocation types used in the ppc implementation. Relocation entries for
- * things other than instructions use the same generic relocation as described
- * above and their r_type is RELOC_VANILLA. The rest of the relocation types
- * are for instructions. Since they are for instructions the r_address field
- * indicates the 32 bit instruction that the relocation is to be performed on.
- * The fields r_pcrel and r_length are ignored for non-RELOC_VANILLA r_types
- * except for PPC_RELOC_BR14.
- *
- * For PPC_RELOC_BR14 if the r_length is the unused value 3, then the branch was
- * statically predicted setting or clearing the Y-bit based on the sign of the
- * displacement or the opcode. If this is the case the static linker must flip
- * the value of the Y-bit if the sign of the displacement changes for non-branch
- * always conditions.
- */
-/// generic relocation as described above
-pub const PPC_RELOC_VANILLA: u8 = 0;
-/// the second relocation entry of a pair
-pub const PPC_RELOC_PAIR: u8 = 1;
-/// 14 bit branch displacement (to a word address)
-pub const PPC_RELOC_BR14: u8 = 2;
-/// 24 bit branch displacement (to a word address)
-pub const PPC_RELOC_BR24: u8 = 3;
-/// a PAIR follows with the low half
-pub const PPC_RELOC_HI16: u8 = 4;
-/// a PAIR follows with the high half
-pub const PPC_RELOC_LO16: u8 = 5;
-/// Same as the RELOC_HI16 except the low 16 bits and the high 16 bits are added together
-/// with the low 16 bits sign extended first. This means if bit 15 of the low 16 bits is
-/// set the high 16 bits stored in the instruction will be adjusted.
-pub const PPC_RELOC_HA16: u8 = 6;
-/// Same as the LO16 except that the low 2 bits are not stored in the instruction and are
-/// always zero. This is used in double word load/store instructions.
-pub const PPC_RELOC_LO14: u8 = 7;
-/// a PAIR follows with subtract symbol value
-pub const PPC_RELOC_SECTDIFF: u8 = 8;
-/// prebound lazy pointer
-pub const PPC_RELOC_PB_LA_PTR: u8 = 9;
-/// section difference forms of above. a PAIR
-pub const PPC_RELOC_HI16_SECTDIFF: u8 = 10;
-/// follows these with subtract symbol value
-pub const PPC_RELOC_LO16_SECTDIFF: u8 = 11;
-pub const PPC_RELOC_HA16_SECTDIFF: u8 = 12;
-pub const PPC_RELOC_JBSR: u8 = 13;
-pub const PPC_RELOC_LO14_SECTDIFF: u8 = 14;
-/// like PPC_RELOC_SECTDIFF, but the symbol referenced was local.
-pub const PPC_RELOC_LOCAL_SECTDIFF: u8 = 15;
-
-// Definitions from "/usr/include/mach-o/x86_64/reloc.h".
-
-/*
- * Relocations for x86_64 are a bit different than for other architectures in
- * Mach-O: Scattered relocations are not used. Almost all relocations produced
- * by the compiler are external relocations. An external relocation has the
- * r_extern bit set to 1 and the r_symbolnum field contains the symbol table
- * index of the target label.
- *
- * When the assembler is generating relocations, if the target label is a local
- * label (begins with 'L'), then the previous non-local label in the same
- * section is used as the target of the external relocation. An addend is used
- * with the distance from that non-local label to the target label. Only when
- * there is no previous non-local label in the section is an internal
- * relocation used.
- *
- * The addend (i.e. the 4 in _foo+4) is encoded in the instruction (Mach-O does
- * not have RELA relocations). For PC-relative relocations, the addend is
- * stored directly in the instruction. This is different from other Mach-O
- * architectures, which encode the addend minus the current section offset.
- *
- * The relocation types are:
- *
- * X86_64_RELOC_UNSIGNED // for absolute addresses
- * X86_64_RELOC_SIGNED // for signed 32-bit displacement
- * X86_64_RELOC_BRANCH // a CALL/JMP instruction with 32-bit displacement
- * X86_64_RELOC_GOT_LOAD // a MOVQ load of a GOT entry
- * X86_64_RELOC_GOT // other GOT references
- * X86_64_RELOC_SUBTRACTOR // must be followed by a X86_64_RELOC_UNSIGNED
- *
- * The following are sample assembly instructions, followed by the relocation
- * and section content they generate in an object file:
- *
- * call _foo
- * r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * E8 00 00 00 00
- *
- * call _foo+4
- * r_type=X86_64_RELOC_BRANCH, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * E8 04 00 00 00
- *
- * movq _foo@GOTPCREL(%rip), %rax
- * r_type=X86_64_RELOC_GOT_LOAD, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * 48 8B 05 00 00 00 00
- *
- * pushq _foo@GOTPCREL(%rip)
- * r_type=X86_64_RELOC_GOT, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * FF 35 00 00 00 00
- *
- * movl _foo(%rip), %eax
- * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * 8B 05 00 00 00 00
- *
- * movl _foo+4(%rip), %eax
- * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * 8B 05 04 00 00 00
- *
- * movb $0x12, _foo(%rip)
- * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * C6 05 FF FF FF FF 12
- *
- * movl $0x12345678, _foo(%rip)
- * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_foo
- * C7 05 FC FF FF FF 78 56 34 12
- *
- * .quad _foo
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * 00 00 00 00 00 00 00 00
- *
- * .quad _foo+4
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * 04 00 00 00 00 00 00 00
- *
- * .quad _foo - _bar
- * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_bar
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * 00 00 00 00 00 00 00 00
- *
- * .quad _foo - _bar + 4
- * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_bar
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * 04 00 00 00 00 00 00 00
- *
- * .long _foo - _bar
- * r_type=X86_64_RELOC_SUBTRACTOR, r_length=2, r_extern=1, r_pcrel=0, r_symbolnum=_bar
- * r_type=X86_64_RELOC_UNSIGNED, r_length=2, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * 00 00 00 00
- *
- * lea L1(%rip), %rax
- * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=1, r_pcrel=1, r_symbolnum=_prev
- * 48 8d 05 12 00 00 00
- * // assumes _prev is the first non-local label 0x12 bytes before L1
- *
- * lea L0(%rip), %rax
- * r_type=X86_64_RELOC_SIGNED, r_length=2, r_extern=0, r_pcrel=1, r_symbolnum=3
- * 48 8d 05 56 00 00 00
- * // assumes L0 is in third section and there is no previous non-local label.
- * // The rip-relative-offset of 0x00000056 is L0-address_of_next_instruction.
- * // address_of_next_instruction is the address of the relocation + 4.
- *
- * add $6,L0(%rip)
- * r_type=X86_64_RELOC_SIGNED_1, r_length=2, r_extern=0, r_pcrel=1, r_symbolnum=3
- * 83 05 18 00 00 00 06
- * // assumes L0 is in third section and there is no previous non-local label.
- * // The rip-relative-offset of 0x00000018 is L0-address_of_next_instruction.
- * // address_of_next_instruction is the address of the relocation + 4 + 1.
- * // The +1 comes from SIGNED_1. This is used because the relocation is not
- * // at the end of the instruction.
- *
- * .quad L1
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_prev
- * 12 00 00 00 00 00 00 00
- * // assumes _prev is the first non-local label 0x12 bytes before L1
- *
- * .quad L0
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=0, r_pcrel=0, r_symbolnum=3
- * 56 00 00 00 00 00 00 00
- * // assumes L0 is in third section, has an address of 0x00000056 in .o
- * // file, and there is no previous non-local label
- *
- * .quad _foo - .
- * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_prev
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * EE FF FF FF FF FF FF FF
- * // assumes _prev is the first non-local label 0x12 bytes before this
- * // .quad
- *
- * .quad _foo - L1
- * r_type=X86_64_RELOC_SUBTRACTOR, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_prev
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_extern=1, r_pcrel=0, r_symbolnum=_foo
- * EE FF FF FF FF FF FF FF
- * // assumes _prev is the first non-local label 0x12 bytes before L1
- *
- * .quad L1 - _prev
- * // No relocations. This is an assembly time constant.
- * 12 00 00 00 00 00 00 00
- * // assumes _prev is the first non-local label 0x12 bytes before L1
- *
- *
- *
- * In final linked images, there are only two valid relocation kinds:
- *
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_pcrel=0, r_extern=1, r_symbolnum=sym_index
- * This tells dyld to add the address of a symbol to a pointer sized (8-byte)
- * piece of data (i.e on disk the 8-byte piece of data contains the addend). The
- * r_symbolnum contains the index into the symbol table of the target symbol.
- *
- * r_type=X86_64_RELOC_UNSIGNED, r_length=3, r_pcrel=0, r_extern=0, r_symbolnum=0
- * This tells dyld to adjust the pointer sized (8-byte) piece of data by the amount
- * the containing image was loaded from its base address (e.g. slide).
- *
- */
-/// for absolute addresses
-pub const X86_64_RELOC_UNSIGNED: u8 = 0;
-/// for signed 32-bit displacement
-pub const X86_64_RELOC_SIGNED: u8 = 1;
-/// a CALL/JMP instruction with 32-bit displacement
-pub const X86_64_RELOC_BRANCH: u8 = 2;
-/// a MOVQ load of a GOT entry
-pub const X86_64_RELOC_GOT_LOAD: u8 = 3;
-/// other GOT references
-pub const X86_64_RELOC_GOT: u8 = 4;
-/// must be followed by a X86_64_RELOC_UNSIGNED
-pub const X86_64_RELOC_SUBTRACTOR: u8 = 5;
-/// for signed 32-bit displacement with a -1 addend
-pub const X86_64_RELOC_SIGNED_1: u8 = 6;
-/// for signed 32-bit displacement with a -2 addend
-pub const X86_64_RELOC_SIGNED_2: u8 = 7;
-/// for signed 32-bit displacement with a -4 addend
-pub const X86_64_RELOC_SIGNED_4: u8 = 8;
-/// for thread local variables
-pub const X86_64_RELOC_TLV: u8 = 9;
-
-unsafe_impl_pod!(FatHeader, FatArch32, FatArch64,);
-unsafe_impl_endian_pod!(
- DyldCacheHeader,
- DyldCacheMappingInfo,
- DyldCacheImageInfo,
- DyldSubCacheInfo,
- MachHeader32,
- MachHeader64,
- LoadCommand,
- LcStr,
- SegmentCommand32,
- SegmentCommand64,
- Section32,
- Section64,
- Fvmlib,
- FvmlibCommand,
- Dylib,
- DylibCommand,
- SubFrameworkCommand,
- SubClientCommand,
- SubUmbrellaCommand,
- SubLibraryCommand,
- PreboundDylibCommand,
- DylinkerCommand,
- ThreadCommand,
- RoutinesCommand32,
- RoutinesCommand64,
- SymtabCommand,
- DysymtabCommand,
- DylibTableOfContents,
- DylibModule32,
- DylibModule64,
- DylibReference,
- TwolevelHintsCommand,
- TwolevelHint,
- PrebindCksumCommand,
- UuidCommand,
- RpathCommand,
- LinkeditDataCommand,
- FilesetEntryCommand,
- EncryptionInfoCommand32,
- EncryptionInfoCommand64,
- VersionMinCommand,
- BuildVersionCommand,
- BuildToolVersion,
- DyldInfoCommand,
- LinkerOptionCommand,
- SymsegCommand,
- IdentCommand,
- FvmfileCommand,
- EntryPointCommand,
- SourceVersionCommand,
- DataInCodeEntry,
- //TlvDescriptor,
- NoteCommand,
- Nlist32,
- Nlist64,
- Relocation,
-);