diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/scopeguard/src/lib.rs | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/scopeguard/src/lib.rs')
-rw-r--r-- | vendor/scopeguard/src/lib.rs | 595 |
1 files changed, 0 insertions, 595 deletions
diff --git a/vendor/scopeguard/src/lib.rs b/vendor/scopeguard/src/lib.rs deleted file mode 100644 index b5522c7..0000000 --- a/vendor/scopeguard/src/lib.rs +++ /dev/null @@ -1,595 +0,0 @@ -#![cfg_attr(not(any(test, feature = "use_std")), no_std)] -#![doc(html_root_url = "https://docs.rs/scopeguard/1/")] - -//! A scope guard will run a given closure when it goes out of scope, -//! even if the code between panics. -//! (as long as panic doesn't abort) -//! -//! # Examples -//! -//! ## Hello World -//! -//! This example creates a scope guard with an example function: -//! -//! ``` -//! extern crate scopeguard; -//! -//! fn f() { -//! let _guard = scopeguard::guard((), |_| { -//! println!("Hello Scope Exit!"); -//! }); -//! -//! // rest of the code here. -//! -//! // Here, at the end of `_guard`'s scope, the guard's closure is called. -//! // It is also called if we exit this scope through unwinding instead. -//! } -//! # fn main() { -//! # f(); -//! # } -//! ``` -//! -//! ## `defer!` -//! -//! Use the `defer` macro to run an operation at scope exit, -//! either regular scope exit or during unwinding from a panic. -//! -//! ``` -//! #[macro_use(defer)] extern crate scopeguard; -//! -//! use std::cell::Cell; -//! -//! fn main() { -//! // use a cell to observe drops during and after the scope guard is active -//! let drop_counter = Cell::new(0); -//! { -//! // Create a scope guard using `defer!` for the current scope -//! defer! { -//! drop_counter.set(1 + drop_counter.get()); -//! } -//! -//! // Do regular operations here in the meantime. -//! -//! // Just before scope exit: it hasn't run yet. -//! assert_eq!(drop_counter.get(), 0); -//! -//! // The following scope end is where the defer closure is called -//! } -//! assert_eq!(drop_counter.get(), 1); -//! } -//! ``` -//! -//! ## Scope Guard with Value -//! -//! If the scope guard closure needs to access an outer value that is also -//! mutated outside of the scope guard, then you may want to use the scope guard -//! with a value. The guard works like a smart pointer, so the inner value can -//! be accessed by reference or by mutable reference. -//! -//! ### 1. The guard owns a file -//! -//! In this example, the scope guard owns a file and ensures pending writes are -//! synced at scope exit. -//! -//! ``` -//! extern crate scopeguard; -//! -//! use std::fs::*; -//! use std::io::{self, Write}; -//! # // Mock file so that we don't actually write a file -//! # struct MockFile; -//! # impl MockFile { -//! # fn create(_s: &str) -> io::Result<Self> { Ok(MockFile) } -//! # fn write_all(&self, _b: &[u8]) -> io::Result<()> { Ok(()) } -//! # fn sync_all(&self) -> io::Result<()> { Ok(()) } -//! # } -//! # use self::MockFile as File; -//! -//! fn try_main() -> io::Result<()> { -//! let f = File::create("newfile.txt")?; -//! let mut file = scopeguard::guard(f, |f| { -//! // ensure we flush file at return or panic -//! let _ = f.sync_all(); -//! }); -//! // Access the file through the scope guard itself -//! file.write_all(b"test me\n").map(|_| ()) -//! } -//! -//! fn main() { -//! try_main().unwrap(); -//! } -//! -//! ``` -//! -//! ### 2. The guard restores an invariant on scope exit -//! -//! ``` -//! extern crate scopeguard; -//! -//! use std::mem::ManuallyDrop; -//! use std::ptr; -//! -//! // This function, just for this example, takes the first element -//! // and inserts it into the assumed sorted tail of the vector. -//! // -//! // For optimization purposes we temporarily violate an invariant of the -//! // Vec, that it owns all of its elements. -//! // -//! // The safe approach is to use swap, which means two writes to memory, -//! // the optimization is to use a “hole” which uses only one write of memory -//! // for each position it moves. -//! // -//! // We *must* use a scope guard to run this code safely. We -//! // are running arbitrary user code (comparison operators) that may panic. -//! // The scope guard ensures we restore the invariant after successful -//! // exit or during unwinding from panic. -//! fn insertion_sort_first<T>(v: &mut Vec<T>) -//! where T: PartialOrd -//! { -//! struct Hole<'a, T: 'a> { -//! v: &'a mut Vec<T>, -//! index: usize, -//! value: ManuallyDrop<T>, -//! } -//! -//! unsafe { -//! // Create a moved-from location in the vector, a “hole”. -//! let value = ptr::read(&v[0]); -//! let mut hole = Hole { v: v, index: 0, value: ManuallyDrop::new(value) }; -//! -//! // Use a scope guard with a value. -//! // At scope exit, plug the hole so that the vector is fully -//! // initialized again. -//! // The scope guard owns the hole, but we can access it through the guard. -//! let mut hole_guard = scopeguard::guard(hole, |hole| { -//! // plug the hole in the vector with the value that was // taken out -//! let index = hole.index; -//! ptr::copy_nonoverlapping(&*hole.value, &mut hole.v[index], 1); -//! }); -//! -//! // run algorithm that moves the hole in the vector here -//! // move the hole until it's in a sorted position -//! for i in 1..hole_guard.v.len() { -//! if *hole_guard.value >= hole_guard.v[i] { -//! // move the element back and the hole forward -//! let index = hole_guard.index; -//! hole_guard.v.swap(index, index + 1); -//! hole_guard.index += 1; -//! } else { -//! break; -//! } -//! } -//! -//! // When the scope exits here, the Vec becomes whole again! -//! } -//! } -//! -//! fn main() { -//! let string = String::from; -//! let mut data = vec![string("c"), string("a"), string("b"), string("d")]; -//! insertion_sort_first(&mut data); -//! assert_eq!(data, vec!["a", "b", "c", "d"]); -//! } -//! -//! ``` -//! -//! -//! # Crate Features -//! -//! - `use_std` -//! + Enabled by default. Enables the `OnUnwind` and `OnSuccess` strategies. -//! + Disable to use `no_std`. -//! -//! # Rust Version -//! -//! This version of the crate requires Rust 1.20 or later. -//! -//! The scopeguard 1.x release series will use a carefully considered version -//! upgrade policy, where in a later 1.x version, we will raise the minimum -//! required Rust version. - -#[cfg(not(any(test, feature = "use_std")))] -extern crate core as std; - -use std::fmt; -use std::marker::PhantomData; -use std::mem::ManuallyDrop; -use std::ops::{Deref, DerefMut}; -use std::ptr; - -/// Controls in which cases the associated code should be run -pub trait Strategy { - /// Return `true` if the guard’s associated code should run - /// (in the context where this method is called). - fn should_run() -> bool; -} - -/// Always run on scope exit. -/// -/// “Always” run: on regular exit from a scope or on unwinding from a panic. -/// Can not run on abort, process exit, and other catastrophic events where -/// destructors don’t run. -#[derive(Debug)] -pub enum Always {} - -/// Run on scope exit through unwinding. -/// -/// Requires crate feature `use_std`. -#[cfg(feature = "use_std")] -#[derive(Debug)] -pub enum OnUnwind {} - -/// Run on regular scope exit, when not unwinding. -/// -/// Requires crate feature `use_std`. -#[cfg(feature = "use_std")] -#[derive(Debug)] -pub enum OnSuccess {} - -impl Strategy for Always { - #[inline(always)] - fn should_run() -> bool { - true - } -} - -#[cfg(feature = "use_std")] -impl Strategy for OnUnwind { - #[inline] - fn should_run() -> bool { - std::thread::panicking() - } -} - -#[cfg(feature = "use_std")] -impl Strategy for OnSuccess { - #[inline] - fn should_run() -> bool { - !std::thread::panicking() - } -} - -/// Macro to create a `ScopeGuard` (always run). -/// -/// The macro takes statements, which are the body of a closure -/// that will run when the scope is exited. -#[macro_export] -macro_rules! defer { - ($($t:tt)*) => { - let _guard = $crate::guard((), |()| { $($t)* }); - }; -} - -/// Macro to create a `ScopeGuard` (run on successful scope exit). -/// -/// The macro takes statements, which are the body of a closure -/// that will run when the scope is exited. -/// -/// Requires crate feature `use_std`. -#[cfg(feature = "use_std")] -#[macro_export] -macro_rules! defer_on_success { - ($($t:tt)*) => { - let _guard = $crate::guard_on_success((), |()| { $($t)* }); - }; -} - -/// Macro to create a `ScopeGuard` (run on unwinding from panic). -/// -/// The macro takes statements, which are the body of a closure -/// that will run when the scope is exited. -/// -/// Requires crate feature `use_std`. -#[cfg(feature = "use_std")] -#[macro_export] -macro_rules! defer_on_unwind { - ($($t:tt)*) => { - let _guard = $crate::guard_on_unwind((), |()| { $($t)* }); - }; -} - -/// `ScopeGuard` is a scope guard that may own a protected value. -/// -/// If you place a guard in a local variable, the closure can -/// run regardless how you leave the scope — through regular return or panic -/// (except if panic or other code aborts; so as long as destructors run). -/// It is run only once. -/// -/// The `S` parameter for [`Strategy`](trait.Strategy.html) determines if -/// the closure actually runs. -/// -/// The guard's closure will be called with the held value in the destructor. -/// -/// The `ScopeGuard` implements `Deref` so that you can access the inner value. -pub struct ScopeGuard<T, F, S = Always> -where - F: FnOnce(T), - S: Strategy, -{ - value: ManuallyDrop<T>, - dropfn: ManuallyDrop<F>, - // fn(S) -> S is used, so that the S is not taken into account for auto traits. - strategy: PhantomData<fn(S) -> S>, -} - -impl<T, F, S> ScopeGuard<T, F, S> -where - F: FnOnce(T), - S: Strategy, -{ - /// Create a `ScopeGuard` that owns `v` (accessible through deref) and calls - /// `dropfn` when its destructor runs. - /// - /// The `Strategy` decides whether the scope guard's closure should run. - #[inline] - #[must_use] - pub fn with_strategy(v: T, dropfn: F) -> ScopeGuard<T, F, S> { - ScopeGuard { - value: ManuallyDrop::new(v), - dropfn: ManuallyDrop::new(dropfn), - strategy: PhantomData, - } - } - - /// “Defuse” the guard and extract the value without calling the closure. - /// - /// ``` - /// extern crate scopeguard; - /// - /// use scopeguard::{guard, ScopeGuard}; - /// - /// fn conditional() -> bool { true } - /// - /// fn main() { - /// let mut guard = guard(Vec::new(), |mut v| v.clear()); - /// guard.push(1); - /// - /// if conditional() { - /// // a condition maybe makes us decide to - /// // “defuse” the guard and get back its inner parts - /// let value = ScopeGuard::into_inner(guard); - /// } else { - /// // guard still exists in this branch - /// } - /// } - /// ``` - #[inline] - pub fn into_inner(guard: Self) -> T { - // Cannot move out of `Drop`-implementing types, - // so `ptr::read` the value and forget the guard. - let mut guard = ManuallyDrop::new(guard); - unsafe { - let value = ptr::read(&*guard.value); - // Drop the closure after `value` has been read, so that if the - // closure's `drop` function panics, unwinding still tries to drop - // `value`. - ManuallyDrop::drop(&mut guard.dropfn); - value - } - } -} - -/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`. -#[inline] -#[must_use] -pub fn guard<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, Always> -where - F: FnOnce(T), -{ - ScopeGuard::with_strategy(v, dropfn) -} - -/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`. -/// -/// Requires crate feature `use_std`. -#[cfg(feature = "use_std")] -#[inline] -#[must_use] -pub fn guard_on_success<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnSuccess> -where - F: FnOnce(T), -{ - ScopeGuard::with_strategy(v, dropfn) -} - -/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`. -/// -/// Requires crate feature `use_std`. -/// -/// ## Examples -/// -/// For performance reasons, or to emulate “only run guard on unwind” in -/// no-std environments, we can also use the default guard and simply manually -/// defuse it at the end of scope like the following example. (The performance -/// reason would be if the [`OnUnwind`]'s call to [std::thread::panicking()] is -/// an issue.) -/// -/// ``` -/// extern crate scopeguard; -/// -/// use scopeguard::ScopeGuard; -/// # fn main() { -/// { -/// let guard = scopeguard::guard((), |_| {}); -/// -/// // rest of the code here -/// -/// // we reached the end of scope without unwinding - defuse it -/// ScopeGuard::into_inner(guard); -/// } -/// # } -/// ``` -#[cfg(feature = "use_std")] -#[inline] -#[must_use] -pub fn guard_on_unwind<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, OnUnwind> -where - F: FnOnce(T), -{ - ScopeGuard::with_strategy(v, dropfn) -} - -// ScopeGuard can be Sync even if F isn't because the closure is -// not accessible from references. -// The guard does not store any instance of S, so it is also irrelevant. -unsafe impl<T, F, S> Sync for ScopeGuard<T, F, S> -where - T: Sync, - F: FnOnce(T), - S: Strategy, -{ -} - -impl<T, F, S> Deref for ScopeGuard<T, F, S> -where - F: FnOnce(T), - S: Strategy, -{ - type Target = T; - - fn deref(&self) -> &T { - &*self.value - } -} - -impl<T, F, S> DerefMut for ScopeGuard<T, F, S> -where - F: FnOnce(T), - S: Strategy, -{ - fn deref_mut(&mut self) -> &mut T { - &mut *self.value - } -} - -impl<T, F, S> Drop for ScopeGuard<T, F, S> -where - F: FnOnce(T), - S: Strategy, -{ - fn drop(&mut self) { - // This is OK because the fields are `ManuallyDrop`s - // which will not be dropped by the compiler. - let (value, dropfn) = unsafe { (ptr::read(&*self.value), ptr::read(&*self.dropfn)) }; - if S::should_run() { - dropfn(value); - } - } -} - -impl<T, F, S> fmt::Debug for ScopeGuard<T, F, S> -where - T: fmt::Debug, - F: FnOnce(T), - S: Strategy, -{ - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - f.debug_struct(stringify!(ScopeGuard)) - .field("value", &*self.value) - .finish() - } -} - -#[cfg(test)] -mod tests { - use super::*; - use std::cell::Cell; - use std::panic::catch_unwind; - use std::panic::AssertUnwindSafe; - - #[test] - fn test_defer() { - let drops = Cell::new(0); - defer!(drops.set(1000)); - assert_eq!(drops.get(), 0); - } - - #[cfg(feature = "use_std")] - #[test] - fn test_defer_success_1() { - let drops = Cell::new(0); - { - defer_on_success!(drops.set(1)); - assert_eq!(drops.get(), 0); - } - assert_eq!(drops.get(), 1); - } - - #[cfg(feature = "use_std")] - #[test] - fn test_defer_success_2() { - let drops = Cell::new(0); - let _ = catch_unwind(AssertUnwindSafe(|| { - defer_on_success!(drops.set(1)); - panic!("failure") - })); - assert_eq!(drops.get(), 0); - } - - #[cfg(feature = "use_std")] - #[test] - fn test_defer_unwind_1() { - let drops = Cell::new(0); - let _ = catch_unwind(AssertUnwindSafe(|| { - defer_on_unwind!(drops.set(1)); - assert_eq!(drops.get(), 0); - panic!("failure") - })); - assert_eq!(drops.get(), 1); - } - - #[cfg(feature = "use_std")] - #[test] - fn test_defer_unwind_2() { - let drops = Cell::new(0); - { - defer_on_unwind!(drops.set(1)); - } - assert_eq!(drops.get(), 0); - } - - #[test] - fn test_only_dropped_by_closure_when_run() { - let value_drops = Cell::new(0); - let value = guard((), |()| value_drops.set(1 + value_drops.get())); - let closure_drops = Cell::new(0); - let guard = guard(value, |_| closure_drops.set(1 + closure_drops.get())); - assert_eq!(value_drops.get(), 0); - assert_eq!(closure_drops.get(), 0); - drop(guard); - assert_eq!(value_drops.get(), 1); - assert_eq!(closure_drops.get(), 1); - } - - #[cfg(feature = "use_std")] - #[test] - fn test_dropped_once_when_not_run() { - let value_drops = Cell::new(0); - let value = guard((), |()| value_drops.set(1 + value_drops.get())); - let captured_drops = Cell::new(0); - let captured = guard((), |()| captured_drops.set(1 + captured_drops.get())); - let closure_drops = Cell::new(0); - let guard = guard_on_unwind(value, |value| { - drop(value); - drop(captured); - closure_drops.set(1 + closure_drops.get()) - }); - assert_eq!(value_drops.get(), 0); - assert_eq!(captured_drops.get(), 0); - assert_eq!(closure_drops.get(), 0); - drop(guard); - assert_eq!(value_drops.get(), 1); - assert_eq!(captured_drops.get(), 1); - assert_eq!(closure_drops.get(), 0); - } - - #[test] - fn test_into_inner() { - let dropped = Cell::new(false); - let value = guard(42, |_| dropped.set(true)); - let guard = guard(value, |_| dropped.set(true)); - let inner = ScopeGuard::into_inner(guard); - assert_eq!(dropped.get(), false); - assert_eq!(*inner, 42); - } -} |