aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/compression/b44/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/compression/b44/mod.rs')
-rw-r--r--vendor/exr/src/compression/b44/mod.rs989
1 files changed, 0 insertions, 989 deletions
diff --git a/vendor/exr/src/compression/b44/mod.rs b/vendor/exr/src/compression/b44/mod.rs
deleted file mode 100644
index 815e95e..0000000
--- a/vendor/exr/src/compression/b44/mod.rs
+++ /dev/null
@@ -1,989 +0,0 @@
-mod table;
-
-use crate::compression::{mod_p, ByteVec};
-use crate::error::usize_to_i32;
-use crate::io::Data;
-use crate::meta::attribute::ChannelList;
-use crate::prelude::*;
-use std::cmp::min;
-use std::mem::size_of;
-use table::{EXP_TABLE, LOG_TABLE};
-use lebe::io::{ReadPrimitive, WriteEndian};
-
-const BLOCK_SAMPLE_COUNT: usize = 4;
-
-// As B44 compression is only use on f16 channels, we can have a conste for this value.
-const BLOCK_X_BYTE_COUNT: usize = BLOCK_SAMPLE_COUNT * size_of::<u16>();
-
-#[inline]
-fn convert_from_linear(s: &mut [u16; 16]) {
- for v in s {
- *v = EXP_TABLE[*v as usize];
- }
-}
-
-#[inline]
-fn convert_to_linear(s: &mut [u16; 16]) {
- for v in s {
- *v = LOG_TABLE[*v as usize];
- }
-}
-
-#[inline]
-fn shift_and_round(x: i32, shift: i32) -> i32 {
- let x = x << 1;
- let a = (1 << shift) - 1;
- let shift = shift + 1;
- let b = (x >> shift) & 1;
- (x + a + b) >> shift
-}
-
-/// Pack a block of 4 by 4 16-bit pixels (32 bytes, the array `s`) into either 14 or 3 bytes.
-fn pack(s: [u16; 16], b: &mut [u8], optimize_flat_fields: bool, exact_max: bool) -> usize {
-
- let mut t = [0u16; 16];
-
- for i in 0..16 {
- if (s[i] & 0x7c00) == 0x7c00 {
- t[i] = 0x8000;
- } else if (s[i] & 0x8000) != 0 {
- t[i] = !s[i];
- } else {
- t[i] = s[i] | 0x8000;
- }
- }
-
- let t_max = t.iter().max().unwrap();
-
- // Compute a set of running differences, r[0] ... r[14]:
- // Find a shift value such that after rounding off the
- // rightmost bits and shifting all differences are between
- // -32 and +31. Then bias the differences so that they
- // end up between 0 and 63.
- let mut shift = -1;
- let mut d = [0i32; 16];
- let mut r = [0i32; 15];
- let mut r_min: i32;
- let mut r_max: i32;
-
- const BIAS: i32 = 0x20;
-
- loop {
- shift += 1;
-
- // Compute absolute differences, d[0] ... d[15],
- // between t_max and t[0] ... t[15].
- //
- // Shift and round the absolute differences.
- d.iter_mut()
- .zip(&t)
- .for_each(|(d_v, t_v)| *d_v = shift_and_round((t_max - t_v).into(), shift));
-
- // Convert d[0] .. d[15] into running differences
- r[0] = d[0] - d[4] + BIAS;
- r[1] = d[4] - d[8] + BIAS;
- r[2] = d[8] - d[12] + BIAS;
-
- r[3] = d[0] - d[1] + BIAS;
- r[4] = d[4] - d[5] + BIAS;
- r[5] = d[8] - d[9] + BIAS;
- r[6] = d[12] - d[13] + BIAS;
-
- r[7] = d[1] - d[2] + BIAS;
- r[8] = d[5] - d[6] + BIAS;
- r[9] = d[9] - d[10] + BIAS;
- r[10] = d[13] - d[14] + BIAS;
-
- r[11] = d[2] - d[3] + BIAS;
- r[12] = d[6] - d[7] + BIAS;
- r[13] = d[10] - d[11] + BIAS;
- r[14] = d[14] - d[15] + BIAS;
-
- r_min = r[0];
- r_max = r[0];
-
- r.iter().copied().for_each(|v| {
- if r_min > v {
- r_min = v;
- }
-
- if r_max < v {
- r_max = v;
- }
- });
-
- if !(r_min < 0 || r_max > 0x3f) {
- break;
- }
- }
-
- if r_min == BIAS && r_max == BIAS && optimize_flat_fields {
- // Special case - all pixels have the same value.
- // We encode this in 3 instead of 14 bytes by
- // storing the value 0xfc in the third output byte,
- // which cannot occur in the 14-byte encoding.
- b[0] = (t[0] >> 8) as u8;
- b[1] = t[0] as u8;
- b[2] = 0xfc;
-
- return 3;
- }
-
- if exact_max {
- // Adjust t[0] so that the pixel whose value is equal
- // to t_max gets represented as accurately as possible.
- t[0] = t_max - (d[0] << shift) as u16;
- }
-
- // Pack t[0], shift and r[0] ... r[14] into 14 bytes:
- b[0] = (t[0] >> 8) as u8;
- b[1] = t[0] as u8;
-
- b[2] = ((shift << 2) | (r[0] >> 4)) as u8;
- b[3] = ((r[0] << 4) | (r[1] >> 2)) as u8;
- b[4] = ((r[1] << 6) | r[2]) as u8;
-
- b[5] = ((r[3] << 2) | (r[4] >> 4)) as u8;
- b[6] = ((r[4] << 4) | (r[5] >> 2)) as u8;
- b[7] = ((r[5] << 6) | r[6]) as u8;
-
- b[8] = ((r[7] << 2) | (r[8] >> 4)) as u8;
- b[9] = ((r[8] << 4) | (r[9] >> 2)) as u8;
- b[10] = ((r[9] << 6) | r[10]) as u8;
-
- b[11] = ((r[11] << 2) | (r[12] >> 4)) as u8;
- b[12] = ((r[12] << 4) | (r[13] >> 2)) as u8;
- b[13] = ((r[13] << 6) | r[14]) as u8;
-
- return 14;
-}
-
-// Tiny macro to simply get block array value as a u32.
-macro_rules! b32 {
- ($b:expr, $i:expr) => {
- $b[$i] as u32
- };
-}
-
-// 0011 1111
-const SIX_BITS: u32 = 0x3f;
-
-// Unpack a 14-byte block into 4 by 4 16-bit pixels.
-fn unpack14(b: &[u8], s: &mut [u16; 16]) {
- debug_assert_eq!(b.len(), 14);
- debug_assert_ne!(b[2], 0xfc);
-
- s[0] = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16;
-
- let shift = b32!(b, 2) >> 2;
- let bias = 0x20 << shift;
-
- s[4] = (s[0] as u32 + ((((b32!(b, 2) << 4) | (b32!(b, 3) >> 4)) & SIX_BITS) << shift) - bias) as u16;
- s[8] = (s[4] as u32 + ((((b32!(b, 3) << 2) | (b32!(b, 4) >> 6)) & SIX_BITS) << shift) - bias) as u16;
- s[12] = (s[8] as u32 + ((b32!(b, 4) & SIX_BITS) << shift) - bias) as u16;
-
- s[1] = (s[0] as u32 + ((b32!(b, 5) >> 2) << shift) - bias) as u16;
- s[5] = (s[4] as u32 + ((((b32!(b, 5) << 4) | (b32!(b, 6) >> 4)) & SIX_BITS) << shift) - bias) as u16;
- s[9] = (s[8] as u32 + ((((b32!(b, 6) << 2) | (b32!(b, 7) >> 6)) & SIX_BITS) << shift) - bias) as u16;
- s[13] = (s[12] as u32 + ((b32!(b, 7) & SIX_BITS) << shift) - bias) as u16;
-
- s[2] = (s[1] as u32 + ((b32!(b, 8) >> 2) << shift) - bias) as u16;
- s[6] = (s[5] as u32 + ((((b32!(b, 8) << 4) | (b32!(b, 9) >> 4)) & SIX_BITS) << shift) - bias) as u16;
- s[10] = (s[9] as u32 + ((((b32!(b, 9) << 2) | (b32!(b, 10) >> 6)) & SIX_BITS) << shift) - bias) as u16;
- s[14] = (s[13] as u32 + ((b32!(b, 10) & SIX_BITS) << shift) - bias) as u16;
-
- s[3] = (s[2] as u32 + ((b32!(b, 11) >> 2) << shift) - bias) as u16;
- s[7] = (s[6] as u32 + ((((b32!(b, 11) << 4) | (b32!(b, 12) >> 4)) & SIX_BITS) << shift) - bias) as u16;
- s[11] = (s[10] as u32 + ((((b32!(b, 12) << 2) | (b32!(b, 13) >> 6)) & SIX_BITS) << shift) - bias) as u16;
- s[15] = (s[14] as u32 + ((b32!(b, 13) & SIX_BITS) << shift) - bias) as u16;
-
- for i in 0..16 {
- if (s[i] & 0x8000) != 0 {
- s[i] &= 0x7fff;
- } else {
- s[i] = !s[i];
- }
- }
-}
-
-// Unpack a 3-byte block `b` into 4 by 4 identical 16-bit pixels in `s` array.
-fn unpack3(b: &[u8], s: &mut [u16; 16]) {
- // this assertion panics for fuzzed images.
- // assuming this debug assertion is an overly strict check to catch potential compression errors.
- // disabling because it panics when fuzzed.
- // when commenting out, it simply works (maybe it should return an error instead?).
- // debug_assert_eq!(b[2], 0xfc);
-
- // Get the 16-bit value from the block.
- let mut value = ((b32!(b, 0) << 8) | b32!(b, 1)) as u16;
-
- if (value & 0x8000) != 0 {
- value &= 0x7fff;
- } else {
- value = !value;
- }
-
- s.fill(value); // All pixels have save value.
-}
-
-#[derive(Debug)]
-struct ChannelData {
- tmp_start_index: usize,
- tmp_end_index: usize,
- resolution: Vec2<usize>,
- y_sampling: usize,
- sample_type: SampleType,
- quantize_linearly: bool,
- samples_per_pixel: usize,
-}
-
-// TODO: Unsafe seems to be required to efficiently copy whole slice of u16 ot u8. For now, we use
-// a less efficient, yet safe, implementation.
-#[inline]
-fn memcpy_u16_to_u8(src: &[u16], mut dst: &mut [u8]) {
- use lebe::prelude::*;
- dst.write_as_native_endian(src).expect("byte copy error");
-}
-
-#[inline]
-fn memcpy_u8_to_u16(mut src: &[u8], dst: &mut [u16]) {
- use lebe::prelude::*;
- src.read_from_native_endian_into(dst).expect("byte copy error");
-}
-
-#[inline]
-fn cpy_u8(src: &[u16], src_i: usize, dst: &mut [u8], dst_i: usize, n: usize) {
- memcpy_u16_to_u8(&src[src_i..src_i + n], &mut dst[dst_i..dst_i + 2 * n]);
-}
-
-pub fn decompress(
- channels: &ChannelList,
- compressed: ByteVec,
- rectangle: IntegerBounds,
- expected_byte_size: usize,
- _pedantic: bool,
-) -> Result<ByteVec> {
- debug_assert_eq!(
- expected_byte_size,
- rectangle.size.area() * channels.bytes_per_pixel,
- "expected byte size does not match header" // TODO compute instead of passing argument?
- );
-
- debug_assert!(!channels.list.is_empty(), "no channels found");
-
- if compressed.is_empty() {
- return Ok(Vec::new());
- }
-
- // Extract channel information needed for decompression.
- let mut channel_data: Vec<ChannelData> = Vec::with_capacity(channels.list.len());
- let mut tmp_read_index = 0;
-
- for channel in channels.list.iter() {
- let channel = ChannelData {
- tmp_start_index: tmp_read_index,
- tmp_end_index: tmp_read_index,
- resolution: channel.subsampled_resolution(rectangle.size),
- y_sampling: channel.sampling.y(),
- sample_type: channel.sample_type,
- quantize_linearly: channel.quantize_linearly,
- samples_per_pixel: channel.sampling.area(),
- };
-
- tmp_read_index += channel.resolution.area()
- * channel.samples_per_pixel
- * channel.sample_type.bytes_per_sample();
-
- channel_data.push(channel);
- }
-
- // Temporary buffer is used to decompress B44 datas the way they are stored in the compressed
- // buffer (channel by channel). We interleave the final result later.
- let mut tmp = Vec::with_capacity(expected_byte_size);
-
- // Index in the compressed buffer.
- let mut in_i = 0usize;
-
- let mut remaining = compressed.len();
-
- for channel in &channel_data {
-
- debug_assert_eq!(remaining, compressed.len()-in_i);
-
- // Compute information for current channel.
- let sample_count = channel.resolution.area() * channel.samples_per_pixel;
- let byte_count = sample_count * channel.sample_type.bytes_per_sample();
-
- // Sample types that does not support B44 compression (u32 and f32) are raw copied.
- // In this branch, "compressed" array is actually raw, uncompressed data.
- if channel.sample_type != SampleType::F16 {
-
- debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4);
-
- if remaining < byte_count {
- return Err(Error::invalid("not enough data"));
- }
-
- tmp.extend_from_slice(&compressed[in_i..(in_i + byte_count)]);
-
- in_i += byte_count;
- remaining -= byte_count;
-
- continue;
- }
-
- // HALF channel
- // The rest of the code assume we are manipulating u16 (2 bytes) values.
- debug_assert_eq!(channel.sample_type, SampleType::F16);
- debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::<u16>());
-
- // Increase buffer to get new uncompressed datas.
- tmp.resize(tmp.len() + byte_count, 0);
-
- let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
- let y_sample_count = channel.resolution.y() * channel.samples_per_pixel;
-
- let bytes_per_sample = size_of::<u16>();
-
- let x_byte_count = x_sample_count * bytes_per_sample;
- let cd_start = channel.tmp_start_index;
-
- for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
- // Compute index in output (decompressed) buffer. We have 4 rows, because we will
- // uncompress 4 by 4 data blocks.
- let mut row0 = cd_start + y * x_byte_count;
- let mut row1 = row0 + x_byte_count;
- let mut row2 = row1 + x_byte_count;
- let mut row3 = row2 + x_byte_count;
-
- // Move in pixel x line, 4 by 4.
- for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
-
- // Extract the 4 by 4 block of 16-bit floats from the compressed buffer.
- let mut s = [0u16; 16];
-
- if remaining < 3 {
- return Err(Error::invalid("not enough data"));
- }
-
- // If shift exponent is 63, call unpack14 (ignoring unused bits)
- if compressed[in_i + 2] >= (13 << 2) {
- if remaining < 3 {
- return Err(Error::invalid("not enough data"));
- }
-
- unpack3(&compressed[in_i..(in_i + 3)], &mut s);
-
- in_i += 3;
- remaining -= 3;
- } else {
- if remaining < 14 {
- return Err(Error::invalid("not enough data"));
- }
-
- unpack14(&compressed[in_i..(in_i + 14)], &mut s);
-
- in_i += 14;
- remaining -= 14;
- }
-
- if channel.quantize_linearly {
- convert_to_linear(&mut s);
- }
-
- // Get resting samples from the line to copy in temp buffer (without going outside channel).
- let x_resting_sample_count = match x + 3 < x_sample_count {
- true => BLOCK_SAMPLE_COUNT,
- false => x_sample_count - x,
- };
-
- debug_assert!(x_resting_sample_count > 0);
- debug_assert!(x_resting_sample_count <= BLOCK_SAMPLE_COUNT);
-
- // Copy rows (without going outside channel).
- if y + 3 < y_sample_count {
- cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count);
- cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count);
- cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count);
- cpy_u8(&s, 12, &mut tmp, row3, x_resting_sample_count);
- } else {
- debug_assert!(y < y_sample_count);
-
- cpy_u8(&s, 0, &mut tmp, row0, x_resting_sample_count);
-
- if y + 1 < y_sample_count {
- cpy_u8(&s, 4, &mut tmp, row1, x_resting_sample_count);
- }
-
- if y + 2 < y_sample_count {
- cpy_u8(&s, 8, &mut tmp, row2, x_resting_sample_count);
- }
- }
-
- // Update row's array index to 4 next pixels.
- row0 += BLOCK_X_BYTE_COUNT;
- row1 += BLOCK_X_BYTE_COUNT;
- row2 += BLOCK_X_BYTE_COUNT;
- row3 += BLOCK_X_BYTE_COUNT;
- }
- }
- }
-
- debug_assert_eq!(tmp.len(), expected_byte_size);
-
- // Interleave uncompressed channel data.
- let mut out = Vec::with_capacity(expected_byte_size);
-
- for y in rectangle.position.y()..rectangle.end().y() {
- for channel in &mut channel_data {
- if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
- continue;
- }
-
- // Find data location in temporary buffer.
- let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
- let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample();
- let next_tmp_end_index = channel.tmp_end_index + bytes_per_line;
- let channel_bytes = &tmp[channel.tmp_end_index..next_tmp_end_index];
-
- channel.tmp_end_index = next_tmp_end_index;
-
- // TODO do not convert endianness for f16-only images
- // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
- // We can support uncompressed data in the machine's native format
- // if all image channels are of type HALF, and if the Xdr and the
- // native representations of a half have the same size.
-
- if channel.sample_type == SampleType::F16 {
- // TODO simplify this and make it memcpy on little endian systems
- // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L943
- for mut f16_bytes in channel_bytes.chunks(std::mem::size_of::<f16>()) {
- let native_endian_f16_bits = u16::read_from_little_endian(&mut f16_bytes).expect("memory read failed");
- out.write_as_native_endian(&native_endian_f16_bits).expect("memory write failed");
- }
- }
- else {
- u8::write_slice(&mut out, channel_bytes)
- .expect("write to in-memory failed");
- }
- }
- }
-
- for index in 1..channel_data.len() {
- debug_assert_eq!(
- channel_data[index - 1].tmp_end_index,
- channel_data[index].tmp_start_index
- );
- }
-
- debug_assert_eq!(out.len(), expected_byte_size);
-
- // TODO do not convert endianness for f16-only images
- // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
- Ok(super::convert_little_endian_to_current(out, channels, rectangle))
-}
-
-pub fn compress(
- channels: &ChannelList,
- uncompressed: ByteVec,
- rectangle: IntegerBounds,
- optimize_flat_fields: bool,
-) -> Result<ByteVec> {
- if uncompressed.is_empty() {
- return Ok(Vec::new());
- }
-
- // TODO do not convert endianness for f16-only images
- // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
- let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle);
- let uncompressed = uncompressed.as_slice(); // TODO no alloc
-
- let mut channel_data = Vec::new();
-
- let mut tmp_end_index = 0;
- for channel in &channels.list {
- let number_samples = channel.subsampled_resolution(rectangle.size);
-
- let sample_count = channel.subsampled_resolution(rectangle.size).area();
- let byte_count = sample_count * channel.sample_type.bytes_per_sample();
-
- let channel = ChannelData {
- tmp_start_index: tmp_end_index,
- tmp_end_index,
- y_sampling: channel.sampling.y(),
- resolution: number_samples,
- sample_type: channel.sample_type,
- quantize_linearly: channel.quantize_linearly,
- samples_per_pixel: channel.sampling.area(),
- };
-
- tmp_end_index += byte_count;
- channel_data.push(channel);
- }
-
- let mut tmp = vec![0_u8; uncompressed.len()];
-
- debug_assert_eq!(tmp_end_index, tmp.len());
-
- let mut remaining_uncompressed_bytes = uncompressed;
-
- for y in rectangle.position.y()..rectangle.end().y() {
- for channel in &mut channel_data {
- if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 {
- continue;
- }
-
- let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
- let bytes_per_line = x_sample_count * channel.sample_type.bytes_per_sample();
- let next_tmp_end_index = channel.tmp_end_index + bytes_per_line;
- let target = &mut tmp[channel.tmp_end_index..next_tmp_end_index];
-
- channel.tmp_end_index = next_tmp_end_index;
-
- // TODO do not convert endianness for f16-only images
- // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842
- // We can support uncompressed data in the machine's native format
- // if all image channels are of type HALF, and if the Xdr and the
- // native representations of a half have the same size.
-
- if channel.sample_type == SampleType::F16 {
-
- // TODO simplify this and make it memcpy on little endian systems
- // https://github.com/AcademySoftwareFoundation/openexr/blob/a03aca31fa1ce85d3f28627dbb3e5ded9494724a/src/lib/OpenEXR/ImfB44Compressor.cpp#L640
-
- for mut out_f16_bytes in target.chunks_mut(2) {
- let native_endian_f16_bits = u16::read_from_native_endian(&mut remaining_uncompressed_bytes).expect("memory read failed");
- out_f16_bytes.write_as_little_endian(&native_endian_f16_bits).expect("memory write failed");
- }
- }
- else {
- u8::read_slice(&mut remaining_uncompressed_bytes, target)
- .expect("in-memory read failed");
- }
- }
- }
-
- // Generate a whole buffer that we will crop to proper size once compression is done.
- let mut b44_compressed = vec![0; std::cmp::max(2048, uncompressed.len())];
- let mut b44_end = 0; // Buffer byte index for storing next compressed values.
-
- for channel in &channel_data {
- // U32 and F32 channels are raw copied.
- if channel.sample_type != SampleType::F16 {
-
- debug_assert_eq!(channel.sample_type.bytes_per_sample(), 4);
-
- // Raw byte copy.
- let slice = &tmp[channel.tmp_start_index..channel.tmp_end_index];
- slice.iter().copied().for_each(|b| {
- b44_compressed[b44_end] = b;
- b44_end += 1;
- });
-
- continue;
- }
-
- // HALF channel
- debug_assert_eq!(channel.sample_type, SampleType::F16);
- debug_assert_eq!(channel.sample_type.bytes_per_sample(), size_of::<u16>());
-
- let x_sample_count = channel.resolution.x() * channel.samples_per_pixel;
- let y_sample_count = channel.resolution.y() * channel.samples_per_pixel;
-
- let x_byte_count = x_sample_count * size_of::<u16>();
- let cd_start = channel.tmp_start_index;
-
- for y in (0..y_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
- //
- // Copy the next 4x4 pixel block into array s.
- // If the width, cd.nx, or the height, cd.ny, of
- // the pixel data in _tmpBuffer is not divisible
- // by 4, then pad the data by repeating the
- // rightmost column and the bottom row.
- //
-
- // Compute row index in temp buffer.
- let mut row0 = cd_start + y * x_byte_count;
- let mut row1 = row0 + x_byte_count;
- let mut row2 = row1 + x_byte_count;
- let mut row3 = row2 + x_byte_count;
-
- if y + 3 >= y_sample_count {
- if y + 1 >= y_sample_count {
- row1 = row0;
- }
-
- if y + 2 >= y_sample_count {
- row2 = row1;
- }
-
- row3 = row2;
- }
-
- for x in (0..x_sample_count).step_by(BLOCK_SAMPLE_COUNT) {
- let mut s = [0u16; 16];
-
- if x + 3 >= x_sample_count {
- let n = x_sample_count - x;
-
- for i in 0..BLOCK_SAMPLE_COUNT {
- let j = min(i, n - 1) * 2;
-
- // TODO: Make [u8; 2] to u16 fast.
- s[i + 0] = u16::from_ne_bytes([tmp[row0 + j], tmp[row0 + j + 1]]);
- s[i + 4] = u16::from_ne_bytes([tmp[row1 + j], tmp[row1 + j + 1]]);
- s[i + 8] = u16::from_ne_bytes([tmp[row2 + j], tmp[row2 + j + 1]]);
- s[i + 12] = u16::from_ne_bytes([tmp[row3 + j], tmp[row3 + j + 1]]);
- }
- } else {
- memcpy_u8_to_u16(&tmp[row0..(row0 + BLOCK_X_BYTE_COUNT)], &mut s[0..4]);
- memcpy_u8_to_u16(&tmp[row1..(row1 + BLOCK_X_BYTE_COUNT)], &mut s[4..8]);
- memcpy_u8_to_u16(&tmp[row2..(row2 + BLOCK_X_BYTE_COUNT)], &mut s[8..12]);
- memcpy_u8_to_u16(&tmp[row3..(row3 + BLOCK_X_BYTE_COUNT)], &mut s[12..16]);
- }
-
- // Move to next block.
- row0 += BLOCK_X_BYTE_COUNT;
- row1 += BLOCK_X_BYTE_COUNT;
- row2 += BLOCK_X_BYTE_COUNT;
- row3 += BLOCK_X_BYTE_COUNT;
-
- // Compress the contents of array `s` and append the results to the output buffer.
- if channel.quantize_linearly {
- convert_from_linear(&mut s);
- }
-
- b44_end += pack(
- s,
- &mut b44_compressed[b44_end..(b44_end + 14)],
- optimize_flat_fields,
- !channel.quantize_linearly,
- );
- }
- }
- }
-
- b44_compressed.resize(b44_end, 0);
-
- Ok(b44_compressed)
-}
-
-#[cfg(test)]
-mod test {
- use crate::compression::b44;
- use crate::compression::b44::{convert_from_linear, convert_to_linear};
- use crate::compression::ByteVec;
- use crate::image::validate_results::ValidateResult;
- use crate::meta::attribute::ChannelList;
- use crate::prelude::f16;
- use crate::prelude::*;
-
- #[test]
- fn test_convert_from_to_linear() {
- // Create two identical arrays with random floats.
- let mut s1 = [0u16; 16];
-
- for i in 0..16 {
- s1[i] = f16::from_f32(rand::random::<f32>()).to_bits();
- }
-
- let s2 = s1.clone();
-
- // Apply two reversible conversion.
- convert_from_linear(&mut s1);
- convert_to_linear(&mut s1);
-
- // And check.
- for (u1, u2) in s1.iter().zip(&s2) {
- let f1 = f16::from_bits(*u1).to_f64();
- let f2 = f16::from_bits(*u2).to_f64();
- assert!((f1 - f2).abs() < 0.01);
- }
- }
-
- fn test_roundtrip_noise_with(
- channels: ChannelList,
- rectangle: IntegerBounds,
- ) -> (ByteVec, ByteVec, ByteVec) {
- let byte_count = channels
- .list
- .iter()
- .map(|c| {
- c.subsampled_resolution(rectangle.size).area() * c.sample_type.bytes_per_sample()
- })
- .sum();
-
- assert!(byte_count > 0);
-
- let pixel_bytes: ByteVec = (0..byte_count).map(|_| rand::random()).collect();
-
- assert_eq!(pixel_bytes.len(), byte_count);
-
- let compressed = b44::compress(&channels, pixel_bytes.clone(), rectangle, true).unwrap();
-
- let decompressed =
- b44::decompress(&channels, compressed.clone(), rectangle, pixel_bytes.len(), true).unwrap();
-
- assert_eq!(decompressed.len(), pixel_bytes.len());
-
- (pixel_bytes, compressed, decompressed)
- }
-
- #[test]
- fn roundtrip_noise_f16() {
- let channel = ChannelDescription {
- sample_type: SampleType::F16,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- };
-
- // Two similar channels.
- let channels = ChannelList::new(smallvec![channel.clone(), channel]);
-
- let rectangle = IntegerBounds {
- position: Vec2(-30, 100),
- size: Vec2(322, 731),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- // On my tests, B44 give a size of 44.08% the original data (this assert implies enough
- // pixels to be relevant).
- assert_eq!(pixel_bytes.len(), 941528);
- assert_eq!(compressed.len(), 415044);
- assert_eq!(decompressed.len(), 941528);
- }
-
- #[test]
- fn roundtrip_noise_f16_tiny() {
- let channel = ChannelDescription {
- sample_type: SampleType::F16,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- };
-
- // Two similar channels.
- let channels = ChannelList::new(smallvec![channel.clone(), channel]);
-
- let rectangle = IntegerBounds {
- position: Vec2(0, 0),
- size: Vec2(3, 2),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- // B44 being 4 by 4 block, compression is less efficient for tiny images.
- assert_eq!(pixel_bytes.len(), 24);
- assert_eq!(compressed.len(), 28);
- assert_eq!(decompressed.len(), 24);
- }
-
- #[test]
- fn roundtrip_noise_f32() {
- let channel = ChannelDescription {
- sample_type: SampleType::F32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- };
-
- // Two similar channels.
- let channels = ChannelList::new(smallvec![channel.clone(), channel]);
-
- let rectangle = IntegerBounds {
- position: Vec2(-30, 100),
- size: Vec2(322, 731),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- assert_eq!(pixel_bytes.len(), 1883056);
- assert_eq!(compressed.len(), 1883056);
- assert_eq!(decompressed.len(), 1883056);
- assert_eq!(pixel_bytes, decompressed);
- }
-
- #[test]
- fn roundtrip_noise_f32_tiny() {
- let channel = ChannelDescription {
- sample_type: SampleType::F32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- };
-
- // Two similar channels.
- let channels = ChannelList::new(smallvec![channel.clone(), channel]);
-
- let rectangle = IntegerBounds {
- position: Vec2(0, 0),
- size: Vec2(3, 2),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- assert_eq!(pixel_bytes.len(), 48);
- assert_eq!(compressed.len(), 48);
- assert_eq!(decompressed.len(), 48);
- assert_eq!(pixel_bytes, decompressed);
- }
-
- #[test]
- fn roundtrip_noise_u32() {
- let channel = ChannelDescription {
- sample_type: SampleType::U32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- };
-
- // Two similar channels.
- let channels = ChannelList::new(smallvec![channel.clone(), channel]);
-
- let rectangle = IntegerBounds {
- position: Vec2(-30, 100),
- size: Vec2(322, 731),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- assert_eq!(pixel_bytes.len(), 1883056);
- assert_eq!(compressed.len(), 1883056);
- assert_eq!(decompressed.len(), 1883056);
- assert_eq!(pixel_bytes, decompressed);
- }
-
- #[test]
- fn roundtrip_noise_u32_tiny() {
- let channel = ChannelDescription {
- sample_type: SampleType::U32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- };
-
- // Two similar channels.
- let channels = ChannelList::new(smallvec![channel.clone(), channel]);
-
- let rectangle = IntegerBounds {
- position: Vec2(0, 0),
- size: Vec2(3, 2),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- assert_eq!(pixel_bytes.len(), 48);
- assert_eq!(compressed.len(), 48);
- assert_eq!(decompressed.len(), 48);
- assert_eq!(pixel_bytes, decompressed);
- }
-
- #[test]
- fn roundtrip_noise_mix_f32_f16_u32() {
- let channels = ChannelList::new(smallvec![
- ChannelDescription {
- sample_type: SampleType::F32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- },
- ChannelDescription {
- sample_type: SampleType::F16,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- },
- ChannelDescription {
- sample_type: SampleType::U32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- }
- ]);
-
- let rectangle = IntegerBounds {
- position: Vec2(-30, 100),
- size: Vec2(322, 731),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- assert_eq!(pixel_bytes.len(), 2353820);
- assert_eq!(compressed.len(), 2090578);
- assert_eq!(decompressed.len(), 2353820);
- }
-
- #[test]
- fn roundtrip_noise_mix_f32_f16_u32_tiny() {
- let channels = ChannelList::new(smallvec![
- ChannelDescription {
- sample_type: SampleType::F32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- },
- ChannelDescription {
- sample_type: SampleType::F16,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- },
- ChannelDescription {
- sample_type: SampleType::U32,
- name: Default::default(),
- quantize_linearly: false,
- sampling: Vec2(1, 1),
- }
- ]);
-
- let rectangle = IntegerBounds {
- position: Vec2(0, 0),
- size: Vec2(3, 2),
- };
-
- let (pixel_bytes, compressed, decompressed) =
- test_roundtrip_noise_with(channels, rectangle);
-
- assert_eq!(pixel_bytes.len(), 60);
- assert_eq!(compressed.len(), 62);
- assert_eq!(decompressed.len(), 60);
- }
-
- #[test]
- fn border_on_multiview() {
- // This test is hard to reproduce, so we use the direct image.
- let path = "tests/images/valid/openexr/MultiView/Adjuster.exr";
-
- let read_image = read()
- .no_deep_data()
- .all_resolution_levels()
- .all_channels()
- .all_layers()
- .all_attributes()
- .non_parallel();
-
- let image = read_image.clone().from_file(path).unwrap();
-
- let mut tmp_bytes = Vec::new();
- image
- .write()
- .non_parallel()
- .to_buffered(std::io::Cursor::new(&mut tmp_bytes))
- .unwrap();
-
- let image2 = read_image
- .from_buffered(std::io::Cursor::new(tmp_bytes))
- .unwrap();
-
- image.assert_equals_result(&image2);
- }
-}