aboutsummaryrefslogtreecommitdiff
path: root/vendor/smawk/src/recursive.rs
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/smawk/src/recursive.rs
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/smawk/src/recursive.rs')
-rw-r--r--vendor/smawk/src/recursive.rs191
1 files changed, 191 insertions, 0 deletions
diff --git a/vendor/smawk/src/recursive.rs b/vendor/smawk/src/recursive.rs
new file mode 100644
index 0000000..9df8b9c
--- /dev/null
+++ b/vendor/smawk/src/recursive.rs
@@ -0,0 +1,191 @@
+//! Recursive algorithm for finding column minima.
+//!
+//! The functions here are mostly meant to be used for testing
+//! correctness of the SMAWK implementation.
+//!
+//! **Note: this module is only available if you enable the `ndarray`
+//! Cargo feature.**
+
+use ndarray::{s, Array2, ArrayView2, Axis};
+
+/// Compute row minima in O(*m* + *n* log *m*) time.
+///
+/// This function computes row minima in a totally monotone matrix
+/// using a recursive algorithm.
+///
+/// Running time on an *m* ✕ *n* matrix: O(*m* + *n* log *m*).
+///
+/// # Examples
+///
+/// ```
+/// let matrix = ndarray::arr2(&[[4, 2, 4, 3],
+/// [5, 3, 5, 3],
+/// [5, 3, 3, 1]]);
+/// assert_eq!(smawk::recursive::row_minima(&matrix),
+/// vec![1, 1, 3]);
+/// ```
+///
+/// # Panics
+///
+/// It is an error to call this on a matrix with zero columns.
+pub fn row_minima<T: Ord>(matrix: &Array2<T>) -> Vec<usize> {
+ let mut minima = vec![0; matrix.nrows()];
+ recursive_inner(matrix.view(), &|| Direction::Row, 0, &mut minima);
+ minima
+}
+
+/// Compute column minima in O(*n* + *m* log *n*) time.
+///
+/// This function computes column minima in a totally monotone matrix
+/// using a recursive algorithm.
+///
+/// Running time on an *m* ✕ *n* matrix: O(*n* + *m* log *n*).
+///
+/// # Examples
+///
+/// ```
+/// let matrix = ndarray::arr2(&[[4, 2, 4, 3],
+/// [5, 3, 5, 3],
+/// [5, 3, 3, 1]]);
+/// assert_eq!(smawk::recursive::column_minima(&matrix),
+/// vec![0, 0, 2, 2]);
+/// ```
+///
+/// # Panics
+///
+/// It is an error to call this on a matrix with zero rows.
+pub fn column_minima<T: Ord>(matrix: &Array2<T>) -> Vec<usize> {
+ let mut minima = vec![0; matrix.ncols()];
+ recursive_inner(matrix.view(), &|| Direction::Column, 0, &mut minima);
+ minima
+}
+
+/// The type of minima (row or column) we compute.
+enum Direction {
+ Row,
+ Column,
+}
+
+/// Compute the minima along the given direction (`Direction::Row` for
+/// row minima and `Direction::Column` for column minima).
+///
+/// The direction is given as a generic function argument to allow
+/// monomorphization to kick in. The function calls will be inlined
+/// and optimized away and the result is that the compiler generates
+/// differnet code for finding row and column minima.
+fn recursive_inner<T: Ord, F: Fn() -> Direction>(
+ matrix: ArrayView2<'_, T>,
+ dir: &F,
+ offset: usize,
+ minima: &mut [usize],
+) {
+ if matrix.is_empty() {
+ return;
+ }
+
+ let axis = match dir() {
+ Direction::Row => Axis(0),
+ Direction::Column => Axis(1),
+ };
+ let mid = matrix.len_of(axis) / 2;
+ let min_idx = crate::brute_force::lane_minimum(matrix.index_axis(axis, mid));
+ minima[mid] = offset + min_idx;
+
+ if mid == 0 {
+ return; // Matrix has a single row or column, so we're done.
+ }
+
+ let top_left = match dir() {
+ Direction::Row => matrix.slice(s![..mid, ..(min_idx + 1)]),
+ Direction::Column => matrix.slice(s![..(min_idx + 1), ..mid]),
+ };
+ let bot_right = match dir() {
+ Direction::Row => matrix.slice(s![(mid + 1).., min_idx..]),
+ Direction::Column => matrix.slice(s![min_idx.., (mid + 1)..]),
+ };
+ recursive_inner(top_left, dir, offset, &mut minima[..mid]);
+ recursive_inner(bot_right, dir, offset + min_idx, &mut minima[mid + 1..]);
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use ndarray::arr2;
+
+ #[test]
+ fn recursive_1x1() {
+ let matrix = arr2(&[[2]]);
+ let minima = vec![0];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+
+ #[test]
+ fn recursive_2x1() {
+ let matrix = arr2(&[
+ [3], //
+ [2],
+ ]);
+ let minima = vec![0, 0];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+
+ #[test]
+ fn recursive_1x2() {
+ let matrix = arr2(&[[2, 1]]);
+ let minima = vec![1];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+
+ #[test]
+ fn recursive_2x2() {
+ let matrix = arr2(&[
+ [3, 2], //
+ [2, 1],
+ ]);
+ let minima = vec![1, 1];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+
+ #[test]
+ fn recursive_3x3() {
+ let matrix = arr2(&[
+ [3, 4, 4], //
+ [3, 4, 4],
+ [2, 3, 3],
+ ]);
+ let minima = vec![0, 0, 0];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+
+ #[test]
+ fn recursive_4x4() {
+ let matrix = arr2(&[
+ [4, 5, 5, 5], //
+ [2, 3, 3, 3],
+ [2, 3, 3, 3],
+ [2, 2, 2, 2],
+ ]);
+ let minima = vec![0, 0, 0, 0];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+
+ #[test]
+ fn recursive_5x5() {
+ let matrix = arr2(&[
+ [3, 2, 4, 5, 6],
+ [2, 1, 3, 3, 4],
+ [2, 1, 3, 3, 4],
+ [3, 2, 4, 3, 4],
+ [4, 3, 2, 1, 1],
+ ]);
+ let minima = vec![1, 1, 1, 1, 3];
+ assert_eq!(row_minima(&matrix), minima);
+ assert_eq!(column_minima(&matrix.reversed_axes()), minima);
+ }
+}