diff options
author | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
---|---|---|
committer | Valentin Popov <valentin@popov.link> | 2024-07-19 15:37:58 +0300 |
commit | a990de90fe41456a23e58bd087d2f107d321f3a1 (patch) | |
tree | 15afc392522a9e85dc3332235e311b7d39352ea9 /vendor/serde_json/src/lexical/bhcomp.rs | |
parent | 3d48cd3f81164bbfc1a755dc1d4a9a02f98c8ddd (diff) | |
download | fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.tar.xz fparkan-a990de90fe41456a23e58bd087d2f107d321f3a1.zip |
Deleted vendor folder
Diffstat (limited to 'vendor/serde_json/src/lexical/bhcomp.rs')
-rw-r--r-- | vendor/serde_json/src/lexical/bhcomp.rs | 218 |
1 files changed, 0 insertions, 218 deletions
diff --git a/vendor/serde_json/src/lexical/bhcomp.rs b/vendor/serde_json/src/lexical/bhcomp.rs deleted file mode 100644 index 1f2a7bb..0000000 --- a/vendor/serde_json/src/lexical/bhcomp.rs +++ /dev/null @@ -1,218 +0,0 @@ -// Adapted from https://github.com/Alexhuszagh/rust-lexical. - -//! Compare the mantissa to the halfway representation of the float. -//! -//! Compares the actual significant digits of the mantissa to the -//! theoretical digits from `b+h`, scaled into the proper range. - -use super::bignum::*; -use super::digit::*; -use super::exponent::*; -use super::float::*; -use super::math::*; -use super::num::*; -use super::rounding::*; -use core::{cmp, mem}; - -// MANTISSA - -/// Parse the full mantissa into a big integer. -/// -/// Max digits is the maximum number of digits plus one. -fn parse_mantissa<F>(integer: &[u8], fraction: &[u8]) -> Bigint -where - F: Float, -{ - // Main loop - let small_powers = POW10_LIMB; - let step = small_powers.len() - 2; - let max_digits = F::MAX_DIGITS - 1; - let mut counter = 0; - let mut value: Limb = 0; - let mut i: usize = 0; - let mut result = Bigint::default(); - - // Iteratively process all the data in the mantissa. - for &digit in integer.iter().chain(fraction) { - // We've parsed the max digits using small values, add to bignum - if counter == step { - result.imul_small(small_powers[counter]); - result.iadd_small(value); - counter = 0; - value = 0; - } - - value *= 10; - value += as_limb(to_digit(digit).unwrap()); - - i += 1; - counter += 1; - if i == max_digits { - break; - } - } - - // We will always have a remainder, as long as we entered the loop - // once, or counter % step is 0. - if counter != 0 { - result.imul_small(small_powers[counter]); - result.iadd_small(value); - } - - // If we have any remaining digits after the last value, we need - // to add a 1 after the rest of the array, it doesn't matter where, - // just move it up. This is good for the worst-possible float - // representation. We also need to return an index. - // Since we already trimmed trailing zeros, we know there has - // to be a non-zero digit if there are any left. - if i < integer.len() + fraction.len() { - result.imul_small(10); - result.iadd_small(1); - } - - result -} - -// FLOAT OPS - -/// Calculate `b` from a a representation of `b` as a float. -#[inline] -pub(super) fn b_extended<F: Float>(f: F) -> ExtendedFloat { - ExtendedFloat::from_float(f) -} - -/// Calculate `b+h` from a a representation of `b` as a float. -#[inline] -pub(super) fn bh_extended<F: Float>(f: F) -> ExtendedFloat { - // None of these can overflow. - let b = b_extended(f); - ExtendedFloat { - mant: (b.mant << 1) + 1, - exp: b.exp - 1, - } -} - -// ROUNDING - -/// Custom round-nearest, tie-event algorithm for bhcomp. -#[inline] -fn round_nearest_tie_even(fp: &mut ExtendedFloat, shift: i32, is_truncated: bool) { - let (mut is_above, mut is_halfway) = round_nearest(fp, shift); - if is_halfway && is_truncated { - is_above = true; - is_halfway = false; - } - tie_even(fp, is_above, is_halfway); -} - -// BHCOMP - -/// Calculate the mantissa for a big integer with a positive exponent. -fn large_atof<F>(mantissa: Bigint, exponent: i32) -> F -where - F: Float, -{ - let bits = mem::size_of::<u64>() * 8; - - // Simple, we just need to multiply by the power of the radix. - // Now, we can calculate the mantissa and the exponent from this. - // The binary exponent is the binary exponent for the mantissa - // shifted to the hidden bit. - let mut bigmant = mantissa; - bigmant.imul_pow10(exponent as u32); - - // Get the exact representation of the float from the big integer. - let (mant, is_truncated) = bigmant.hi64(); - let exp = bigmant.bit_length() as i32 - bits as i32; - let mut fp = ExtendedFloat { mant, exp }; - fp.round_to_native::<F, _>(|fp, shift| round_nearest_tie_even(fp, shift, is_truncated)); - into_float(fp) -} - -/// Calculate the mantissa for a big integer with a negative exponent. -/// -/// This invokes the comparison with `b+h`. -fn small_atof<F>(mantissa: Bigint, exponent: i32, f: F) -> F -where - F: Float, -{ - // Get the significant digits and radix exponent for the real digits. - let mut real_digits = mantissa; - let real_exp = exponent; - debug_assert!(real_exp < 0); - - // Get the significant digits and the binary exponent for `b+h`. - let theor = bh_extended(f); - let mut theor_digits = Bigint::from_u64(theor.mant); - let theor_exp = theor.exp; - - // We need to scale the real digits and `b+h` digits to be the same - // order. We currently have `real_exp`, in `radix`, that needs to be - // shifted to `theor_digits` (since it is negative), and `theor_exp` - // to either `theor_digits` or `real_digits` as a power of 2 (since it - // may be positive or negative). Try to remove as many powers of 2 - // as possible. All values are relative to `theor_digits`, that is, - // reflect the power you need to multiply `theor_digits` by. - - // Can remove a power-of-two, since the radix is 10. - // Both are on opposite-sides of equation, can factor out a - // power of two. - // - // Example: 10^-10, 2^-10 -> ( 0, 10, 0) - // Example: 10^-10, 2^-15 -> (-5, 10, 0) - // Example: 10^-10, 2^-5 -> ( 5, 10, 0) - // Example: 10^-10, 2^5 -> (15, 10, 0) - let binary_exp = theor_exp - real_exp; - let halfradix_exp = -real_exp; - let radix_exp = 0; - - // Carry out our multiplication. - if halfradix_exp != 0 { - theor_digits.imul_pow5(halfradix_exp as u32); - } - if radix_exp != 0 { - theor_digits.imul_pow10(radix_exp as u32); - } - if binary_exp > 0 { - theor_digits.imul_pow2(binary_exp as u32); - } else if binary_exp < 0 { - real_digits.imul_pow2(-binary_exp as u32); - } - - // Compare real digits to theoretical digits and round the float. - match real_digits.compare(&theor_digits) { - cmp::Ordering::Greater => f.next_positive(), - cmp::Ordering::Less => f, - cmp::Ordering::Equal => f.round_positive_even(), - } -} - -/// Calculate the exact value of the float. -/// -/// Note: fraction must not have trailing zeros. -pub(crate) fn bhcomp<F>(b: F, integer: &[u8], mut fraction: &[u8], exponent: i32) -> F -where - F: Float, -{ - // Calculate the number of integer digits and use that to determine - // where the significant digits start in the fraction. - let integer_digits = integer.len(); - let fraction_digits = fraction.len(); - let digits_start = if integer_digits == 0 { - let start = fraction.iter().take_while(|&x| *x == b'0').count(); - fraction = &fraction[start..]; - start - } else { - 0 - }; - let sci_exp = scientific_exponent(exponent, integer_digits, digits_start); - let count = F::MAX_DIGITS.min(integer_digits + fraction_digits - digits_start); - let scaled_exponent = sci_exp + 1 - count as i32; - - let mantissa = parse_mantissa::<F>(integer, fraction); - if scaled_exponent >= 0 { - large_atof(mantissa, scaled_exponent) - } else { - small_atof(mantissa, scaled_exponent, b) - } -} |