aboutsummaryrefslogtreecommitdiff
path: root/vendor/weezl/src
diff options
context:
space:
mode:
authorValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
committerValentin Popov <valentin@popov.link>2024-01-08 00:21:28 +0300
commit1b6a04ca5504955c571d1c97504fb45ea0befee4 (patch)
tree7579f518b23313e8a9748a88ab6173d5e030b227 /vendor/weezl/src
parent5ecd8cf2cba827454317368b68571df0d13d7842 (diff)
downloadfparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.tar.xz
fparkan-1b6a04ca5504955c571d1c97504fb45ea0befee4.zip
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
Diffstat (limited to 'vendor/weezl/src')
-rw-r--r--vendor/weezl/src/decode.rs1333
-rw-r--r--vendor/weezl/src/decode_into_async.rs143
-rw-r--r--vendor/weezl/src/encode.rs1126
-rw-r--r--vendor/weezl/src/encode_into_async.rs142
-rw-r--r--vendor/weezl/src/error.rs72
-rw-r--r--vendor/weezl/src/lib.rs146
6 files changed, 2962 insertions, 0 deletions
diff --git a/vendor/weezl/src/decode.rs b/vendor/weezl/src/decode.rs
new file mode 100644
index 0000000..641a3a8
--- /dev/null
+++ b/vendor/weezl/src/decode.rs
@@ -0,0 +1,1333 @@
+//! A module for all decoding needs.
+#[cfg(feature = "std")]
+use crate::error::StreamResult;
+use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
+use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};
+
+use crate::alloc::{boxed::Box, vec, vec::Vec};
+#[cfg(feature = "std")]
+use std::io::{self, BufRead, Write};
+
+/// The state for decoding data with an LZW algorithm.
+///
+/// The same structure can be utilized with streams as well as your own buffers and driver logic.
+/// It may even be possible to mix them if you are sufficiently careful not to lose or skip any
+/// already decode data in the process.
+///
+/// This is a sans-IO implementation, meaning that it only contains the state of the decoder and
+/// the caller will provide buffers for input and output data when calling the basic
+/// [`decode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
+/// methods for decoding with a particular style of common IO.
+///
+/// * [`decode`] for decoding once without any IO-loop.
+/// * [`into_async`] for decoding with the `futures` traits for asynchronous IO.
+/// * [`into_stream`] for decoding with the standard `io` traits.
+/// * [`into_vec`] for in-memory decoding.
+///
+/// [`decode_bytes`]: #method.decode_bytes
+/// [`decode`]: #method.decode
+/// [`into_async`]: #method.into_async
+/// [`into_stream`]: #method.into_stream
+/// [`into_vec`]: #method.into_vec
+pub struct Decoder {
+ state: Box<dyn Stateful + Send + 'static>,
+}
+
+/// A decoding stream sink.
+///
+/// See [`Decoder::into_stream`] on how to create this type.
+///
+/// [`Decoder::into_stream`]: struct.Decoder.html#method.into_stream
+#[cfg_attr(
+ not(feature = "std"),
+ deprecated = "This type is only useful with the `std` feature."
+)]
+#[cfg_attr(not(feature = "std"), allow(dead_code))]
+pub struct IntoStream<'d, W> {
+ decoder: &'d mut Decoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// An async decoding sink.
+///
+/// See [`Decoder::into_async`] on how to create this type.
+///
+/// [`Decoder::into_async`]: struct.Decoder.html#method.into_async
+#[cfg(feature = "async")]
+pub struct IntoAsync<'d, W> {
+ decoder: &'d mut Decoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// A decoding sink into a vector.
+///
+/// See [`Decoder::into_vec`] on how to create this type.
+///
+/// [`Decoder::into_vec`]: struct.Decoder.html#method.into_vec
+pub struct IntoVec<'d> {
+ decoder: &'d mut Decoder,
+ vector: &'d mut Vec<u8>,
+}
+
+trait Stateful {
+ fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
+ fn has_ended(&self) -> bool;
+ /// Ignore an end code and continue decoding (no implied reset).
+ fn restart(&mut self);
+ /// Reset the decoder to the beginning, dropping all buffers etc.
+ fn reset(&mut self);
+}
+
+#[derive(Clone)]
+struct Link {
+ prev: Code,
+ byte: u8,
+}
+
+#[derive(Default)]
+struct MsbBuffer {
+ /// A buffer of individual bits. The oldest code is kept in the high-order bits.
+ bit_buffer: u64,
+ /// A precomputed mask for this code.
+ code_mask: u16,
+ /// The current code size.
+ code_size: u8,
+ /// The number of bits in the buffer.
+ bits: u8,
+}
+
+#[derive(Default)]
+struct LsbBuffer {
+ /// A buffer of individual bits. The oldest code is kept in the high-order bits.
+ bit_buffer: u64,
+ /// A precomputed mask for this code.
+ code_mask: u16,
+ /// The current code size.
+ code_size: u8,
+ /// The number of bits in the buffer.
+ bits: u8,
+}
+
+trait CodeBuffer {
+ fn new(min_size: u8) -> Self;
+ fn reset(&mut self, min_size: u8);
+ fn bump_code_size(&mut self);
+ /// Retrieve the next symbol, refilling if necessary.
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code>;
+ /// Refill the internal buffer.
+ fn refill_bits(&mut self, inp: &mut &[u8]);
+ /// Get the next buffered code word.
+ fn get_bits(&mut self) -> Option<Code>;
+ fn max_code(&self) -> Code;
+ fn code_size(&self) -> u8;
+}
+
+struct DecodeState<CodeBuffer> {
+ /// The original minimum code size.
+ min_size: u8,
+ /// The table of decoded codes.
+ table: Table,
+ /// The buffer of decoded data.
+ buffer: Buffer,
+ /// The link which we are still decoding and its original code.
+ last: Option<(Code, Link)>,
+ /// The next code entry.
+ next_code: Code,
+ /// Code to reset all tables.
+ clear_code: Code,
+ /// Code to signal the end of the stream.
+ end_code: Code,
+ /// A stored flag if the end code has already appeared.
+ has_ended: bool,
+ /// If tiff then bumps are a single code sooner.
+ is_tiff: bool,
+ /// Do we allow stream to start without an explicit reset code?
+ implicit_reset: bool,
+ /// The buffer for decoded words.
+ code_buffer: CodeBuffer,
+}
+
+struct Buffer {
+ bytes: Box<[u8]>,
+ read_mark: usize,
+ write_mark: usize,
+}
+
+struct Table {
+ inner: Vec<Link>,
+ depths: Vec<u16>,
+}
+
+impl Decoder {
+ /// Create a new decoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// original specification. In particular you will need to specify an `Lsb` bit oder to decode
+ /// the data portion of a compressed `gif` image.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `0..=12`.
+ pub fn new(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_decode_size(size);
+ let state = match order {
+ BitOrder::Lsb => Box::new(DecodeState::<LsbBuffer>::new(size)) as Boxed,
+ BitOrder::Msb => Box::new(DecodeState::<MsbBuffer>::new(size)) as Boxed,
+ };
+
+ Decoder { state }
+ }
+
+ /// Create a TIFF compatible decoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// TIFF specification, which is a misinterpretation of the original algorithm for increasing
+ /// the code size. It switches one symbol sooner.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `0..=12`.
+ pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_decode_size(size);
+ let state = match order {
+ BitOrder::Lsb => {
+ let mut state = Box::new(DecodeState::<LsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ BitOrder::Msb => {
+ let mut state = Box::new(DecodeState::<MsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ };
+
+ Decoder { state }
+ }
+
+ /// Decode some bytes from `inp` and write result to `out`.
+ ///
+ /// This will consume a prefix of the input buffer and write decoded output into a prefix of
+ /// the output buffer. See the respective fields of the return value for the count of consumed
+ /// and written bytes. For the next call You should have adjusted the inputs accordingly.
+ ///
+ /// The call will try to decode and write as many bytes of output as available. It will be
+ /// much more optimized (and avoid intermediate buffering) if it is allowed to write a large
+ /// contiguous chunk at once.
+ ///
+ /// See [`into_stream`] for high-level functions (that are only available with the `std`
+ /// feature).
+ ///
+ /// [`into_stream`]: #method.into_stream
+ pub fn decode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
+ self.state.advance(inp, out)
+ }
+
+ /// Decode a single chunk of lzw encoded data.
+ ///
+ /// This method requires the data to contain an end marker, and returns an error otherwise.
+ ///
+ /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
+ /// buffer size, to supply an existing vector, to control whether an end marker is required, or
+ /// to preserve partial data in the case of a decoding error.
+ ///
+ /// [`into_vec`]: #into_vec
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use weezl::{BitOrder, decode::Decoder};
+ ///
+ /// // Encoded that was created with an encoder.
+ /// let data = b"\x80\x04\x81\x94l\x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l\x19 \x10";
+ /// let decoded = Decoder::new(BitOrder::Msb, 9)
+ /// .decode(data)
+ /// .unwrap();
+ /// assert_eq!(decoded, b"Hello, world");
+ /// ```
+ pub fn decode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
+ let mut output = vec![];
+ self.into_vec(&mut output).decode_all(data).status?;
+ Ok(output)
+ }
+
+ /// Construct a decoder into a writer.
+ #[cfg(feature = "std")]
+ pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
+ IntoStream {
+ decoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct a decoder into an async writer.
+ #[cfg(feature = "async")]
+ pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
+ IntoAsync {
+ decoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct a decoder into a vector.
+ ///
+ /// All decoded data is appended and the vector is __not__ cleared.
+ ///
+ /// Compared to `into_stream` this interface allows a high-level access to decoding without
+ /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
+ /// special target exposes.
+ pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
+ IntoVec {
+ decoder: self,
+ vector: vec,
+ }
+ }
+
+ /// Check if the decoding has finished.
+ ///
+ /// No more output is produced beyond the end code that marked the finish of the stream. The
+ /// decoder may have read additional bytes, including padding bits beyond the last code word
+ /// but also excess bytes provided.
+ pub fn has_ended(&self) -> bool {
+ self.state.has_ended()
+ }
+
+ /// Ignore an end code and continue.
+ ///
+ /// This will _not_ reset any of the inner code tables and not have the effect of a clear code.
+ /// It will instead continue as if the end code had not been present. If no end code has
+ /// occurred then this is a no-op.
+ ///
+ /// You can test if an end code has occurred with [`has_ended`](#method.has_ended).
+ /// FIXME: clarify how this interacts with padding introduced after end code.
+ #[allow(dead_code)]
+ pub(crate) fn restart(&mut self) {
+ self.state.restart();
+ }
+
+ /// Reset all internal state.
+ ///
+ /// This produce a decoder as if just constructed with `new` but taking slightly less work. In
+ /// particular it will not deallocate any internal allocations. It will also avoid some
+ /// duplicate setup work.
+ pub fn reset(&mut self) {
+ self.state.reset();
+ }
+}
+
+#[cfg(feature = "std")]
+impl<'d, W: Write> IntoStream<'d, W> {
+ /// Decode data from a reader.
+ ///
+ /// This will read data until the stream is empty or an end marker is reached.
+ pub fn decode(&mut self, read: impl BufRead) -> StreamResult {
+ self.decode_part(read, false)
+ }
+
+ /// Decode data from a reader, requiring an end marker.
+ pub fn decode_all(mut self, read: impl BufRead) -> StreamResult {
+ self.decode_part(read, true)
+ }
+
+ /// Set the size of the intermediate decode buffer.
+ ///
+ /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is
+ /// available and any decoding method is called. No buffer is allocated if `set_buffer` has
+ /// been called. The buffer is reused.
+ ///
+ /// # Panics
+ /// This method panics if `size` is `0`.
+ pub fn set_buffer_size(&mut self, size: usize) {
+ assert_ne!(size, 0, "Attempted to set empty buffer");
+ self.default_size = size;
+ }
+
+ /// Use a particular buffer as an intermediate decode buffer.
+ ///
+ /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
+ /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical
+ /// for efficient decoding. Some optimization techniques require the buffer to hold one or more
+ /// previous decoded words. There is also additional overhead from `write` calls each time the
+ /// buffer has been filled.
+ ///
+ /// # Panics
+ /// This method panics if the `buffer` is empty.
+ pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
+ assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
+ self.buffer = Some(StreamBuf::Borrowed(buffer));
+ }
+
+ fn decode_part(&mut self, mut read: impl BufRead, must_finish: bool) -> StreamResult {
+ let IntoStream {
+ decoder,
+ writer,
+ buffer,
+ default_size,
+ } = self;
+
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ let mut bytes_read = 0;
+ let mut bytes_written = 0;
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut bytes_read;
+ let write_bytes = &mut bytes_written;
+
+ let outbuf: &mut [u8] =
+ match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
+ StreamBuf::Borrowed(slice) => &mut *slice,
+ StreamBuf::Owned(vec) => &mut *vec,
+ };
+ assert!(!outbuf.is_empty());
+
+ let once = move || {
+ // Try to grab one buffer of input data.
+ let data = read.fill_buf()?;
+
+ // Decode as much of the buffer as fits.
+ let result = decoder.decode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ read.consume(result.consumed_in);
+
+ // Handle the status in the result.
+ let done = result.status.map_err(|err| {
+ io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
+ })?;
+
+ // Check if we had any new data at all.
+ if let LzwStatus::NoProgress = done {
+ debug_assert_eq!(
+ result.consumed_out, 0,
+ "No progress means we have not decoded any data"
+ );
+ // In particular we did not finish decoding.
+ if must_finish {
+ return Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "No more data but no end marker detected",
+ ));
+ } else {
+ return Ok(Progress::Done);
+ }
+ }
+
+ // And finish by writing our result.
+ // TODO: we may lose data on error (also on status error above) which we might want to
+ // deterministically handle so that we don't need to restart everything from scratch as
+ // the only recovery strategy. Any changes welcome.
+ writer.write_all(&outbuf[..result.consumed_out])?;
+
+ Ok(if let LzwStatus::Done = done {
+ Progress::Done
+ } else {
+ Progress::Ok
+ })
+ };
+
+ // Decode chunks of input data until we're done.
+ let status = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ StreamResult {
+ bytes_read,
+ bytes_written,
+ status,
+ }
+ }
+}
+
+impl IntoVec<'_> {
+ /// Decode data from a slice.
+ ///
+ /// This will read data until the slice is empty or an end marker is reached.
+ pub fn decode(&mut self, read: &[u8]) -> VectorResult {
+ self.decode_part(read, false)
+ }
+
+ /// Decode data from a slice, requiring an end marker.
+ pub fn decode_all(mut self, read: &[u8]) -> VectorResult {
+ self.decode_part(read, true)
+ }
+
+ fn grab_buffer(&mut self) -> (&mut [u8], &mut Decoder) {
+ const CHUNK_SIZE: usize = 1 << 12;
+ let decoder = &mut self.decoder;
+ let length = self.vector.len();
+
+ // Use the vector to do overflow checks and w/e.
+ self.vector.reserve(CHUNK_SIZE);
+ // FIXME: decoding into uninit buffer?
+ self.vector.resize(length + CHUNK_SIZE, 0u8);
+
+ (&mut self.vector[length..], decoder)
+ }
+
+ fn decode_part(&mut self, part: &[u8], must_finish: bool) -> VectorResult {
+ let mut result = VectorResult {
+ consumed_in: 0,
+ consumed_out: 0,
+ status: Ok(LzwStatus::Ok),
+ };
+
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut result.consumed_in;
+ let write_bytes = &mut result.consumed_out;
+ let mut data = part;
+
+ // A 64 MB buffer is quite large but should get alloc_zeroed.
+ // Note that the decoded size can be up to quadratic in code block.
+ let once = move || {
+ // Grab a new output buffer.
+ let (outbuf, decoder) = self.grab_buffer();
+
+ // Decode as much of the buffer as fits.
+ let result = decoder.decode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ data = &data[result.consumed_in..];
+
+ let unfilled = outbuf.len() - result.consumed_out;
+ let filled = self.vector.len() - unfilled;
+ self.vector.truncate(filled);
+
+ // Handle the status in the result.
+ match result.status {
+ Err(err) => Err(err),
+ Ok(LzwStatus::NoProgress) if must_finish => Err(LzwError::InvalidCode),
+ Ok(LzwStatus::NoProgress) | Ok(LzwStatus::Done) => Ok(Progress::Done),
+ Ok(LzwStatus::Ok) => Ok(Progress::Ok),
+ }
+ };
+
+ // Decode chunks of input data until we're done.
+ let status: Result<(), _> = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ if let Err(err) = status {
+ result.status = Err(err);
+ }
+
+ result
+ }
+}
+
+// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
+// trip over the usage of await, which is a reserved keyword in that edition/version. It only
+// contains an impl block.
+#[cfg(feature = "async")]
+#[path = "decode_into_async.rs"]
+mod impl_decode_into_async;
+
+impl<C: CodeBuffer> DecodeState<C> {
+ fn new(min_size: u8) -> Self {
+ DecodeState {
+ min_size,
+ table: Table::new(),
+ buffer: Buffer::new(),
+ last: None,
+ clear_code: 1 << min_size,
+ end_code: (1 << min_size) + 1,
+ next_code: (1 << min_size) + 2,
+ has_ended: false,
+ is_tiff: false,
+ implicit_reset: true,
+ code_buffer: CodeBuffer::new(min_size),
+ }
+ }
+
+ fn init_tables(&mut self) {
+ self.code_buffer.reset(self.min_size);
+ self.next_code = (1 << self.min_size) + 2;
+ self.table.init(self.min_size);
+ }
+
+ fn reset_tables(&mut self) {
+ self.code_buffer.reset(self.min_size);
+ self.next_code = (1 << self.min_size) + 2;
+ self.table.clear(self.min_size);
+ }
+}
+
+impl<C: CodeBuffer> Stateful for DecodeState<C> {
+ fn has_ended(&self) -> bool {
+ self.has_ended
+ }
+
+ fn restart(&mut self) {
+ self.has_ended = false;
+ }
+
+ fn reset(&mut self) {
+ self.table.init(self.min_size);
+ self.buffer.read_mark = 0;
+ self.buffer.write_mark = 0;
+ self.last = None;
+ self.restart();
+ self.code_buffer = CodeBuffer::new(self.min_size);
+ }
+
+ fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
+ // Skip everything if there is nothing to do.
+ if self.has_ended {
+ return BufferResult {
+ consumed_in: 0,
+ consumed_out: 0,
+ status: Ok(LzwStatus::Done),
+ };
+ }
+
+ // Rough description:
+ // We will fill the output slice as much as possible until either there is no more symbols
+ // to decode or an end code has been reached. This requires an internal buffer to hold a
+ // potential tail of the word corresponding to the last symbol. This tail will then be
+ // decoded first before continuing with the regular decoding. The same buffer is required
+ // to persist some symbol state across calls.
+ //
+ // We store the words corresponding to code symbols in an index chain, bytewise, where we
+ // push each decoded symbol. (TODO: wuffs shows some success with 8-byte units). This chain
+ // is traversed for each symbol when it is decoded and bytes are placed directly into the
+ // output slice. In the special case (new_code == next_code) we use an existing decoded
+ // version that is present in either the out bytes of this call or in buffer to copy the
+ // repeated prefix slice.
+ // TODO: I played with a 'decoding cache' to remember the position of long symbols and
+ // avoid traversing the chain, doing a copy of memory instead. It did however not lead to
+ // a serious improvement. It's just unlikely to both have a long symbol and have that
+ // repeated twice in the same output buffer.
+ //
+ // You will also find the (to my knowledge novel) concept of a _decoding burst_ which
+ // gained some >~10% speedup in tests. This is motivated by wanting to use out-of-order
+ // execution as much as possible and for this reason have the least possible stress on
+ // branch prediction. Our decoding table already gives us a lookahead on symbol lengths but
+ // only for re-used codes, not novel ones. This lookahead also makes the loop termination
+ // when restoring each byte of the code word perfectly predictable! So a burst is a chunk
+ // of code words which are all independent of each other, have known lengths _and_ are
+ // guaranteed to fit into the out slice without requiring a buffer. One burst can be
+ // decoded in an extremely tight loop.
+ //
+ // TODO: since words can be at most (1 << MAX_CODESIZE) = 4096 bytes long we could avoid
+ // that intermediate buffer at the expense of not always filling the output buffer
+ // completely. Alternatively we might follow its chain of precursor states twice. This may
+ // be even cheaper if we store more than one byte per link so it really should be
+ // evaluated.
+ // TODO: if the caller was required to provide the previous last word we could also avoid
+ // the buffer for cases where we need it to restore the next code! This could be built
+ // backwards compatible by only doing it after an opt-in call that enables the behaviour.
+
+ // Record initial lengths for the result that is returned.
+ let o_in = inp.len();
+ let o_out = out.len();
+
+ // The code_link is the previously decoded symbol.
+ // It's used to link the new code back to its predecessor.
+ let mut code_link = None;
+ // The status, which is written to on an invalid code.
+ let mut status = Ok(LzwStatus::Ok);
+
+ match self.last.take() {
+ // No last state? This is the first code after a reset?
+ None => {
+ match self.next_symbol(&mut inp) {
+ // Plainly invalid code.
+ Some(code) if code > self.next_code => status = Err(LzwError::InvalidCode),
+ // next_code would require an actual predecessor.
+ Some(code) if code == self.next_code => status = Err(LzwError::InvalidCode),
+ // No more symbols available and nothing decoded yet.
+ // Assume that we didn't make progress, this may get reset to Done if we read
+ // some bytes from the input.
+ None => status = Ok(LzwStatus::NoProgress),
+ // Handle a valid code.
+ Some(init_code) => {
+ if init_code == self.clear_code {
+ self.init_tables();
+ } else if init_code == self.end_code {
+ self.has_ended = true;
+ status = Ok(LzwStatus::Done);
+ } else if self.table.is_empty() {
+ if self.implicit_reset {
+ self.init_tables();
+
+ self.buffer.fill_reconstruct(&self.table, init_code);
+ let link = self.table.at(init_code).clone();
+ code_link = Some((init_code, link));
+ } else {
+ // We require an explicit reset.
+ status = Err(LzwError::InvalidCode);
+ }
+ } else {
+ // Reconstruct the first code in the buffer.
+ self.buffer.fill_reconstruct(&self.table, init_code);
+ let link = self.table.at(init_code).clone();
+ code_link = Some((init_code, link));
+ }
+ }
+ }
+ }
+ // Move the tracking state to the stack.
+ Some(tup) => code_link = Some(tup),
+ };
+
+ // Track an empty `burst` (see below) means we made no progress.
+ let mut burst_required_for_progress = false;
+ // Restore the previous state, if any.
+ if let Some((code, link)) = code_link.take() {
+ code_link = Some((code, link));
+ let remain = self.buffer.buffer();
+ // Check if we can fully finish the buffer.
+ if remain.len() > out.len() {
+ if out.is_empty() {
+ status = Ok(LzwStatus::NoProgress);
+ } else {
+ out.copy_from_slice(&remain[..out.len()]);
+ self.buffer.consume(out.len());
+ out = &mut [];
+ }
+ } else if remain.is_empty() {
+ status = Ok(LzwStatus::NoProgress);
+ burst_required_for_progress = true;
+ } else {
+ let consumed = remain.len();
+ out[..consumed].copy_from_slice(remain);
+ self.buffer.consume(consumed);
+ out = &mut out[consumed..];
+ burst_required_for_progress = false;
+ }
+ }
+
+ // The tracking state for a burst.
+ // These are actually initialized later but compiler wasn't smart enough to fully optimize
+ // out the init code so that appears outside th loop.
+ // TODO: maybe we can make it part of the state but it's dubious if that really gives a
+ // benefit over stack usage? Also the slices stored here would need some treatment as we
+ // can't infect the main struct with a lifetime.
+ let mut burst = [0; 6];
+ let mut bytes = [0u16; 6];
+ let mut target: [&mut [u8]; 6] = Default::default();
+ // A special reference to out slice which holds the last decoded symbol.
+ let mut last_decoded: Option<&[u8]> = None;
+
+ while let Some((mut code, mut link)) = code_link.take() {
+ if out.is_empty() && !self.buffer.buffer().is_empty() {
+ code_link = Some((code, link));
+ break;
+ }
+
+ let mut burst_size = 0;
+ // Ensure the code buffer is full, we're about to request some codes.
+ // Note that this also ensures at least one code is in the buffer if any input is left.
+ self.refill_bits(&mut inp);
+ // A burst is a sequence of decodes that are completely independent of each other. This
+ // is the case if neither is an end code, a clear code, or a next code, i.e. we have
+ // all of them in the decoding table and thus known their depths, and additionally if
+ // we can decode them directly into the output buffer.
+ for b in &mut burst {
+ // TODO: does it actually make a perf difference to avoid reading new bits here?
+ *b = match self.get_bits() {
+ None => break,
+ Some(code) => code,
+ };
+
+ // We can commit the previous burst code, and will take a slice from the output
+ // buffer. This also avoids the bounds check in the tight loop later.
+ if burst_size > 0 {
+ let len = bytes[burst_size - 1];
+ let (into, tail) = out.split_at_mut(usize::from(len));
+ target[burst_size - 1] = into;
+ out = tail;
+ }
+
+ // Check that we don't overflow the code size with all codes we burst decode.
+ if let Some(potential_code) = self.next_code.checked_add(burst_size as u16) {
+ burst_size += 1;
+ if potential_code == self.code_buffer.max_code() - Code::from(self.is_tiff) {
+ break;
+ }
+ } else {
+ // next_code overflowed
+ break;
+ }
+
+ // A burst code can't be special.
+ if *b == self.clear_code || *b == self.end_code || *b >= self.next_code {
+ break;
+ }
+
+ // Read the code length and check that we can decode directly into the out slice.
+ let len = self.table.depths[usize::from(*b)];
+ if out.len() < usize::from(len) {
+ break;
+ }
+
+ bytes[burst_size - 1] = len;
+ }
+
+ // No code left, and no more bytes to fill the buffer.
+ if burst_size == 0 {
+ if burst_required_for_progress {
+ status = Ok(LzwStatus::NoProgress);
+ }
+ code_link = Some((code, link));
+ break;
+ }
+
+ burst_required_for_progress = false;
+ // Note that the very last code in the burst buffer doesn't actually belong to the
+ // burst itself. TODO: sometimes it could, we just don't differentiate between the
+ // breaks and a loop end condition above. That may be a speed advantage?
+ let (&new_code, burst) = burst[..burst_size].split_last().unwrap();
+
+ // The very tight loop for restoring the actual burst.
+ for (&burst, target) in burst.iter().zip(&mut target[..burst_size - 1]) {
+ let cha = self.table.reconstruct(burst, target);
+ // TODO: this pushes into a Vec, maybe we can make this cleaner.
+ // Theoretically this has a branch and llvm tends to be flaky with code layout for
+ // the case of requiring an allocation (which can't occur in practice).
+ let new_link = self.table.derive(&link, cha, code);
+ self.next_code += 1;
+ code = burst;
+ link = new_link;
+ }
+
+ // Update the slice holding the last decoded word.
+ if let Some(new_last) = target[..burst_size - 1].last_mut() {
+ let slice = core::mem::replace(new_last, &mut []);
+ last_decoded = Some(&*slice);
+ }
+
+ // Now handle the special codes.
+ if new_code == self.clear_code {
+ self.reset_tables();
+ last_decoded = None;
+ continue;
+ }
+
+ if new_code == self.end_code {
+ self.has_ended = true;
+ status = Ok(LzwStatus::Done);
+ last_decoded = None;
+ break;
+ }
+
+ if new_code > self.next_code {
+ status = Err(LzwError::InvalidCode);
+ last_decoded = None;
+ break;
+ }
+
+ let required_len = if new_code == self.next_code {
+ self.table.depths[usize::from(code)] + 1
+ } else {
+ self.table.depths[usize::from(new_code)]
+ };
+
+ let cha;
+ let is_in_buffer;
+ // Check if we will need to store our current state into the buffer.
+ if usize::from(required_len) > out.len() {
+ is_in_buffer = true;
+ if new_code == self.next_code {
+ // last_decoded will be Some if we have restored any code into the out slice.
+ // Otherwise it will still be present in the buffer.
+ if let Some(last) = last_decoded.take() {
+ self.buffer.bytes[..last.len()].copy_from_slice(last);
+ self.buffer.write_mark = last.len();
+ self.buffer.read_mark = last.len();
+ }
+
+ cha = self.buffer.fill_cscsc();
+ } else {
+ // Restore the decoded word into the buffer.
+ last_decoded = None;
+ cha = self.buffer.fill_reconstruct(&self.table, new_code);
+ }
+ } else {
+ is_in_buffer = false;
+ let (target, tail) = out.split_at_mut(usize::from(required_len));
+ out = tail;
+
+ if new_code == self.next_code {
+ // Reconstruct high.
+ let source = match last_decoded.take() {
+ Some(last) => last,
+ None => &self.buffer.bytes[..self.buffer.write_mark],
+ };
+ cha = source[0];
+ target[..source.len()].copy_from_slice(source);
+ target[source.len()..][0] = source[0];
+ } else {
+ cha = self.table.reconstruct(new_code, target);
+ }
+
+ // A new decoded word.
+ last_decoded = Some(target);
+ }
+
+ let new_link;
+ // Each newly read code creates one new code/link based on the preceding code if we
+ // have enough space to put it there.
+ if !self.table.is_full() {
+ let link = self.table.derive(&link, cha, code);
+
+ if self.next_code == self.code_buffer.max_code() - Code::from(self.is_tiff)
+ && self.code_buffer.code_size() < MAX_CODESIZE
+ {
+ self.bump_code_size();
+ }
+
+ self.next_code += 1;
+ new_link = link;
+ } else {
+ // It's actually quite likely that the next code will be a reset but just in case.
+ // FIXME: this path hasn't been tested very well.
+ new_link = link.clone();
+ }
+
+ // store the information on the decoded word.
+ code_link = Some((new_code, new_link));
+
+ // Can't make any more progress with decoding.
+ if is_in_buffer {
+ break;
+ }
+ }
+
+ // We need to store the last word into the buffer in case the first code in the next
+ // iteration is the next_code.
+ if let Some(tail) = last_decoded {
+ self.buffer.bytes[..tail.len()].copy_from_slice(tail);
+ self.buffer.write_mark = tail.len();
+ self.buffer.read_mark = tail.len();
+ }
+
+ // Ensure we don't indicate that no progress was made if we read some bytes from the input
+ // (which is progress).
+ if o_in > inp.len() {
+ if let Ok(LzwStatus::NoProgress) = status {
+ status = Ok(LzwStatus::Ok);
+ }
+ }
+
+ // Store the code/link state.
+ self.last = code_link;
+
+ BufferResult {
+ consumed_in: o_in.wrapping_sub(inp.len()),
+ consumed_out: o_out.wrapping_sub(out.len()),
+ status,
+ }
+ }
+}
+
+impl<C: CodeBuffer> DecodeState<C> {
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
+ self.code_buffer.next_symbol(inp)
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_buffer.bump_code_size()
+ }
+
+ fn refill_bits(&mut self, inp: &mut &[u8]) {
+ self.code_buffer.refill_bits(inp)
+ }
+
+ fn get_bits(&mut self) -> Option<Code> {
+ self.code_buffer.get_bits()
+ }
+}
+
+impl CodeBuffer for MsbBuffer {
+ fn new(min_size: u8) -> Self {
+ MsbBuffer {
+ code_size: min_size + 1,
+ code_mask: (1u16 << (min_size + 1)) - 1,
+ bit_buffer: 0,
+ bits: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.code_mask = (1 << self.code_size) - 1;
+ }
+
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
+ if self.bits < self.code_size {
+ self.refill_bits(inp);
+ }
+
+ self.get_bits()
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ self.code_mask = (self.code_mask << 1) | 1;
+ }
+
+ fn refill_bits(&mut self, inp: &mut &[u8]) {
+ let wish_count = (64 - self.bits) / 8;
+ let mut buffer = [0u8; 8];
+ let new_bits = match inp.get(..usize::from(wish_count)) {
+ Some(bytes) => {
+ buffer[..usize::from(wish_count)].copy_from_slice(bytes);
+ *inp = &inp[usize::from(wish_count)..];
+ wish_count * 8
+ }
+ None => {
+ let new_bits = inp.len() * 8;
+ buffer[..inp.len()].copy_from_slice(inp);
+ *inp = &[];
+ new_bits as u8
+ }
+ };
+ self.bit_buffer |= u64::from_be_bytes(buffer) >> self.bits;
+ self.bits += new_bits;
+ }
+
+ fn get_bits(&mut self) -> Option<Code> {
+ if self.bits < self.code_size {
+ return None;
+ }
+
+ let mask = u64::from(self.code_mask);
+ let rotbuf = self.bit_buffer.rotate_left(self.code_size.into());
+ self.bit_buffer = rotbuf & !mask;
+ self.bits -= self.code_size;
+ Some((rotbuf & mask) as u16)
+ }
+
+ fn max_code(&self) -> Code {
+ self.code_mask
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl CodeBuffer for LsbBuffer {
+ fn new(min_size: u8) -> Self {
+ LsbBuffer {
+ code_size: min_size + 1,
+ code_mask: (1u16 << (min_size + 1)) - 1,
+ bit_buffer: 0,
+ bits: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.code_mask = (1 << self.code_size) - 1;
+ }
+
+ fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
+ if self.bits < self.code_size {
+ self.refill_bits(inp);
+ }
+
+ self.get_bits()
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ self.code_mask = (self.code_mask << 1) | 1;
+ }
+
+ fn refill_bits(&mut self, inp: &mut &[u8]) {
+ let wish_count = (64 - self.bits) / 8;
+ let mut buffer = [0u8; 8];
+ let new_bits = match inp.get(..usize::from(wish_count)) {
+ Some(bytes) => {
+ buffer[..usize::from(wish_count)].copy_from_slice(bytes);
+ *inp = &inp[usize::from(wish_count)..];
+ wish_count * 8
+ }
+ None => {
+ let new_bits = inp.len() * 8;
+ buffer[..inp.len()].copy_from_slice(inp);
+ *inp = &[];
+ new_bits as u8
+ }
+ };
+ self.bit_buffer |= u64::from_be_bytes(buffer).swap_bytes() << self.bits;
+ self.bits += new_bits;
+ }
+
+ fn get_bits(&mut self) -> Option<Code> {
+ if self.bits < self.code_size {
+ return None;
+ }
+
+ let mask = u64::from(self.code_mask);
+ let code = self.bit_buffer & mask;
+ self.bit_buffer >>= self.code_size;
+ self.bits -= self.code_size;
+ Some(code as u16)
+ }
+
+ fn max_code(&self) -> Code {
+ self.code_mask
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl Buffer {
+ fn new() -> Self {
+ Buffer {
+ bytes: vec![0; MAX_ENTRIES].into_boxed_slice(),
+ read_mark: 0,
+ write_mark: 0,
+ }
+ }
+
+ /// When encoding a sequence `cScSc` where `c` is any character and `S` is any string
+ /// this results in two codes `AB`, `A` encoding `cS` and `B` encoding `cSc`. Supposing
+ /// the buffer is already filled with the reconstruction of `A`, we can easily fill it
+ /// with the reconstruction of `B`.
+ fn fill_cscsc(&mut self) -> u8 {
+ self.bytes[self.write_mark] = self.bytes[0];
+ self.write_mark += 1;
+ self.read_mark = 0;
+ self.bytes[0]
+ }
+
+ // Fill the buffer by decoding from the table
+ fn fill_reconstruct(&mut self, table: &Table, code: Code) -> u8 {
+ self.write_mark = 0;
+ self.read_mark = 0;
+ let depth = table.depths[usize::from(code)];
+ let mut memory = core::mem::replace(&mut self.bytes, Box::default());
+
+ let out = &mut memory[..usize::from(depth)];
+ let last = table.reconstruct(code, out);
+
+ self.bytes = memory;
+ self.write_mark = usize::from(depth);
+ last
+ }
+
+ fn buffer(&self) -> &[u8] {
+ &self.bytes[self.read_mark..self.write_mark]
+ }
+
+ fn consume(&mut self, amt: usize) {
+ self.read_mark += amt;
+ }
+}
+
+impl Table {
+ fn new() -> Self {
+ Table {
+ inner: Vec::with_capacity(MAX_ENTRIES),
+ depths: Vec::with_capacity(MAX_ENTRIES),
+ }
+ }
+
+ fn clear(&mut self, min_size: u8) {
+ let static_count = usize::from(1u16 << u16::from(min_size)) + 2;
+ self.inner.truncate(static_count);
+ self.depths.truncate(static_count);
+ }
+
+ fn init(&mut self, min_size: u8) {
+ self.inner.clear();
+ self.depths.clear();
+ for i in 0..(1u16 << u16::from(min_size)) {
+ self.inner.push(Link::base(i as u8));
+ self.depths.push(1);
+ }
+ // Clear code.
+ self.inner.push(Link::base(0));
+ self.depths.push(0);
+ // End code.
+ self.inner.push(Link::base(0));
+ self.depths.push(0);
+ }
+
+ fn at(&self, code: Code) -> &Link {
+ &self.inner[usize::from(code)]
+ }
+
+ fn is_empty(&self) -> bool {
+ self.inner.is_empty()
+ }
+
+ fn is_full(&self) -> bool {
+ self.inner.len() >= MAX_ENTRIES
+ }
+
+ fn derive(&mut self, from: &Link, byte: u8, prev: Code) -> Link {
+ let link = from.derive(byte, prev);
+ let depth = self.depths[usize::from(prev)] + 1;
+ self.inner.push(link.clone());
+ self.depths.push(depth);
+ link
+ }
+
+ fn reconstruct(&self, code: Code, out: &mut [u8]) -> u8 {
+ let mut code_iter = code;
+ let table = &self.inner[..=usize::from(code)];
+ let len = code_iter;
+ for ch in out.iter_mut().rev() {
+ //(code, cha) = self.table[k as usize];
+ // Note: This could possibly be replaced with an unchecked array access if
+ // - value is asserted to be < self.next_code() in push
+ // - min_size is asserted to be < MAX_CODESIZE
+ let entry = &table[usize::from(code_iter)];
+ code_iter = core::cmp::min(len, entry.prev);
+ *ch = entry.byte;
+ }
+ out[0]
+ }
+}
+
+impl Link {
+ fn base(byte: u8) -> Self {
+ Link { prev: 0, byte }
+ }
+
+ // TODO: this has self type to make it clear we might depend on the old in a future
+ // optimization. However, that has no practical purpose right now.
+ fn derive(&self, byte: u8, prev: Code) -> Self {
+ Link { prev, byte }
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use crate::alloc::vec::Vec;
+ #[cfg(feature = "std")]
+ use crate::StreamBuf;
+ use crate::{decode::Decoder, BitOrder};
+
+ #[test]
+ fn invalid_code_size_low() {
+ let _ = Decoder::new(BitOrder::Msb, 0);
+ let _ = Decoder::new(BitOrder::Msb, 1);
+ }
+
+ #[test]
+ #[should_panic]
+ fn invalid_code_size_high() {
+ let _ = Decoder::new(BitOrder::Msb, 14);
+ }
+
+ fn make_encoded() -> Vec<u8> {
+ const FILE: &'static [u8] = include_bytes!(concat!(
+ env!("CARGO_MANIFEST_DIR"),
+ "/benches/binary-8-msb.lzw"
+ ));
+ return Vec::from(FILE);
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_no_alloc() {
+ let encoded = make_encoded();
+ let mut decoder = Decoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = decoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.decode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Borrowed(_)) => {}
+ None => panic!("Decoded without buffer??"),
+ Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_small_alloc() {
+ struct WriteTap<W: std::io::Write>(W);
+ const BUF_SIZE: usize = 512;
+
+ impl<W: std::io::Write> std::io::Write for WriteTap<W> {
+ fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
+ assert!(buf.len() <= BUF_SIZE);
+ self.0.write(buf)
+ }
+ fn flush(&mut self) -> std::io::Result<()> {
+ self.0.flush()
+ }
+ }
+
+ let encoded = make_encoded();
+ let mut decoder = Decoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut istream = decoder.into_stream(WriteTap(&mut output));
+ istream.set_buffer_size(512);
+ istream.decode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
+ Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
+ None => panic!("Decoded without buffer??"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn reset() {
+ let encoded = make_encoded();
+ let mut decoder = Decoder::new(BitOrder::Msb, 8);
+ let mut reference = None;
+
+ for _ in 0..2 {
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = decoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.decode_all(&encoded[..]).status.unwrap();
+
+ decoder.reset();
+ if let Some(reference) = &reference {
+ assert_eq!(output, *reference);
+ } else {
+ reference = Some(output);
+ }
+ }
+ }
+}
diff --git a/vendor/weezl/src/decode_into_async.rs b/vendor/weezl/src/decode_into_async.rs
new file mode 100644
index 0000000..e39a26f
--- /dev/null
+++ b/vendor/weezl/src/decode_into_async.rs
@@ -0,0 +1,143 @@
+use crate::decode::IntoAsync;
+use crate::error::LzwStatus;
+use crate::error::StreamResult;
+use crate::StreamBuf;
+use std::io;
+
+impl<'d, W: futures::io::AsyncWrite + core::marker::Unpin> IntoAsync<'d, W> {
+ /// Decode data from a reader.
+ ///
+ /// This will read data until the stream is empty or an end marker is reached.
+ pub async fn decode(&mut self, read: impl futures::io::AsyncBufRead) -> StreamResult {
+ self.decode_part(read, false).await
+ }
+
+ /// Decode data from a reader, requiring an end marker.
+ pub async fn decode_all(mut self, read: impl futures::io::AsyncBufRead) -> StreamResult {
+ self.decode_part(read, true).await
+ }
+
+ /// Set the size of the intermediate decode buffer.
+ ///
+ /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is
+ /// available and any decoding method is called. No buffer is allocated if `set_buffer` has
+ /// been called. The buffer is reused.
+ ///
+ /// # Panics
+ /// This method panics if `size` is `0`.
+ pub fn set_buffer_size(&mut self, size: usize) {
+ assert_ne!(size, 0, "Attempted to set empty buffer");
+ self.default_size = size;
+ }
+
+ /// Use a particular buffer as an intermediate decode buffer.
+ ///
+ /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
+ /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical
+ /// for efficient decoding. Some optimization techniques require the buffer to hold one or more
+ /// previous decoded words. There is also additional overhead from `write` calls each time the
+ /// buffer has been filled.
+ ///
+ /// # Panics
+ /// This method panics if the `buffer` is empty.
+ pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
+ assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
+ self.buffer = Some(StreamBuf::Borrowed(buffer));
+ }
+
+ async fn decode_part(
+ &mut self,
+ read: impl futures::io::AsyncBufRead,
+ must_finish: bool,
+ ) -> StreamResult {
+ use futures::io::AsyncBufReadExt;
+ use futures::io::AsyncWriteExt;
+
+ let IntoAsync {
+ decoder,
+ writer,
+ buffer,
+ default_size,
+ } = self;
+
+ futures::pin_mut!(read);
+ let mut read: core::pin::Pin<_> = read;
+
+ let mut bytes_read = 0;
+ let mut bytes_written = 0;
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut bytes_read;
+ let write_bytes = &mut bytes_written;
+
+ let outbuf: &mut [u8] =
+ match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
+ StreamBuf::Borrowed(slice) => &mut *slice,
+ StreamBuf::Owned(vec) => &mut *vec,
+ };
+ assert!(!outbuf.is_empty());
+
+ let status = loop {
+ // Try to grab one buffer of input data.
+ let mut filler = read.as_mut();
+ let data = match filler.fill_buf().await {
+ Ok(buf) => buf,
+ Err(err) => break Err(err),
+ };
+
+ // Decode as much of the buffer as fits.
+ let result = decoder.decode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ read.as_mut().consume(result.consumed_in);
+
+ // Handle an error status in the result.
+ let status = match result.status {
+ Ok(ok) => ok,
+ Err(err) => {
+ break Err(io::Error::new(
+ io::ErrorKind::InvalidData,
+ &*format!("{:?}", err),
+ ));
+ }
+ };
+
+ // Check if we had any new data at all.
+ if let LzwStatus::NoProgress = status {
+ debug_assert_eq!(
+ result.consumed_out, 0,
+ "No progress means we have not decoded any data"
+ );
+ // In particular we did not finish decoding.
+ if must_finish {
+ break Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "No more data but no end marker detected",
+ ));
+ } else {
+ break Ok(());
+ }
+ }
+
+ // And finish by writing our result.
+ // TODO: we may lose data on error (also on status error above) which we might want to
+ // deterministically handle so that we don't need to restart everything from scratch as
+ // the only recovery strategy. Any changes welcome.
+ match writer.write_all(&outbuf[..result.consumed_out]).await {
+ Ok(_) => {}
+ Err(err) => break Err(err),
+ }
+
+ if let LzwStatus::Done = status {
+ break Ok(());
+ }
+ };
+
+ StreamResult {
+ bytes_read,
+ bytes_written,
+ status,
+ }
+ }
+}
diff --git a/vendor/weezl/src/encode.rs b/vendor/weezl/src/encode.rs
new file mode 100644
index 0000000..492b18c
--- /dev/null
+++ b/vendor/weezl/src/encode.rs
@@ -0,0 +1,1126 @@
+//! A module for all encoding needs.
+use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
+use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};
+
+use crate::alloc::{boxed::Box, vec::Vec};
+#[cfg(feature = "std")]
+use crate::error::StreamResult;
+#[cfg(feature = "std")]
+use std::io::{self, BufRead, Write};
+
+/// The state for encoding data with an LZW algorithm.
+///
+/// The same structure can be utilized with streams as well as your own buffers and driver logic.
+/// It may even be possible to mix them if you are sufficiently careful not to lose any written
+/// data in the process.
+///
+/// This is a sans-IO implementation, meaning that it only contains the state of the encoder and
+/// the caller will provide buffers for input and output data when calling the basic
+/// [`encode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
+/// methods for enoding with a particular style of common IO.
+///
+/// * [`encode`] for encoding once without any IO-loop.
+/// * [`into_async`] for encoding with the `futures` traits for asynchronous IO.
+/// * [`into_stream`] for encoding with the standard `io` traits.
+/// * [`into_vec`] for in-memory encoding.
+///
+/// [`encode_bytes`]: #method.encode_bytes
+/// [`encode`]: #method.encode
+/// [`into_async`]: #method.into_async
+/// [`into_stream`]: #method.into_stream
+/// [`into_vec`]: #method.into_vec
+pub struct Encoder {
+ /// Internally dispatch via a dynamic trait object. This did not have any significant
+ /// performance impact as we batch data internally and this pointer does not change after
+ /// creation!
+ state: Box<dyn Stateful + Send + 'static>,
+}
+
+/// A encoding stream sink.
+///
+/// See [`Encoder::into_stream`] on how to create this type.
+///
+/// [`Encoder::into_stream`]: struct.Encoder.html#method.into_stream
+#[cfg_attr(
+ not(feature = "std"),
+ deprecated = "This type is only useful with the `std` feature."
+)]
+#[cfg_attr(not(feature = "std"), allow(dead_code))]
+pub struct IntoStream<'d, W> {
+ encoder: &'d mut Encoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// An async decoding sink.
+///
+/// See [`Encoder::into_async`] on how to create this type.
+///
+/// [`Encoder::into_async`]: struct.Encoder.html#method.into_async
+#[cfg(feature = "async")]
+pub struct IntoAsync<'d, W> {
+ encoder: &'d mut Encoder,
+ writer: W,
+ buffer: Option<StreamBuf<'d>>,
+ default_size: usize,
+}
+
+/// A encoding sink into a vector.
+///
+/// See [`Encoder::into_vec`] on how to create this type.
+///
+/// [`Encoder::into_vec`]: struct.Encoder.html#method.into_vec
+pub struct IntoVec<'d> {
+ encoder: &'d mut Encoder,
+ vector: &'d mut Vec<u8>,
+}
+
+trait Stateful {
+ fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
+ fn mark_ended(&mut self) -> bool;
+ /// Reset the state tracking if end code has been written.
+ fn restart(&mut self);
+ /// Reset the encoder to the beginning, dropping all buffers etc.
+ fn reset(&mut self);
+}
+
+struct EncodeState<B: Buffer> {
+ /// The configured minimal code size.
+ min_size: u8,
+ /// The current encoding symbol tree.
+ tree: Tree,
+ /// If we have pushed the end code.
+ has_ended: bool,
+ /// If tiff then bumps are a single code sooner.
+ is_tiff: bool,
+ /// The code corresponding to the currently read characters.
+ current_code: Code,
+ /// The clear code for resetting the dictionary.
+ clear_code: Code,
+ /// The bit buffer for encoding.
+ buffer: B,
+}
+
+struct MsbBuffer {
+ /// The current code length.
+ code_size: u8,
+ /// The buffer bits.
+ buffer: u64,
+ /// The number of valid buffer bits.
+ bits_in_buffer: u8,
+}
+
+struct LsbBuffer {
+ /// The current code length.
+ code_size: u8,
+ /// The buffer bits.
+ buffer: u64,
+ /// The number of valid buffer bits.
+ bits_in_buffer: u8,
+}
+
+trait Buffer {
+ fn new(size: u8) -> Self;
+ /// Reset the code size in the buffer.
+ fn reset(&mut self, min_size: u8);
+ /// Apply effects of a Clear Code.
+ fn clear(&mut self, min_size: u8);
+ /// Insert a code into the buffer.
+ fn buffer_code(&mut self, code: Code);
+ /// Push bytes if the buffer space is getting small.
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool;
+ /// Flush all full bytes, returning if at least one more byte remains.
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool;
+ /// Pad the buffer to a full byte.
+ fn buffer_pad(&mut self);
+ /// Increase the maximum code size.
+ fn bump_code_size(&mut self);
+ /// Return the maximum code with the current code size.
+ fn max_code(&self) -> Code;
+ /// Return the current code size in bits.
+ fn code_size(&self) -> u8;
+}
+
+/// One tree node for at most each code.
+/// To avoid using too much memory we keep nodes with few successors in optimized form. This form
+/// doesn't offer lookup by indexing but instead does a linear search.
+#[derive(Default)]
+struct Tree {
+ simples: Vec<Simple>,
+ complex: Vec<Full>,
+ keys: Vec<CompressedKey>,
+}
+
+#[derive(Clone, Copy)]
+enum FullKey {
+ NoSuccessor,
+ Simple(u16),
+ Full(u16),
+}
+
+#[derive(Clone, Copy)]
+struct CompressedKey(u16);
+
+const SHORT: usize = 16;
+
+#[derive(Clone, Copy)]
+struct Simple {
+ codes: [Code; SHORT],
+ chars: [u8; SHORT],
+ count: u8,
+}
+
+#[derive(Clone, Copy)]
+struct Full {
+ char_continuation: [Code; 256],
+}
+
+impl Encoder {
+ /// Create a new encoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// original specification. In particular you will need to specify an `Lsb` bit oder to encode
+ /// the data portion of a compressed `gif` image.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `2..=12`.
+ pub fn new(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_encode_size(size);
+ let state = match order {
+ BitOrder::Lsb => Box::new(EncodeState::<LsbBuffer>::new(size)) as Boxed,
+ BitOrder::Msb => Box::new(EncodeState::<MsbBuffer>::new(size)) as Boxed,
+ };
+
+ Encoder { state }
+ }
+
+ /// Create a TIFF compatible encoder with the specified bit order and symbol size.
+ ///
+ /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
+ /// TIFF specification, which is a misinterpretation of the original algorithm for increasing
+ /// the code size. It switches one symbol sooner.
+ ///
+ /// # Panics
+ ///
+ /// The `size` needs to be in the interval `2..=12`.
+ pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
+ type Boxed = Box<dyn Stateful + Send + 'static>;
+ super::assert_encode_size(size);
+ let state = match order {
+ BitOrder::Lsb => {
+ let mut state = Box::new(EncodeState::<LsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ BitOrder::Msb => {
+ let mut state = Box::new(EncodeState::<MsbBuffer>::new(size));
+ state.is_tiff = true;
+ state as Boxed
+ }
+ };
+
+ Encoder { state }
+ }
+
+ /// Encode some bytes from `inp` into `out`.
+ ///
+ /// See [`into_stream`] for high-level functions (this interface is only available with the
+ /// `std` feature) and [`finish`] for marking the input data as complete.
+ ///
+ /// When some input byte is invalid, i.e. is not smaller than `1 << size`, then that byte and
+ /// all following ones will _not_ be consumed and the `status` of the result will signal an
+ /// error. The result will also indicate that all bytes up to but not including the offending
+ /// byte have been consumed. You may try again with a fixed byte.
+ ///
+ /// [`into_stream`]: #method.into_stream
+ /// [`finish`]: #method.finish
+ pub fn encode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
+ self.state.advance(inp, out)
+ }
+
+ /// Encode a single chunk of data.
+ ///
+ /// This method will add an end marker to the encoded chunk.
+ ///
+ /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
+ /// buffer size, to supply an existing vector, to control whether an end marker is required, or
+ /// to preserve partial data in the case of a decoding error.
+ ///
+ /// [`into_vec`]: #into_vec
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use weezl::{BitOrder, encode::Encoder};
+ ///
+ /// let data = b"Hello, world";
+ /// let encoded = Encoder::new(BitOrder::Msb, 9)
+ /// .encode(data)
+ /// .expect("All bytes valid for code size");
+ /// ```
+ pub fn encode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
+ let mut output = Vec::new();
+ self.into_vec(&mut output).encode_all(data).status?;
+ Ok(output)
+ }
+
+ /// Construct a encoder into a writer.
+ #[cfg(feature = "std")]
+ pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
+ IntoStream {
+ encoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct a encoder into an async writer.
+ #[cfg(feature = "async")]
+ pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
+ IntoAsync {
+ encoder: self,
+ writer,
+ buffer: None,
+ default_size: STREAM_BUF_SIZE,
+ }
+ }
+
+ /// Construct an encoder into a vector.
+ ///
+ /// All encoded data is appended and the vector is __not__ cleared.
+ ///
+ /// Compared to `into_stream` this interface allows a high-level access to encoding without
+ /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
+ /// special target exposes.
+ pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
+ IntoVec {
+ encoder: self,
+ vector: vec,
+ }
+ }
+
+ /// Mark the encoding as in the process of finishing.
+ ///
+ /// The next following call to `encode_bytes` which is able to consume the complete input will
+ /// also try to emit an end code. It's not recommended, but also not unsound, to use different
+ /// byte slices in different calls from this point forward and thus to 'delay' the actual end
+ /// of the data stream. The behaviour after the end marker has been written is unspecified but
+ /// sound.
+ pub fn finish(&mut self) {
+ self.state.mark_ended();
+ }
+
+ /// Undo marking this data stream as ending.
+ /// FIXME: clarify how this interacts with padding introduced after end code.
+ #[allow(dead_code)]
+ pub(crate) fn restart(&mut self) {
+ self.state.restart()
+ }
+
+ /// Reset all internal state.
+ ///
+ /// This produce an encoder as if just constructed with `new` but taking slightly less work. In
+ /// particular it will not deallocate any internal allocations. It will also avoid some
+ /// duplicate setup work.
+ pub fn reset(&mut self) {
+ self.state.reset()
+ }
+}
+
+#[cfg(feature = "std")]
+impl<'d, W: Write> IntoStream<'d, W> {
+ /// Encode data from a reader.
+ ///
+ /// This will drain the supplied reader. It will not encode an end marker after all data has
+ /// been processed.
+ pub fn encode(&mut self, read: impl BufRead) -> StreamResult {
+ self.encode_part(read, false)
+ }
+
+ /// Encode data from a reader and an end marker.
+ pub fn encode_all(mut self, read: impl BufRead) -> StreamResult {
+ self.encode_part(read, true)
+ }
+
+ /// Set the size of the intermediate encode buffer.
+ ///
+ /// A buffer of this size is allocated to hold one part of the encoded stream when no buffer is
+ /// available and any encoding method is called. No buffer is allocated if `set_buffer` has
+ /// been called. The buffer is reused.
+ ///
+ /// # Panics
+ /// This method panics if `size` is `0`.
+ pub fn set_buffer_size(&mut self, size: usize) {
+ assert_ne!(size, 0, "Attempted to set empty buffer");
+ self.default_size = size;
+ }
+
+ /// Use a particular buffer as an intermediate encode buffer.
+ ///
+ /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
+ /// instead of a dynamically allocating a buffer. Note that the size of the buffer is relevant
+ /// for efficient encoding as there is additional overhead from `write` calls each time the
+ /// buffer has been filled.
+ ///
+ /// # Panics
+ /// This method panics if the `buffer` is empty.
+ pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
+ assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
+ self.buffer = Some(StreamBuf::Borrowed(buffer));
+ }
+
+ fn encode_part(&mut self, mut read: impl BufRead, finish: bool) -> StreamResult {
+ let IntoStream {
+ encoder,
+ writer,
+ buffer,
+ default_size,
+ } = self;
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ let mut bytes_read = 0;
+ let mut bytes_written = 0;
+
+ let read_bytes = &mut bytes_read;
+ let write_bytes = &mut bytes_written;
+
+ let outbuf: &mut [u8] =
+ match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
+ StreamBuf::Borrowed(slice) => &mut *slice,
+ StreamBuf::Owned(vec) => &mut *vec,
+ };
+ assert!(!outbuf.is_empty());
+
+ let once = move || {
+ let data = read.fill_buf()?;
+
+ if data.is_empty() {
+ if finish {
+ encoder.finish();
+ } else {
+ return Ok(Progress::Done);
+ }
+ }
+
+ let result = encoder.encode_bytes(data, &mut outbuf[..]);
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ read.consume(result.consumed_in);
+
+ let done = result.status.map_err(|err| {
+ io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
+ })?;
+
+ if let LzwStatus::Done = done {
+ writer.write_all(&outbuf[..result.consumed_out])?;
+ return Ok(Progress::Done);
+ }
+
+ if let LzwStatus::NoProgress = done {
+ return Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "No more data but no end marker detected",
+ ));
+ }
+
+ writer.write_all(&outbuf[..result.consumed_out])?;
+ Ok(Progress::Ok)
+ };
+
+ let status = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ StreamResult {
+ bytes_read,
+ bytes_written,
+ status,
+ }
+ }
+}
+
+impl IntoVec<'_> {
+ /// Encode data from a slice.
+ pub fn encode(&mut self, read: &[u8]) -> VectorResult {
+ self.encode_part(read, false)
+ }
+
+ /// Decode data from a reader, adding an end marker.
+ pub fn encode_all(mut self, read: &[u8]) -> VectorResult {
+ self.encode_part(read, true)
+ }
+
+ fn grab_buffer(&mut self) -> (&mut [u8], &mut Encoder) {
+ const CHUNK_SIZE: usize = 1 << 12;
+ let decoder = &mut self.encoder;
+ let length = self.vector.len();
+
+ // Use the vector to do overflow checks and w/e.
+ self.vector.reserve(CHUNK_SIZE);
+ // FIXME: encoding into uninit buffer?
+ self.vector.resize(length + CHUNK_SIZE, 0u8);
+
+ (&mut self.vector[length..], decoder)
+ }
+
+ fn encode_part(&mut self, part: &[u8], finish: bool) -> VectorResult {
+ let mut result = VectorResult {
+ consumed_in: 0,
+ consumed_out: 0,
+ status: Ok(LzwStatus::Ok),
+ };
+
+ enum Progress {
+ Ok,
+ Done,
+ }
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut result.consumed_in;
+ let write_bytes = &mut result.consumed_out;
+ let mut data = part;
+
+ // A 64 MB buffer is quite large but should get alloc_zeroed.
+ // Note that the decoded size can be up to quadratic in code block.
+ let once = move || {
+ // Grab a new output buffer.
+ let (outbuf, encoder) = self.grab_buffer();
+
+ if finish {
+ encoder.finish();
+ }
+
+ // Decode as much of the buffer as fits.
+ let result = encoder.encode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ data = &data[result.consumed_in..];
+
+ let unfilled = outbuf.len() - result.consumed_out;
+ let filled = self.vector.len() - unfilled;
+ self.vector.truncate(filled);
+
+ // Handle the status in the result.
+ let done = result.status?;
+ if let LzwStatus::Done = done {
+ Ok(Progress::Done)
+ } else {
+ Ok(Progress::Ok)
+ }
+ };
+
+ // Decode chunks of input data until we're done.
+ let status: Result<(), _> = core::iter::repeat_with(once)
+ // scan+fuse can be replaced with map_while
+ .scan((), |(), result| match result {
+ Ok(Progress::Ok) => Some(Ok(())),
+ Err(err) => Some(Err(err)),
+ Ok(Progress::Done) => None,
+ })
+ .fuse()
+ .collect();
+
+ if let Err(err) = status {
+ result.status = Err(err);
+ }
+
+ result
+ }
+}
+
+// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
+// trip over the usage of await, which is a reserved keyword in that edition/version. It only
+// contains an impl block.
+#[cfg(feature = "async")]
+#[path = "encode_into_async.rs"]
+mod impl_encode_into_async;
+
+impl<B: Buffer> EncodeState<B> {
+ fn new(min_size: u8) -> Self {
+ let clear_code = 1 << min_size;
+ let mut tree = Tree::default();
+ tree.init(min_size);
+ let mut state = EncodeState {
+ min_size,
+ tree,
+ has_ended: false,
+ is_tiff: false,
+ current_code: clear_code,
+ clear_code,
+ buffer: B::new(min_size),
+ };
+ state.buffer_code(clear_code);
+ state
+ }
+}
+
+impl<B: Buffer> Stateful for EncodeState<B> {
+ fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
+ let c_in = inp.len();
+ let c_out = out.len();
+ let mut status = Ok(LzwStatus::Ok);
+
+ 'encoding: loop {
+ if self.push_out(&mut out) {
+ break;
+ }
+
+ if inp.is_empty() && self.has_ended {
+ let end = self.end_code();
+ if self.current_code != end {
+ if self.current_code != self.clear_code {
+ self.buffer_code(self.current_code);
+
+ // When reading this code, the decoder will add an extra entry to its table
+ // before reading th end code. Thusly, it may increase its code size based
+ // on this additional entry.
+ if self.tree.keys.len() + usize::from(self.is_tiff)
+ > usize::from(self.buffer.max_code())
+ && self.buffer.code_size() < MAX_CODESIZE
+ {
+ self.buffer.bump_code_size();
+ }
+ }
+ self.buffer_code(end);
+ self.current_code = end;
+ self.buffer_pad();
+ }
+
+ break;
+ }
+
+ let mut next_code = None;
+ let mut bytes = inp.iter();
+ while let Some(&byte) = bytes.next() {
+ if self.min_size < 8 && byte >= 1 << self.min_size {
+ status = Err(LzwError::InvalidCode);
+ break 'encoding;
+ }
+
+ inp = bytes.as_slice();
+ match self.tree.iterate(self.current_code, byte) {
+ Ok(code) => self.current_code = code,
+ Err(_) => {
+ next_code = Some(self.current_code);
+
+ self.current_code = u16::from(byte);
+ break;
+ }
+ }
+ }
+
+ match next_code {
+ // No more bytes, no code produced.
+ None => break,
+ Some(code) => {
+ self.buffer_code(code);
+
+ if self.tree.keys.len() + usize::from(self.is_tiff)
+ > usize::from(self.buffer.max_code()) + 1
+ && self.buffer.code_size() < MAX_CODESIZE
+ {
+ self.buffer.bump_code_size();
+ }
+
+ if self.tree.keys.len() > MAX_ENTRIES {
+ self.buffer_code(self.clear_code);
+ self.tree.reset(self.min_size);
+ self.buffer.clear(self.min_size);
+ }
+ }
+ }
+ }
+
+ if inp.is_empty() && self.current_code == self.end_code() {
+ if !self.flush_out(&mut out) {
+ status = Ok(LzwStatus::Done);
+ }
+ }
+
+ BufferResult {
+ consumed_in: c_in - inp.len(),
+ consumed_out: c_out - out.len(),
+ status,
+ }
+ }
+
+ fn mark_ended(&mut self) -> bool {
+ core::mem::replace(&mut self.has_ended, true)
+ }
+
+ fn restart(&mut self) {
+ self.has_ended = false;
+ }
+
+ fn reset(&mut self) {
+ self.restart();
+ self.current_code = self.clear_code;
+ self.tree.reset(self.min_size);
+ self.buffer.reset(self.min_size);
+ self.buffer_code(self.clear_code);
+ }
+}
+
+impl<B: Buffer> EncodeState<B> {
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
+ self.buffer.push_out(out)
+ }
+
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
+ self.buffer.flush_out(out)
+ }
+
+ fn end_code(&self) -> Code {
+ self.clear_code + 1
+ }
+
+ fn buffer_pad(&mut self) {
+ self.buffer.buffer_pad();
+ }
+
+ fn buffer_code(&mut self, code: Code) {
+ self.buffer.buffer_code(code);
+ }
+}
+
+impl Buffer for MsbBuffer {
+ fn new(min_size: u8) -> Self {
+ MsbBuffer {
+ code_size: min_size + 1,
+ buffer: 0,
+ bits_in_buffer: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.buffer = 0;
+ self.bits_in_buffer = 0;
+ }
+
+ fn clear(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ }
+
+ fn buffer_code(&mut self, code: Code) {
+ let shift = 64 - self.bits_in_buffer - self.code_size;
+ self.buffer |= u64::from(code) << shift;
+ self.bits_in_buffer += self.code_size;
+ }
+
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
+ if self.bits_in_buffer + 2 * self.code_size < 64 {
+ return false;
+ }
+
+ self.flush_out(out)
+ }
+
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
+ let want = usize::from(self.bits_in_buffer / 8);
+ let count = want.min((*out).len());
+ let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
+ *out = tail;
+
+ for b in bytes {
+ *b = ((self.buffer & 0xff00_0000_0000_0000) >> 56) as u8;
+ self.buffer <<= 8;
+ self.bits_in_buffer -= 8;
+ }
+
+ count < want
+ }
+
+ fn buffer_pad(&mut self) {
+ let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
+ self.bits_in_buffer += to_byte;
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ }
+
+ fn max_code(&self) -> Code {
+ (1 << self.code_size) - 1
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl Buffer for LsbBuffer {
+ fn new(min_size: u8) -> Self {
+ LsbBuffer {
+ code_size: min_size + 1,
+ buffer: 0,
+ bits_in_buffer: 0,
+ }
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ self.buffer = 0;
+ self.bits_in_buffer = 0;
+ }
+
+ fn clear(&mut self, min_size: u8) {
+ self.code_size = min_size + 1;
+ }
+
+ fn buffer_code(&mut self, code: Code) {
+ self.buffer |= u64::from(code) << self.bits_in_buffer;
+ self.bits_in_buffer += self.code_size;
+ }
+
+ fn push_out(&mut self, out: &mut &mut [u8]) -> bool {
+ if self.bits_in_buffer + 2 * self.code_size < 64 {
+ return false;
+ }
+
+ self.flush_out(out)
+ }
+
+ fn flush_out(&mut self, out: &mut &mut [u8]) -> bool {
+ let want = usize::from(self.bits_in_buffer / 8);
+ let count = want.min((*out).len());
+ let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count);
+ *out = tail;
+
+ for b in bytes {
+ *b = (self.buffer & 0x0000_0000_0000_00ff) as u8;
+ self.buffer >>= 8;
+ self.bits_in_buffer -= 8;
+ }
+
+ count < want
+ }
+
+ fn buffer_pad(&mut self) {
+ let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7;
+ self.bits_in_buffer += to_byte;
+ }
+
+ fn bump_code_size(&mut self) {
+ self.code_size += 1;
+ }
+
+ fn max_code(&self) -> Code {
+ (1 << self.code_size) - 1
+ }
+
+ fn code_size(&self) -> u8 {
+ self.code_size
+ }
+}
+
+impl Tree {
+ fn init(&mut self, min_size: u8) {
+ // We need a way to represent the state of a currently empty buffer. We use the clear code
+ // for this, thus create one complex mapping that leads to the one-char base codes.
+ self.keys
+ .resize((1 << min_size) + 2, FullKey::NoSuccessor.into());
+ self.complex.push(Full {
+ char_continuation: [0; 256],
+ });
+ let map_of_begin = self.complex.last_mut().unwrap();
+ for ch in 0u16..256 {
+ map_of_begin.char_continuation[usize::from(ch)] = ch;
+ }
+ self.keys[1 << min_size] = FullKey::Full(0).into();
+ }
+
+ fn reset(&mut self, min_size: u8) {
+ self.simples.clear();
+ self.keys.truncate((1 << min_size) + 2);
+ // Keep entry for clear code.
+ self.complex.truncate(1);
+ // The first complex is not changed..
+ for k in self.keys[..(1 << min_size) + 2].iter_mut() {
+ *k = FullKey::NoSuccessor.into();
+ }
+ self.keys[1 << min_size] = FullKey::Full(0).into();
+ }
+
+ fn at_key(&self, code: Code, ch: u8) -> Option<Code> {
+ let key = self.keys[usize::from(code)];
+ match FullKey::from(key) {
+ FullKey::NoSuccessor => None,
+ FullKey::Simple(idx) => {
+ let nexts = &self.simples[usize::from(idx)];
+ let successors = nexts
+ .codes
+ .iter()
+ .zip(nexts.chars.iter())
+ .take(usize::from(nexts.count));
+ for (&scode, &sch) in successors {
+ if sch == ch {
+ return Some(scode);
+ }
+ }
+
+ None
+ }
+ FullKey::Full(idx) => {
+ let full = &self.complex[usize::from(idx)];
+ let precode = full.char_continuation[usize::from(ch)];
+ if usize::from(precode) < MAX_ENTRIES {
+ Some(precode)
+ } else {
+ None
+ }
+ }
+ }
+ }
+
+ /// Iterate to the next char.
+ /// Return Ok when it was already in the tree or creates a new entry for it and returns Err.
+ fn iterate(&mut self, code: Code, ch: u8) -> Result<Code, Code> {
+ if let Some(next) = self.at_key(code, ch) {
+ Ok(next)
+ } else {
+ Err(self.append(code, ch))
+ }
+ }
+
+ fn append(&mut self, code: Code, ch: u8) -> Code {
+ let next: Code = self.keys.len() as u16;
+ let key = self.keys[usize::from(code)];
+ // TODO: with debug assertions, check for non-existence
+ match FullKey::from(key) {
+ FullKey::NoSuccessor => {
+ let new_key = FullKey::Simple(self.simples.len() as u16);
+ self.simples.push(Simple::default());
+ let simples = self.simples.last_mut().unwrap();
+ simples.codes[0] = next;
+ simples.chars[0] = ch;
+ simples.count = 1;
+ self.keys[usize::from(code)] = new_key.into();
+ }
+ FullKey::Simple(idx) if usize::from(self.simples[usize::from(idx)].count) < SHORT => {
+ let nexts = &mut self.simples[usize::from(idx)];
+ let nidx = usize::from(nexts.count);
+ nexts.chars[nidx] = ch;
+ nexts.codes[nidx] = next;
+ nexts.count += 1;
+ }
+ FullKey::Simple(idx) => {
+ let new_key = FullKey::Full(self.complex.len() as u16);
+ let simples = &self.simples[usize::from(idx)];
+ self.complex.push(Full {
+ char_continuation: [Code::max_value(); 256],
+ });
+ let full = self.complex.last_mut().unwrap();
+ for (&pch, &pcont) in simples.chars.iter().zip(simples.codes.iter()) {
+ full.char_continuation[usize::from(pch)] = pcont;
+ }
+ self.keys[usize::from(code)] = new_key.into();
+ }
+ FullKey::Full(idx) => {
+ let full = &mut self.complex[usize::from(idx)];
+ full.char_continuation[usize::from(ch)] = next;
+ }
+ }
+ self.keys.push(FullKey::NoSuccessor.into());
+ next
+ }
+}
+
+impl Default for FullKey {
+ fn default() -> Self {
+ FullKey::NoSuccessor
+ }
+}
+
+impl Default for Simple {
+ fn default() -> Self {
+ Simple {
+ codes: [0; SHORT],
+ chars: [0; SHORT],
+ count: 0,
+ }
+ }
+}
+
+impl From<CompressedKey> for FullKey {
+ fn from(CompressedKey(key): CompressedKey) -> Self {
+ match (key >> MAX_CODESIZE) & 0xf {
+ 0 => FullKey::Full(key & 0xfff),
+ 1 => FullKey::Simple(key & 0xfff),
+ _ => FullKey::NoSuccessor,
+ }
+ }
+}
+
+impl From<FullKey> for CompressedKey {
+ fn from(full: FullKey) -> Self {
+ CompressedKey(match full {
+ FullKey::NoSuccessor => 0x2000,
+ FullKey::Simple(code) => 0x1000 | code,
+ FullKey::Full(code) => code,
+ })
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{BitOrder, Encoder, LzwError, LzwStatus};
+ use crate::alloc::vec::Vec;
+ use crate::decode::Decoder;
+ #[cfg(feature = "std")]
+ use crate::StreamBuf;
+
+ #[test]
+ fn invalid_input_rejected() {
+ const BIT_LEN: u8 = 2;
+ let ref input = [0, 1 << BIT_LEN /* invalid */, 0];
+ let ref mut target = [0u8; 128];
+ let mut encoder = Encoder::new(BitOrder::Msb, BIT_LEN);
+
+ encoder.finish();
+ // We require simulation of normality, that is byte-for-byte compression.
+ let result = encoder.encode_bytes(input, target);
+ assert!(if let Err(LzwError::InvalidCode) = result.status {
+ true
+ } else {
+ false
+ });
+ assert_eq!(result.consumed_in, 1);
+
+ let fixed = encoder.encode_bytes(&[1, 0], &mut target[result.consumed_out..]);
+ assert!(if let Ok(LzwStatus::Done) = fixed.status {
+ true
+ } else {
+ false
+ });
+ assert_eq!(fixed.consumed_in, 2);
+
+ // Okay, now test we actually fixed it.
+ let ref mut compare = [0u8; 4];
+ let mut todo = &target[..result.consumed_out + fixed.consumed_out];
+ let mut free = &mut compare[..];
+ let mut decoder = Decoder::new(BitOrder::Msb, BIT_LEN);
+
+ // Decode with up to 16 rounds, far too much but inconsequential.
+ for _ in 0..16 {
+ if decoder.has_ended() {
+ break;
+ }
+
+ let result = decoder.decode_bytes(todo, free);
+ assert!(result.status.is_ok());
+ todo = &todo[result.consumed_in..];
+ free = &mut free[result.consumed_out..];
+ }
+
+ let remaining = { free }.len();
+ let len = compare.len() - remaining;
+ assert_eq!(todo, &[]);
+ assert_eq!(compare[..len], [0, 1, 0]);
+ }
+
+ #[test]
+ #[should_panic]
+ fn invalid_code_size_low() {
+ let _ = Encoder::new(BitOrder::Msb, 1);
+ }
+
+ #[test]
+ #[should_panic]
+ fn invalid_code_size_high() {
+ let _ = Encoder::new(BitOrder::Msb, 14);
+ }
+
+ fn make_decoded() -> Vec<u8> {
+ const FILE: &'static [u8] =
+ include_bytes!(concat!(env!("CARGO_MANIFEST_DIR"), "/Cargo.lock"));
+ return Vec::from(FILE);
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_no_alloc() {
+ let encoded = make_decoded();
+ let mut encoder = Encoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = encoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.encode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Borrowed(_)) => {}
+ None => panic!("Decoded without buffer??"),
+ Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn into_stream_buffer_small_alloc() {
+ struct WriteTap<W: std::io::Write>(W);
+ const BUF_SIZE: usize = 512;
+
+ impl<W: std::io::Write> std::io::Write for WriteTap<W> {
+ fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
+ assert!(buf.len() <= BUF_SIZE);
+ self.0.write(buf)
+ }
+ fn flush(&mut self) -> std::io::Result<()> {
+ self.0.flush()
+ }
+ }
+
+ let encoded = make_decoded();
+ let mut encoder = Encoder::new(BitOrder::Msb, 8);
+
+ let mut output = vec![];
+ let mut istream = encoder.into_stream(WriteTap(&mut output));
+ istream.set_buffer_size(512);
+ istream.encode(&encoded[..]).status.unwrap();
+
+ match istream.buffer {
+ Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
+ Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
+ None => panic!("Decoded without buffer??"),
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn reset() {
+ let encoded = make_decoded();
+ let mut encoder = Encoder::new(BitOrder::Msb, 8);
+ let mut reference = None;
+
+ for _ in 0..2 {
+ let mut output = vec![];
+ let mut buffer = [0; 512];
+ let mut istream = encoder.into_stream(&mut output);
+ istream.set_buffer(&mut buffer[..]);
+ istream.encode_all(&encoded[..]).status.unwrap();
+
+ encoder.reset();
+ if let Some(reference) = &reference {
+ assert_eq!(output, *reference);
+ } else {
+ reference = Some(output);
+ }
+ }
+ }
+}
diff --git a/vendor/weezl/src/encode_into_async.rs b/vendor/weezl/src/encode_into_async.rs
new file mode 100644
index 0000000..6973540
--- /dev/null
+++ b/vendor/weezl/src/encode_into_async.rs
@@ -0,0 +1,142 @@
+use crate::encode::IntoAsync;
+use crate::error::LzwStatus;
+use crate::error::StreamResult;
+use crate::StreamBuf;
+use std::io;
+
+impl<'d, W: futures::io::AsyncWrite + core::marker::Unpin> IntoAsync<'d, W> {
+ /// Encode data from a reader.
+ ///
+ /// This will drain the supplied reader. It will not encode an end marker after all data has
+ /// been processed.
+ pub async fn encode(&mut self, read: impl futures::io::AsyncBufRead) -> StreamResult {
+ self.encode_part(read, false).await
+ }
+
+ /// Encode data from a reader and an end marker.
+ pub async fn encode_all(mut self, read: impl futures::io::AsyncBufRead) -> StreamResult {
+ self.encode_part(read, true).await
+ }
+
+ /// Set the size of the intermediate decode buffer.
+ ///
+ /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is
+ /// available and any decoding method is called. No buffer is allocated if `set_buffer` has
+ /// been called. The buffer is reused.
+ ///
+ /// # Panics
+ /// This method panics if `size` is `0`.
+ pub fn set_buffer_size(&mut self, size: usize) {
+ assert_ne!(size, 0, "Attempted to set empty buffer");
+ self.default_size = size;
+ }
+
+ /// Use a particular buffer as an intermediate decode buffer.
+ ///
+ /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
+ /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical
+ /// for efficient decoding. Some optimization techniques require the buffer to hold one or more
+ /// previous decoded words. There is also additional overhead from `write` calls each time the
+ /// buffer has been filled.
+ ///
+ /// # Panics
+ /// This method panics if the `buffer` is empty.
+ pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
+ assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
+ self.buffer = Some(StreamBuf::Borrowed(buffer));
+ }
+
+ async fn encode_part(
+ &mut self,
+ read: impl futures::io::AsyncBufRead,
+ finish: bool,
+ ) -> StreamResult {
+ use futures::io::AsyncBufReadExt;
+ use futures::io::AsyncWriteExt;
+
+ let IntoAsync {
+ encoder,
+ writer,
+ buffer,
+ default_size,
+ } = self;
+
+ futures::pin_mut!(read);
+ let mut read: core::pin::Pin<_> = read;
+
+ let mut bytes_read = 0;
+ let mut bytes_written = 0;
+
+ // Converting to mutable refs to move into the `once` closure.
+ let read_bytes = &mut bytes_read;
+ let write_bytes = &mut bytes_written;
+
+ let outbuf: &mut [u8] =
+ match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
+ StreamBuf::Borrowed(slice) => &mut *slice,
+ StreamBuf::Owned(vec) => &mut *vec,
+ };
+ assert!(!outbuf.is_empty());
+
+ let status = loop {
+ // Try to grab one buffer of input data.
+ let mut filler = read.as_mut();
+ let data = match filler.fill_buf().await {
+ Ok(buf) => buf,
+ Err(err) => break Err(err),
+ };
+
+ if data.is_empty() {
+ if finish {
+ encoder.finish();
+ } else {
+ break Ok(());
+ }
+ }
+
+ // Decode as much of the buffer as fits.
+ let result = encoder.encode_bytes(data, &mut outbuf[..]);
+ // Do the bookkeeping and consume the buffer.
+ *read_bytes += result.consumed_in;
+ *write_bytes += result.consumed_out;
+ read.as_mut().consume(result.consumed_in);
+
+ // Handle an error status in the result.
+ let done = match result.status {
+ Ok(ok) => ok,
+ Err(err) => {
+ break Err(io::Error::new(
+ io::ErrorKind::InvalidData,
+ &*format!("{:?}", err),
+ ));
+ }
+ };
+
+ if let LzwStatus::Done = done {
+ break writer.write_all(&outbuf[..result.consumed_out]).await;
+ }
+
+ if let LzwStatus::NoProgress = done {
+ break Err(io::Error::new(
+ io::ErrorKind::UnexpectedEof,
+ "No more data but no end marker detected",
+ ));
+ }
+
+ // And finish by writing our result.
+ // TODO: we may lose data on error (also on status error above) which we might want to
+ // deterministically handle so that we don't need to restart everything from scratch as
+ // the only recovery strategy. Any changes welcome.
+ match writer.write_all(&outbuf[..result.consumed_out]).await {
+ Ok(_) => {}
+ Err(err) => break Err(err),
+ }
+ };
+
+ StreamResult {
+ bytes_read,
+ bytes_written,
+ status,
+ }
+ }
+}
diff --git a/vendor/weezl/src/error.rs b/vendor/weezl/src/error.rs
new file mode 100644
index 0000000..38dd95c
--- /dev/null
+++ b/vendor/weezl/src/error.rs
@@ -0,0 +1,72 @@
+/// The result of a coding operation on a pair of buffer.
+#[must_use = "Contains a status with potential error information"]
+pub struct BufferResult {
+ /// The number of bytes consumed from the input buffer.
+ pub consumed_in: usize,
+ /// The number of bytes written into the output buffer.
+ pub consumed_out: usize,
+ /// The status after returning from the write call.
+ pub status: Result<LzwStatus, LzwError>,
+}
+
+/// The result of a coding operation into a vector.
+#[must_use = "Contains a status with potential error information"]
+pub struct VectorResult {
+ /// The number of bytes consumed from the input buffer.
+ pub consumed_in: usize,
+ /// The number of bytes written into the output buffer.
+ pub consumed_out: usize,
+ /// The status after returning from the write call.
+ pub status: Result<LzwStatus, LzwError>,
+}
+
+/// The result of coding into an output stream.
+#[cfg(feature = "std")]
+#[must_use = "Contains a status with potential error information"]
+pub struct StreamResult {
+ /// The total number of bytes consumed from the reader.
+ pub bytes_read: usize,
+ /// The total number of bytes written into the writer.
+ pub bytes_written: usize,
+ /// The possible error that occurred.
+ ///
+ /// Note that when writing into streams it is not in general possible to recover from an error.
+ pub status: std::io::Result<()>,
+}
+
+/// The status after successful coding of an LZW stream.
+#[derive(Debug, Clone, Copy)]
+pub enum LzwStatus {
+ /// Everything went well.
+ Ok,
+ /// No bytes were read or written and no internal state advanced.
+ ///
+ /// If this is returned but your application can not provide more input data then decoding is
+ /// definitely stuck for good and it should stop trying and report some error of its own. In
+ /// other situations this may be used as a signal to refill an internal buffer.
+ NoProgress,
+ /// No more data will be produced because an end marker was reached.
+ Done,
+}
+
+/// The error kind after unsuccessful coding of an LZW stream.
+#[derive(Debug, Clone, Copy)]
+pub enum LzwError {
+ /// The input contained an invalid code.
+ ///
+ /// For decompression this refers to a code larger than those currently known through the prior
+ /// decoding stages. For compression this refers to a byte that has no code representation due
+ /// to being larger than permitted by the `size` parameter given to the Encoder.
+ InvalidCode,
+}
+
+impl core::fmt::Display for LzwError {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ match self {
+ LzwError::InvalidCode => f.write_str("invalid code in LZW stream"),
+ }
+ }
+}
+
+#[cfg(feature = "std")]
+impl std::error::Error for LzwError {}
diff --git a/vendor/weezl/src/lib.rs b/vendor/weezl/src/lib.rs
new file mode 100644
index 0000000..3286eb9
--- /dev/null
+++ b/vendor/weezl/src/lib.rs
@@ -0,0 +1,146 @@
+//! # LZW decoder and encoder
+//!
+//! This crates provides an `Encoder` and a `Decoder` in their respective modules. The code words
+//! are written from and to bit byte slices (or streams) where it is possible to write either the
+//! most or least significant bits first. The maximum possible code size is 12 bits, the smallest
+//! available code size is 2 bits.
+//!
+//! ## Example
+//!
+//! These two code blocks show the compression and corresponding decompression. Note that you must
+//! use the same arguments to `Encoder` and `Decoder`, otherwise the decoding might fail or produce
+//! bad results.
+//!
+#![cfg_attr(feature = "std", doc = "```")]
+#![cfg_attr(not(feature = "std"), doc = "```ignore")]
+//! use weezl::{BitOrder, encode::Encoder};
+//!
+//! let data = b"Hello, world";
+//! let compressed = Encoder::new(BitOrder::Msb, 9)
+//! .encode(data)
+//! .unwrap();
+//! ```
+//!
+#![cfg_attr(feature = "std", doc = "```")]
+#![cfg_attr(not(feature = "std"), doc = "```ignore")]
+//! use weezl::{BitOrder, decode::Decoder};
+//! # let compressed = b"\x80\x04\x81\x94l\x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l\x19 \x10".to_vec();
+//! # let data = b"Hello, world";
+//!
+//! let decompressed = Decoder::new(BitOrder::Msb, 9)
+//! .decode(&compressed)
+//! .unwrap();
+//! assert_eq!(decompressed, data);
+//! ```
+//!
+//! ## LZW Details
+//!
+//! The de- and encoder expect the LZW stream to start with a clear code and end with an
+//! end code which are defined as follows:
+//!
+//! * `CLEAR_CODE == 1 << min_code_size`
+//! * `END_CODE == CLEAR_CODE + 1`
+//!
+//! For optimal performance, all buffers and input and output slices should be as large as possible
+//! and at least 2048 bytes long. This extends to input streams which should have similarly sized
+//! buffers. This library uses Rust's standard allocation interfaces (`Box` and `Vec` to be
+//! precise). Since there are no ways to handle allocation errors it is not recommended to operate
+//! it on 16-bit targets.
+//!
+//! ## Allocations and standard library
+//!
+//! The main algorithm can be used in `no_std` as well, although it requires an allocator. This
+//! restriction might be lifted at a later stage. For this you should deactivate the `std` feature.
+//! The main interfaces stay intact but the `into_stream` combinator is no available.
+#![cfg_attr(not(feature = "std"), no_std)]
+#![forbid(unsafe_code)]
+#![forbid(missing_docs)]
+
+#[cfg(all(feature = "alloc", not(feature = "std")))]
+extern crate alloc;
+#[cfg(all(feature = "alloc", feature = "std"))]
+use std as alloc;
+
+pub(crate) const MAX_CODESIZE: u8 = 12;
+pub(crate) const MAX_ENTRIES: usize = 1 << MAX_CODESIZE as usize;
+
+/// Alias for a LZW code point
+pub(crate) type Code = u16;
+
+/// A default buffer size for encoding/decoding buffer.
+///
+/// Note that this is larger than the default size for buffers (usually 4K) since each code word
+/// can expand to multiple bytes. Expanding one buffer would yield multiple and require a costly
+/// break in the decoding loop. Note that the decoded size can be up to quadratic in code block.
+pub(crate) const STREAM_BUF_SIZE: usize = 1 << 24;
+
+/// The order of bits in bytes.
+#[derive(Clone, Copy, Debug)]
+pub enum BitOrder {
+ /// The most significant bit is processed first.
+ Msb,
+ /// The least significant bit is processed first.
+ Lsb,
+}
+
+/// An owned or borrowed buffer for stream operations.
+#[cfg(feature = "alloc")]
+pub(crate) enum StreamBuf<'d> {
+ Borrowed(&'d mut [u8]),
+ Owned(crate::alloc::vec::Vec<u8>),
+}
+
+#[cold]
+fn assert_decode_size(size: u8) {
+ assert!(
+ size <= MAX_CODESIZE,
+ "Maximum code size 12 required, got {}",
+ size
+ );
+}
+
+#[cold]
+fn assert_encode_size(size: u8) {
+ assert!(size >= 2, "Minimum code size 2 required, got {}", size);
+ assert!(
+ size <= MAX_CODESIZE,
+ "Maximum code size 12 required, got {}",
+ size
+ );
+}
+
+#[cfg(feature = "alloc")]
+pub mod decode;
+#[cfg(feature = "alloc")]
+pub mod encode;
+mod error;
+
+#[cfg(feature = "std")]
+pub use self::error::StreamResult;
+pub use self::error::{BufferResult, LzwError, LzwStatus};
+
+#[cfg(all(test, feature = "alloc"))]
+mod tests {
+ use crate::decode::Decoder;
+ use crate::encode::Encoder;
+
+ #[cfg(feature = "std")]
+ use crate::{decode, encode};
+
+ #[test]
+ fn stable_send() {
+ fn must_be_send<T: Send + 'static>() {}
+ must_be_send::<Decoder>();
+ must_be_send::<Encoder>();
+
+ #[cfg(feature = "std")]
+ fn _send_and_lt<'lt, T: Send + 'lt>() {}
+
+ // Check that the inference `W: Send + 'd` => `IntoStream: Send + 'd` works.
+ #[cfg(feature = "std")]
+ fn _all_send_writer<'d, W: std::io::Write + Send + 'd>() {
+ _send_and_lt::<'d, decode::IntoStream<'d, W>>();
+ _send_and_lt::<'d, encode::IntoStream<'d, W>>();
+ }
+ }
+}