diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/ryu/src/d2s.rs | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/ryu/src/d2s.rs')
-rw-r--r-- | vendor/ryu/src/d2s.rs | 300 |
1 files changed, 0 insertions, 300 deletions
diff --git a/vendor/ryu/src/d2s.rs b/vendor/ryu/src/d2s.rs deleted file mode 100644 index 392577a..0000000 --- a/vendor/ryu/src/d2s.rs +++ /dev/null @@ -1,300 +0,0 @@ -// Translated from C to Rust. The original C code can be found at -// https://github.com/ulfjack/ryu and carries the following license: -// -// Copyright 2018 Ulf Adams -// -// The contents of this file may be used under the terms of the Apache License, -// Version 2.0. -// -// (See accompanying file LICENSE-Apache or copy at -// http://www.apache.org/licenses/LICENSE-2.0) -// -// Alternatively, the contents of this file may be used under the terms of -// the Boost Software License, Version 1.0. -// (See accompanying file LICENSE-Boost or copy at -// https://www.boost.org/LICENSE_1_0.txt) -// -// Unless required by applicable law or agreed to in writing, this software -// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -// KIND, either express or implied. - -use crate::common::*; -#[cfg(not(feature = "small"))] -pub use crate::d2s_full_table::*; -use crate::d2s_intrinsics::*; -#[cfg(feature = "small")] -pub use crate::d2s_small_table::*; -use core::mem::MaybeUninit; - -pub const DOUBLE_MANTISSA_BITS: u32 = 52; -pub const DOUBLE_EXPONENT_BITS: u32 = 11; -pub const DOUBLE_BIAS: i32 = 1023; -pub const DOUBLE_POW5_INV_BITCOUNT: i32 = 125; -pub const DOUBLE_POW5_BITCOUNT: i32 = 125; - -#[cfg_attr(feature = "no-panic", inline)] -pub fn decimal_length17(v: u64) -> u32 { - // This is slightly faster than a loop. - // The average output length is 16.38 digits, so we check high-to-low. - // Function precondition: v is not an 18, 19, or 20-digit number. - // (17 digits are sufficient for round-tripping.) - debug_assert!(v < 100000000000000000); - - if v >= 10000000000000000 { - 17 - } else if v >= 1000000000000000 { - 16 - } else if v >= 100000000000000 { - 15 - } else if v >= 10000000000000 { - 14 - } else if v >= 1000000000000 { - 13 - } else if v >= 100000000000 { - 12 - } else if v >= 10000000000 { - 11 - } else if v >= 1000000000 { - 10 - } else if v >= 100000000 { - 9 - } else if v >= 10000000 { - 8 - } else if v >= 1000000 { - 7 - } else if v >= 100000 { - 6 - } else if v >= 10000 { - 5 - } else if v >= 1000 { - 4 - } else if v >= 100 { - 3 - } else if v >= 10 { - 2 - } else { - 1 - } -} - -// A floating decimal representing m * 10^e. -pub struct FloatingDecimal64 { - pub mantissa: u64, - // Decimal exponent's range is -324 to 308 - // inclusive, and can fit in i16 if needed. - pub exponent: i32, -} - -#[cfg_attr(feature = "no-panic", inline)] -pub fn d2d(ieee_mantissa: u64, ieee_exponent: u32) -> FloatingDecimal64 { - let (e2, m2) = if ieee_exponent == 0 { - ( - // We subtract 2 so that the bounds computation has 2 additional bits. - 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32 - 2, - ieee_mantissa, - ) - } else { - ( - ieee_exponent as i32 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS as i32 - 2, - (1u64 << DOUBLE_MANTISSA_BITS) | ieee_mantissa, - ) - }; - let even = (m2 & 1) == 0; - let accept_bounds = even; - - // Step 2: Determine the interval of valid decimal representations. - let mv = 4 * m2; - // Implicit bool -> int conversion. True is 1, false is 0. - let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32; - // We would compute mp and mm like this: - // uint64_t mp = 4 * m2 + 2; - // uint64_t mm = mv - 1 - mm_shift; - - // Step 3: Convert to a decimal power base using 128-bit arithmetic. - let mut vr: u64; - let mut vp: u64; - let mut vm: u64; - let mut vp_uninit: MaybeUninit<u64> = MaybeUninit::uninit(); - let mut vm_uninit: MaybeUninit<u64> = MaybeUninit::uninit(); - let e10: i32; - let mut vm_is_trailing_zeros = false; - let mut vr_is_trailing_zeros = false; - if e2 >= 0 { - // I tried special-casing q == 0, but there was no effect on performance. - // This expression is slightly faster than max(0, log10_pow2(e2) - 1). - let q = log10_pow2(e2) - (e2 > 3) as u32; - e10 = q as i32; - let k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1; - let i = -e2 + q as i32 + k; - vr = unsafe { - mul_shift_all_64( - m2, - #[cfg(feature = "small")] - &compute_inv_pow5(q), - #[cfg(not(feature = "small"))] - { - debug_assert!(q < DOUBLE_POW5_INV_SPLIT.len() as u32); - DOUBLE_POW5_INV_SPLIT.get_unchecked(q as usize) - }, - i as u32, - vp_uninit.as_mut_ptr(), - vm_uninit.as_mut_ptr(), - mm_shift, - ) - }; - vp = unsafe { vp_uninit.assume_init() }; - vm = unsafe { vm_uninit.assume_init() }; - if q <= 21 { - // This should use q <= 22, but I think 21 is also safe. Smaller values - // may still be safe, but it's more difficult to reason about them. - // Only one of mp, mv, and mm can be a multiple of 5, if any. - let mv_mod5 = (mv as u32).wrapping_sub(5u32.wrapping_mul(div5(mv) as u32)); - if mv_mod5 == 0 { - vr_is_trailing_zeros = multiple_of_power_of_5(mv, q); - } else if accept_bounds { - // Same as min(e2 + (~mm & 1), pow5_factor(mm)) >= q - // <=> e2 + (~mm & 1) >= q && pow5_factor(mm) >= q - // <=> true && pow5_factor(mm) >= q, since e2 >= q. - vm_is_trailing_zeros = multiple_of_power_of_5(mv - 1 - mm_shift as u64, q); - } else { - // Same as min(e2 + 1, pow5_factor(mp)) >= q. - vp -= multiple_of_power_of_5(mv + 2, q) as u64; - } - } - } else { - // This expression is slightly faster than max(0, log10_pow5(-e2) - 1). - let q = log10_pow5(-e2) - (-e2 > 1) as u32; - e10 = q as i32 + e2; - let i = -e2 - q as i32; - let k = pow5bits(i) - DOUBLE_POW5_BITCOUNT; - let j = q as i32 - k; - vr = unsafe { - mul_shift_all_64( - m2, - #[cfg(feature = "small")] - &compute_pow5(i as u32), - #[cfg(not(feature = "small"))] - { - debug_assert!(i < DOUBLE_POW5_SPLIT.len() as i32); - DOUBLE_POW5_SPLIT.get_unchecked(i as usize) - }, - j as u32, - vp_uninit.as_mut_ptr(), - vm_uninit.as_mut_ptr(), - mm_shift, - ) - }; - vp = unsafe { vp_uninit.assume_init() }; - vm = unsafe { vm_uninit.assume_init() }; - if q <= 1 { - // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. - // mv = 4 * m2, so it always has at least two trailing 0 bits. - vr_is_trailing_zeros = true; - if accept_bounds { - // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1. - vm_is_trailing_zeros = mm_shift == 1; - } else { - // mp = mv + 2, so it always has at least one trailing 0 bit. - vp -= 1; - } - } else if q < 63 { - // TODO(ulfjack): Use a tighter bound here. - // We want to know if the full product has at least q trailing zeros. - // We need to compute min(p2(mv), p5(mv) - e2) >= q - // <=> p2(mv) >= q && p5(mv) - e2 >= q - // <=> p2(mv) >= q (because -e2 >= q) - vr_is_trailing_zeros = multiple_of_power_of_2(mv, q); - } - } - - // Step 4: Find the shortest decimal representation in the interval of valid representations. - let mut removed = 0i32; - let mut last_removed_digit = 0u8; - // On average, we remove ~2 digits. - let output = if vm_is_trailing_zeros || vr_is_trailing_zeros { - // General case, which happens rarely (~0.7%). - loop { - let vp_div10 = div10(vp); - let vm_div10 = div10(vm); - if vp_div10 <= vm_div10 { - break; - } - let vm_mod10 = (vm as u32).wrapping_sub(10u32.wrapping_mul(vm_div10 as u32)); - let vr_div10 = div10(vr); - let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32)); - vm_is_trailing_zeros &= vm_mod10 == 0; - vr_is_trailing_zeros &= last_removed_digit == 0; - last_removed_digit = vr_mod10 as u8; - vr = vr_div10; - vp = vp_div10; - vm = vm_div10; - removed += 1; - } - if vm_is_trailing_zeros { - loop { - let vm_div10 = div10(vm); - let vm_mod10 = (vm as u32).wrapping_sub(10u32.wrapping_mul(vm_div10 as u32)); - if vm_mod10 != 0 { - break; - } - let vp_div10 = div10(vp); - let vr_div10 = div10(vr); - let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32)); - vr_is_trailing_zeros &= last_removed_digit == 0; - last_removed_digit = vr_mod10 as u8; - vr = vr_div10; - vp = vp_div10; - vm = vm_div10; - removed += 1; - } - } - if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 { - // Round even if the exact number is .....50..0. - last_removed_digit = 4; - } - // We need to take vr + 1 if vr is outside bounds or we need to round up. - vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5) - as u64 - } else { - // Specialized for the common case (~99.3%). Percentages below are relative to this. - let mut round_up = false; - let vp_div100 = div100(vp); - let vm_div100 = div100(vm); - // Optimization: remove two digits at a time (~86.2%). - if vp_div100 > vm_div100 { - let vr_div100 = div100(vr); - let vr_mod100 = (vr as u32).wrapping_sub(100u32.wrapping_mul(vr_div100 as u32)); - round_up = vr_mod100 >= 50; - vr = vr_div100; - vp = vp_div100; - vm = vm_div100; - removed += 2; - } - // Loop iterations below (approximately), without optimization above: - // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02% - // Loop iterations below (approximately), with optimization above: - // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02% - loop { - let vp_div10 = div10(vp); - let vm_div10 = div10(vm); - if vp_div10 <= vm_div10 { - break; - } - let vr_div10 = div10(vr); - let vr_mod10 = (vr as u32).wrapping_sub(10u32.wrapping_mul(vr_div10 as u32)); - round_up = vr_mod10 >= 5; - vr = vr_div10; - vp = vp_div10; - vm = vm_div10; - removed += 1; - } - // We need to take vr + 1 if vr is outside bounds or we need to round up. - vr + (vr == vm || round_up) as u64 - }; - let exp = e10 + removed; - - FloatingDecimal64 { - exponent: exp, - mantissa: output, - } -} |