diff options
Diffstat (limited to 'vendor/exr/src/compression/piz')
-rw-r--r-- | vendor/exr/src/compression/piz/huffman.rs | 988 | ||||
-rw-r--r-- | vendor/exr/src/compression/piz/mod.rs | 437 | ||||
-rw-r--r-- | vendor/exr/src/compression/piz/wavelet.rs | 422 |
3 files changed, 1847 insertions, 0 deletions
diff --git a/vendor/exr/src/compression/piz/huffman.rs b/vendor/exr/src/compression/piz/huffman.rs new file mode 100644 index 0000000..a01cbf2 --- /dev/null +++ b/vendor/exr/src/compression/piz/huffman.rs @@ -0,0 +1,988 @@ +//! 16-bit Huffman compression and decompression. +//! Huffman compression and decompression routines written +//! by Christian Rouet for his PIZ image file format. +// see https://github.com/AcademySoftwareFoundation/openexr/blob/88246d991e0318c043e6f584f7493da08a31f9f8/OpenEXR/IlmImf/ImfHuf.cpp + +use crate::math::RoundingMode; +use crate::error::{Error, Result, UnitResult, u64_to_usize, u32_to_usize}; +use crate::io::Data; +use std::{ + cmp::Ordering, + collections::BinaryHeap, + io::{Cursor, Read, Write}, +}; +use std::convert::TryFrom; +use smallvec::SmallVec; + + +pub fn decompress(compressed: &[u8], expected_size: usize) -> Result<Vec<u16>> { + let mut remaining_compressed = compressed; + + let min_code_index = usize::try_from(u32::read(&mut remaining_compressed)?)?; + let max_code_index_32 = u32::read(&mut remaining_compressed)?; + let _table_size = usize::try_from(u32::read(&mut remaining_compressed)?)?; // TODO check this and return Err? + let bit_count = usize::try_from(u32::read(&mut remaining_compressed)?)?; + let _skipped = u32::read(&mut remaining_compressed)?; // what is this + + let max_code_index = usize::try_from(max_code_index_32).unwrap(); + if min_code_index >= ENCODING_TABLE_SIZE || max_code_index >= ENCODING_TABLE_SIZE { + return Err(Error::invalid(INVALID_TABLE_SIZE)); + } + + if RoundingMode::Up.divide(bit_count, 8) > remaining_compressed.len() { + return Err(Error::invalid(NOT_ENOUGH_DATA)); + } + + let encoding_table = read_encoding_table(&mut remaining_compressed, min_code_index, max_code_index)?; + if bit_count > 8 * remaining_compressed.len() { return Err(Error::invalid(INVALID_BIT_COUNT)); } + + let decoding_table = build_decoding_table(&encoding_table, min_code_index, max_code_index)?; + + let result = decode_with_tables( + &encoding_table, + &decoding_table, + &remaining_compressed, + i32::try_from(bit_count)?, + max_code_index_32, + expected_size, + )?; + + Ok(result) +} + +pub fn compress(uncompressed: &[u16]) -> Result<Vec<u8>> { + if uncompressed.is_empty() { return Ok(vec![]); } + + let mut frequencies = count_frequencies(uncompressed); + let (min_code_index, max_code_index) = build_encoding_table(&mut frequencies); + + let mut result = Cursor::new(Vec::with_capacity(uncompressed.len())); + u32::write_slice(&mut result, &[0; 5])?; // we come back to these later after we know more about the compressed data + + let table_start = result.position(); + pack_encoding_table( + &frequencies, + min_code_index, + max_code_index, + &mut result, + )?; + + let data_start = result.position(); + let bit_count = encode_with_frequencies( + &frequencies, + uncompressed, + max_code_index, + &mut result + )?; + + // write meta data after this + result.set_position(0); + let table_length = data_start - table_start; + + u32::try_from(min_code_index)?.write(&mut result)?; + u32::try_from(max_code_index)?.write(&mut result)?; + u32::try_from(table_length)?.write(&mut result)?; + u32::try_from(bit_count)?.write(&mut result)?; + 0_u32.write(&mut result)?; + + Ok(result.into_inner()) +} + + +const ENCODE_BITS: u64 = 16; // literal (value) bit length +const DECODE_BITS: u64 = 14; // decoding bit size (>= 8) + +const ENCODING_TABLE_SIZE: usize = ((1 << ENCODE_BITS) + 1) as usize; +const DECODING_TABLE_SIZE: usize = (1 << DECODE_BITS) as usize; +const DECODE_MASK: u64 = DECODING_TABLE_SIZE as u64 - 1; + +const SHORT_ZEROCODE_RUN: u64 = 59; +const LONG_ZEROCODE_RUN: u64 = 63; +const SHORTEST_LONG_RUN: u64 = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; +const LONGEST_LONG_RUN: u64 = 255 + SHORTEST_LONG_RUN; + + +#[derive(Clone, Debug, Eq, PartialEq)] +enum Code { + Empty, + Short(ShortCode), + Long(SmallVec<[u32; 2]>), // often 2, sometimes 4, rarely 8 +} + +#[derive(Clone, Debug, Eq, PartialEq)] +struct ShortCode { + value: u32, + len: u8, +} + +impl ShortCode { + #[inline] fn len(&self) -> u64 { u64::from(self.len) } +} + +/// Decode (uncompress) n bits based on encoding & decoding tables: +fn decode_with_tables( + encoding_table: &[u64], + decoding_table: &[Code], + mut input: &[u8], + input_bit_count: i32, + run_length_code: u32, + expected_output_size: usize, +) -> Result<Vec<u16>> +{ + let mut output = Vec::with_capacity(expected_output_size); + let mut code_bits = 0_u64; + let mut code_bit_count = 0_u64; + + while input.len() > 0 { + read_byte(&mut code_bits, &mut code_bit_count, &mut input)?; + + // Access decoding table + while code_bit_count >= DECODE_BITS { + let code_index = (code_bits >> (code_bit_count - DECODE_BITS)) & DECODE_MASK; + let code = &decoding_table[u64_to_usize(code_index)]; + + // Get short code + if let Code::Short(code) = code { + code_bit_count -= code.len(); + + read_code_into_vec( + code.value, + run_length_code, + &mut code_bits, + &mut code_bit_count, + &mut input, + &mut output, + expected_output_size, + )?; + } + else if let Code::Long(ref long_codes) = code { + debug_assert_ne!(long_codes.len(), 0); + + let long_code = long_codes.iter() + .filter_map(|&long_code|{ + let encoded_long_code = encoding_table[u32_to_usize(long_code)]; + let length = length(encoded_long_code); + + while code_bit_count < length && input.len() > 0 { + let err = read_byte(&mut code_bits, &mut code_bit_count, &mut input); + if let Err(err) = err { return Some(Err(err)); } + } + + if code_bit_count >= length { + let required_code = (code_bits >> (code_bit_count - length)) & ((1 << length) - 1); + + if self::code(encoded_long_code) == required_code { + code_bit_count -= length; + return Some(Ok(long_code)); + } + } + + None + + }) + .next() + .ok_or(Error::invalid(INVALID_CODE))?; + + read_code_into_vec( + long_code?, + run_length_code, + &mut code_bits, + &mut code_bit_count, + &mut input, + &mut output, + expected_output_size, + )?; + } + else { + return Err(Error::invalid(INVALID_CODE)); + } + } + } + + let count = u64::try_from((8 - input_bit_count) & 7)?; + code_bits >>= count; + code_bit_count -= count; + + while code_bit_count > 0 { + let index = (code_bits << (DECODE_BITS - code_bit_count)) & DECODE_MASK; + let code = &decoding_table[u64_to_usize(index)]; + + if let Code::Short(short_code) = code { + if short_code.len() > code_bit_count { return Err(Error::invalid("code")) }; // FIXME why does this happen?? + code_bit_count -= short_code.len(); // FIXME may throw "attempted to subtract with overflow" + + read_code_into_vec( + short_code.value, + run_length_code, + &mut code_bits, + &mut code_bit_count, + &mut input, + &mut output, + expected_output_size, + )?; + } + else { + return Err(Error::invalid(INVALID_CODE)); + } + } + + if output.len() != expected_output_size { + return Err(Error::invalid(NOT_ENOUGH_DATA)); + } + + Ok(output) +} + +/// Build a decoding hash table based on the encoding table code: +/// - short codes (<= HUF_DECBITS) are resolved with a single table access; +/// - long code entry allocations are not optimized, because long codes are +/// unfrequent; +/// - decoding tables are used by hufDecode(); +fn build_decoding_table( + encoding_table: &[u64], + min_code_index: usize, + max_code_index: usize, +) -> Result<Vec<Code>> +{ + let mut decoding_table = vec![Code::Empty; DECODING_TABLE_SIZE]; // not an array because of code not being copy + + for (code_index, &encoded_code) in encoding_table[..= max_code_index].iter().enumerate().skip(min_code_index) { + let code_index = u32::try_from(code_index).unwrap(); + + let code = code(encoded_code); + let length = length(encoded_code); + + if code >> length != 0 { + return Err(Error::invalid(INVALID_TABLE_ENTRY)); + } + + if length > DECODE_BITS { + let long_code = &mut decoding_table[u64_to_usize(code >> (length - DECODE_BITS))]; + + match long_code { + Code::Empty => *long_code = Code::Long(smallvec![code_index]), + Code::Long(lits) => lits.push(code_index), + _ => { return Err(Error::invalid(INVALID_TABLE_ENTRY)); } + } + } + else if length != 0 { + let default_value = Code::Short(ShortCode { + value: code_index, + len: length as u8, + }); + + let start_index = u64_to_usize(code << (DECODE_BITS - length)); + let count = u64_to_usize(1 << (DECODE_BITS - length)); + + for value in &mut decoding_table[start_index .. start_index + count] { + *value = default_value.clone(); + } + } + } + + Ok(decoding_table) +} + +/// Run-length-decompresses all zero runs from the packed table to the encoding table +fn read_encoding_table( + packed: &mut impl Read, + min_code_index: usize, + max_code_index: usize, +) -> Result<Vec<u64>> +{ + let mut code_bits = 0_u64; + let mut code_bit_count = 0_u64; + + // TODO push() into encoding table instead of index stuff? + let mut encoding_table = vec![0_u64; ENCODING_TABLE_SIZE]; + let mut code_index = min_code_index; + while code_index <= max_code_index { + let code_len = read_bits(6, &mut code_bits, &mut code_bit_count, packed)?; + encoding_table[code_index] = code_len; + + if code_len == LONG_ZEROCODE_RUN { + let zerun_bits = read_bits(8, &mut code_bits, &mut code_bit_count, packed)?; + let zerun = usize::try_from(zerun_bits + SHORTEST_LONG_RUN).unwrap(); + + if code_index + zerun > max_code_index + 1 { + return Err(Error::invalid(TABLE_TOO_LONG)); + } + + for value in &mut encoding_table[code_index..code_index + zerun] { + *value = 0; + } + + code_index += zerun; + } + else if code_len >= SHORT_ZEROCODE_RUN { + let duplication_count = usize::try_from(code_len - SHORT_ZEROCODE_RUN + 2).unwrap(); + if code_index + duplication_count > max_code_index + 1 { + return Err(Error::invalid(TABLE_TOO_LONG)); + } + + for value in &mut encoding_table[code_index .. code_index + duplication_count] { + *value = 0; + } + + code_index += duplication_count; + } + else { + code_index += 1; + } + } + + build_canonical_table(&mut encoding_table); + Ok(encoding_table) +} + +// TODO Use BitStreamReader for all the bit reads?! +#[inline] +fn read_bits( + count: u64, + code_bits: &mut u64, + code_bit_count: &mut u64, + input: &mut impl Read, +) -> Result<u64> +{ + while *code_bit_count < count { + read_byte(code_bits, code_bit_count, input)?; + } + + *code_bit_count -= count; + Ok((*code_bits >> *code_bit_count) & ((1 << count) - 1)) +} + +#[inline] +fn read_byte(code_bits: &mut u64, bit_count: &mut u64, input: &mut impl Read) -> UnitResult { + *code_bits = (*code_bits << 8) | u8::read(input)? as u64; + *bit_count += 8; + Ok(()) +} + +#[inline] +fn read_code_into_vec( + code: u32, + run_length_code: u32, + code_bits: &mut u64, + code_bit_count: &mut u64, + read: &mut impl Read, + out: &mut Vec<u16>, + max_len: usize, +) -> UnitResult +{ + if code == run_length_code { // code may be too large for u16 + if *code_bit_count < 8 { + read_byte(code_bits, code_bit_count, read)?; + } + + *code_bit_count -= 8; + + let code_repetitions = usize::from((*code_bits >> *code_bit_count) as u8); + + if out.len() + code_repetitions > max_len { + return Err(Error::invalid(TOO_MUCH_DATA)); + } + else if out.is_empty() { + return Err(Error::invalid(NOT_ENOUGH_DATA)); + } + + let repeated_code = *out.last().unwrap(); + out.extend(std::iter::repeat(repeated_code).take(code_repetitions)); + } + else if out.len() < max_len { // implies that code is not larger than u16??? + out.push(u16::try_from(code)?); + } + else { + return Err(Error::invalid(TOO_MUCH_DATA)); + } + + Ok(()) +} + +fn count_frequencies(data: &[u16]) -> Vec<u64> { + let mut frequencies = vec![0_u64; ENCODING_TABLE_SIZE]; + + for value in data { + frequencies[*value as usize] += 1; + } + + frequencies +} + +fn write_bits( + count: u64, + bits: u64, + code_bits: &mut u64, + code_bit_count: &mut u64, + mut out: impl Write, +) -> UnitResult +{ + *code_bits = (*code_bits << count) | bits; + *code_bit_count += count; + + while *code_bit_count >= 8 { + *code_bit_count -= 8; + out.write(&[ + (*code_bits >> *code_bit_count) as u8 // TODO make sure never or always wraps? + ])?; + } + + Ok(()) +} + +fn write_code(scode: u64, code_bits: &mut u64, code_bit_count: &mut u64, mut out: impl Write) -> UnitResult { + write_bits(length(scode), code(scode), code_bits, code_bit_count, &mut out) +} + +#[inline(always)] +fn send_code( + scode: u64, + run_count: u64, + run_code: u64, + code_bits: &mut u64, + code_bit_count: &mut u64, + mut out: impl Write, +) -> UnitResult +{ + // Output a run of runCount instances of the symbol sCount. + // Output the symbols explicitly, or if that is shorter, output + // the sCode symbol once followed by a runCode symbol and runCount + // expressed as an 8-bit number. + if length(scode) + length(run_code) + 8 < length(scode) * run_count { + write_code(scode, code_bits, code_bit_count, &mut out)?; + write_code(run_code, code_bits, code_bit_count, &mut out)?; + write_bits(8, run_count, code_bits, code_bit_count, &mut out)?; + } + else { + for _ in 0 ..= run_count { + write_code(scode, code_bits, code_bit_count, &mut out)?; + } + } + + Ok(()) +} + +fn encode_with_frequencies( + frequencies: &[u64], + uncompressed: &[u16], + run_length_code: usize, + mut out: &mut Cursor<Vec<u8>>, +) -> Result<u64> +{ + let mut code_bits = 0; + let mut code_bit_count = 0; + + let mut run_start_value = uncompressed[0]; + let mut run_length = 0; + + let start_position = out.position(); + + // Loop on input values + for ¤t_value in &uncompressed[1..] { + // Count same values or send code + if run_start_value == current_value && run_length < 255 { + run_length += 1; + } + else { + send_code( + frequencies[run_start_value as usize], + run_length, + frequencies[run_length_code], + &mut code_bits, + &mut code_bit_count, + &mut out, + )?; + + run_length = 0; + } + + run_start_value = current_value; + } + + // Send remaining code + send_code( + frequencies[run_start_value as usize], + run_length, + frequencies[run_length_code], + &mut code_bits, + &mut code_bit_count, + &mut out, + )?; + + let data_length = out.position() - start_position; // we shouldn't count the last byte write + + if code_bit_count != 0 { + out.write(&[ + (code_bits << (8 - code_bit_count) & 0xff) as u8 + ])?; + } + + Ok(data_length * 8 + code_bit_count) +} + +/// +/// Pack an encoding table: +/// - only code lengths, not actual codes, are stored +/// - runs of zeroes are compressed as follows: +/// +/// unpacked packed +/// -------------------------------- +/// 1 zero 0 (6 bits) +/// 2 zeroes 59 +/// 3 zeroes 60 +/// 4 zeroes 61 +/// 5 zeroes 62 +/// n zeroes (6 or more) 63 n-6 (6 + 8 bits) +/// +fn pack_encoding_table( + frequencies: &[u64], + min_index: usize, + max_index: usize, + mut out: &mut Cursor<Vec<u8>>, +) -> UnitResult +{ + let mut code_bits = 0_u64; + let mut code_bit_count = 0_u64; + + let mut frequency_index = min_index; + while frequency_index <= max_index { // TODO slice iteration? + let code_length = length(frequencies[frequency_index]); + + if code_length == 0 { + let mut zero_run = 1; + + while frequency_index < max_index && zero_run < LONGEST_LONG_RUN { + if length(frequencies[frequency_index + 1]) > 0 { + break; + } + + frequency_index += 1; + zero_run += 1; + } + + if zero_run >= 2 { + if zero_run >= SHORTEST_LONG_RUN { + write_bits(6, LONG_ZEROCODE_RUN, &mut code_bits, &mut code_bit_count, &mut out)?; + write_bits(8, zero_run - SHORTEST_LONG_RUN, &mut code_bits, &mut code_bit_count, &mut out)?; + } + else { + write_bits(6, SHORT_ZEROCODE_RUN + zero_run - 2, &mut code_bits, &mut code_bit_count, &mut out)?; + } + + frequency_index += 1; // we must increment or else this may go very wrong + continue; + } + } + + write_bits(6, code_length, &mut code_bits, &mut code_bit_count, &mut out)?; + frequency_index += 1; + } + + if code_bit_count > 0 { + out.write(&[ + (code_bits << (8 - code_bit_count)) as u8 + ])?; + } + + Ok(()) +} + +/// Build a "canonical" Huffman code table: +/// - for each (uncompressed) symbol, code contains the length +/// of the corresponding code (in the compressed data) +/// - canonical codes are computed and stored in code +/// - the rules for constructing canonical codes are as follows: +/// * shorter codes (if filled with zeroes to the right) +/// have a numerically higher value than longer codes +/// * for codes with the same length, numerical values +/// increase with numerical symbol values +/// - because the canonical code table can be constructed from +/// symbol lengths alone, the code table can be transmitted +/// without sending the actual code values +/// - see http://www.compressconsult.com/huffman/ +fn build_canonical_table(code_table: &mut [u64]) { + debug_assert_eq!(code_table.len(), ENCODING_TABLE_SIZE); + + let mut count_per_code = [0_u64; 59]; + + for &code in code_table.iter() { + count_per_code[u64_to_usize(code)] += 1; + } + + // For each i from 58 through 1, compute the + // numerically lowest code with length i, and + // store that code in n[i]. + { + let mut code = 0_u64; // TODO use foldr? + for count in &mut count_per_code.iter_mut().rev() { + let next_code = (code + *count) >> 1; + *count = code; + code = next_code; + } + } + + // code[i] contains the length, l, of the + // code for symbol i. Assign the next available + // code of length l to the symbol and store both + // l and the code in code[i]. // TODO iter + filter ? + for symbol_length in code_table.iter_mut() { + let current_length = *symbol_length; + let code_index = u64_to_usize(current_length); + if current_length > 0 { + *symbol_length = current_length | (count_per_code[code_index] << 6); + count_per_code[code_index] += 1; + } + } +} + + +/// Compute Huffman codes (based on frq input) and store them in frq: +/// - code structure is : [63:lsb - 6:msb] | [5-0: bit length]; +/// - max code length is 58 bits; +/// - codes outside the range [im-iM] have a null length (unused values); +/// - original frequencies are destroyed; +/// - encoding tables are used by hufEncode() and hufBuildDecTable(); +/// +/// NB: The following code "(*a == *b) && (a > b))" was added to ensure +/// elements in the heap with the same value are sorted by index. +/// This is to ensure, the STL make_heap()/pop_heap()/push_heap() methods +/// produced a resultant sorted heap that is identical across OSes. +fn build_encoding_table( + frequencies: &mut [u64], // input frequencies, output encoding table +) -> (usize, usize) // return frequency max min range +{ + debug_assert_eq!(frequencies.len(), ENCODING_TABLE_SIZE); + + /// Frequency with position, used for MinHeap. + #[derive(Eq, PartialEq, Copy, Clone)] + struct HeapFrequency { + position: usize, + frequency: u64, + } + + impl Ord for HeapFrequency { + fn cmp(&self, other: &Self) -> Ordering { + other.frequency.cmp(&self.frequency) + .then_with(|| other.position.cmp(&self.position)) + } + } + + impl PartialOrd for HeapFrequency { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(self.cmp(other)) } + } + + // This function assumes that when it is called, array frq + // indicates the frequency of all possible symbols in the data + // that are to be Huffman-encoded. (frq[i] contains the number + // of occurrences of symbol i in the data.) + // + // The loop below does three things: + // + // 1) Finds the minimum and maximum indices that point + // to non-zero entries in frq: + // + // frq[im] != 0, and frq[i] == 0 for all i < im + // frq[iM] != 0, and frq[i] == 0 for all i > iM + // + // 2) Fills array fHeap with pointers to all non-zero + // entries in frq. + // + // 3) Initializes array hlink such that hlink[i] == i + // for all array entries. + + // We need to use vec here or we overflow the stack. + let mut links = vec![0_usize; ENCODING_TABLE_SIZE]; + let mut frequency_heap = vec![0_usize; ENCODING_TABLE_SIZE]; + + // This is a good solution since we don't have usize::MAX items (no panics or UB), + // and since this is short-circuit, it stops at the first in order non zero element. + let min_frequency_index = frequencies.iter().position(|f| *f != 0).unwrap_or(0); + + let mut max_frequency_index = 0; + let mut frequency_count = 0; + + // assert bounds check to optimize away bounds check in loops + assert!(links.len() >= ENCODING_TABLE_SIZE); + assert!(frequencies.len() >= ENCODING_TABLE_SIZE); + + for index in min_frequency_index..ENCODING_TABLE_SIZE { + links[index] = index; // TODO for x in links.iter().enumerate() + + if frequencies[index] != 0 { + frequency_heap[frequency_count] = index; + max_frequency_index = index; + frequency_count += 1; + } + } + + + // Add a pseudo-symbol, with a frequency count of 1, to frq; + // adjust the fHeap and hlink array accordingly. Function + // hufEncode() uses the pseudo-symbol for run-length encoding. + + max_frequency_index += 1; + frequencies[max_frequency_index] = 1; + frequency_heap[frequency_count] = max_frequency_index; + frequency_count += 1; + + // Build an array, scode, such that scode[i] contains the number + // of bits assigned to symbol i. Conceptually this is done by + // constructing a tree whose leaves are the symbols with non-zero + // frequency: + // + // Make a heap that contains all symbols with a non-zero frequency, + // with the least frequent symbol on top. + // + // Repeat until only one symbol is left on the heap: + // + // Take the two least frequent symbols off the top of the heap. + // Create a new node that has first two nodes as children, and + // whose frequency is the sum of the frequencies of the first + // two nodes. Put the new node back into the heap. + // + // The last node left on the heap is the root of the tree. For each + // leaf node, the distance between the root and the leaf is the length + // of the code for the corresponding symbol. + // + // The loop below doesn't actually build the tree; instead we compute + // the distances of the leaves from the root on the fly. When a new + // node is added to the heap, then that node's descendants are linked + // into a single linear list that starts at the new node, and the code + // lengths of the descendants (that is, their distance from the root + // of the tree) are incremented by one. + let mut heap = BinaryHeap::with_capacity(frequency_count); + for index in frequency_heap.drain(..frequency_count) { + heap.push(HeapFrequency { position: index, frequency: frequencies[index] }); + } + + let mut s_code = vec![0_u64; ENCODING_TABLE_SIZE]; + + while frequency_count > 1 { + // Find the indices, mm and m, of the two smallest non-zero frq + // values in fHeap, add the smallest frq to the second-smallest + // frq, and remove the smallest frq value from fHeap. + let (high_position, low_position) = { + let smallest_frequency = heap.pop().expect("heap empty bug"); + frequency_count -= 1; + + let mut second_smallest_frequency = heap.peek_mut().expect("heap empty bug"); + second_smallest_frequency.frequency += smallest_frequency.frequency; + + (second_smallest_frequency.position, smallest_frequency.position) + }; + + // The entries in scode are linked into lists with the + // entries in hlink serving as "next" pointers and with + // the end of a list marked by hlink[j] == j. + // + // Traverse the lists that start at scode[m] and scode[mm]. + // For each element visited, increment the length of the + // corresponding code by one bit. (If we visit scode[j] + // during the traversal, then the code for symbol j becomes + // one bit longer.) + // + // Merge the lists that start at scode[m] and scode[mm] + // into a single list that starts at scode[m]. + + // Add a bit to all codes in the first list. + let mut index = high_position; // TODO fold() + loop { + s_code[index] += 1; + debug_assert!(s_code[index] <= 58); + + // merge the two lists + if links[index] == index { + links[index] = low_position; + break; + } + + index = links[index]; + } + + // Add a bit to all codes in the second list + let mut index = low_position; // TODO fold() + loop { + s_code[index] += 1; + debug_assert!(s_code[index] <= 58); + + if links[index] == index { + break; + } + + index = links[index]; + } + } + + // Build a canonical Huffman code table, replacing the code + // lengths in scode with (code, code length) pairs. Copy the + // code table from scode into frq. + build_canonical_table(&mut s_code); + frequencies.copy_from_slice(&s_code); + + (min_frequency_index, max_frequency_index) +} + + +#[inline] fn length(code: u64) -> u64 { code & 63 } +#[inline] fn code(code: u64) -> u64 { code >> 6 } + +const INVALID_BIT_COUNT: &'static str = "invalid number of bits"; +const INVALID_TABLE_ENTRY: &'static str = "invalid code table entry"; +const NOT_ENOUGH_DATA: &'static str = "decoded data are shorter than expected"; +const INVALID_TABLE_SIZE: &'static str = "unexpected end of code table data"; +const TABLE_TOO_LONG: &'static str = "code table is longer than expected"; +const INVALID_CODE: &'static str = "invalid code"; +const TOO_MUCH_DATA: &'static str = "decoded data are longer than expected"; + + +#[cfg(test)] +mod test { + use super::*; + use rand::{Rng, SeedableRng}; + + const UNCOMPRESSED_ARRAY: [u16; 100] = [ + 3852, 2432, 33635, 49381, 10100, 15095, 62693, 63738, 62359, 5013, 7715, 59875, 28182, + 34449, 19983, 20399, 63407, 29486, 4877, 26738, 44815, 14042, 46091, 48228, 25682, 35412, + 7582, 65069, 6632, 54124, 13798, 27503, 52154, 61961, 30474, 46880, 39097, 15754, 52897, + 42371, 54053, 14178, 48276, 34591, 42602, 32126, 42062, 31474, 16274, 55991, 2882, 17039, + 56389, 20835, 57057, 54081, 3414, 33957, 52584, 10222, 25139, 40002, 44980, 1602, 48021, + 19703, 6562, 61777, 41582, 201, 31253, 51790, 15888, 40921, 3627, 12184, 16036, 26349, + 3159, 29002, 14535, 50632, 18118, 33583, 18878, 59470, 32835, 9347, 16991, 21303, 26263, + 8312, 14017, 41777, 43240, 3500, 60250, 52437, 45715, 61520, + ]; + + const UNCOMPRESSED_ARRAY_SPECIAL: [u16; 100] = [ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28182, + 0, 65534, 0, 65534, 0, 65534, 0, 65534, 0, 0, 0, 0, 0, + 0, 0, 0, 54124, 13798, 27503, 52154, 61961, 30474, 46880, 39097, 15754, 52897, + 42371, 54053, 14178, 48276, 34591, 42602, 32126, 42062, 31474, 16274, 55991, 2882, 17039, + 56389, 20835, 57057, 54081, 3414, 33957, 52584, 10222, 25139, 40002, 44980, 1602, 48021, + 19703, 6562, 61777, 41582, 201, 31253, 51790, 15888, 40921, 3627, 12184, 16036, 26349, + 3159, 29002, 14535, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534, + ]; + + const COMPRESSED_ARRAY: [u8; 703] = [ + 0xc9, 0x0, 0x0, 0x0, 0x2e, 0xfe, 0x0, 0x0, 0x56, 0x2, 0x0, 0x0, 0xa2, 0x2, 0x0, 0x0, 0x0, + 0x0, 0x0, 0x0, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd6, 0x47, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28, 0x1f, 0xff, 0xff, 0xed, 0x87, 0xff, 0xff, 0xf0, + 0x91, 0xff, 0xf8, 0x1f, 0xf4, 0xf1, 0xff, 0x78, 0x1f, 0xfd, 0xa1, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xfa, 0xc7, 0xfe, 0x4, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xed, 0x1f, 0xf3, 0xf1, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe8, 0x7, 0xfd, 0xf8, + 0x7f, 0xff, 0xff, 0xff, 0xfd, 0x10, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x51, 0xff, + 0xff, 0xff, 0xff, 0xfe, 0x1, 0xff, 0x73, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xfc, 0xa4, 0x7f, 0xf5, 0x7, 0xfc, 0x48, 0x7f, 0xe0, 0x47, 0xff, 0xff, + 0xf5, 0x91, 0xff, 0xff, 0xff, 0xff, 0xf1, 0xf1, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x21, 0xff, + 0x7f, 0x1f, 0xf8, 0xd1, 0xff, 0xe7, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xbc, 0x1f, 0xf2, 0x91, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1c, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xe7, + 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, 0x8c, 0x7f, 0xff, 0xff, 0xc, 0x1f, 0xff, 0xff, + 0xe5, 0x7, 0xff, 0xff, 0xfa, 0x81, 0xff, 0xff, 0xff, 0x20, 0x7f, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xbc, 0x7f, 0xff, 0xff, 0xff, 0xfc, 0x38, 0x7f, 0xff, + 0xff, 0xff, 0xfc, 0xd0, 0x7f, 0xd3, 0xc7, 0xff, 0xff, 0xf7, 0x91, 0xff, 0xff, 0xff, 0xff, + 0xfe, 0xc1, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x61, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc7, + 0x87, 0xff, 0xff, 0xfd, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x87, 0xff, 0xff, + 0xff, 0xff, 0xfe, 0x87, 0xff, 0x58, 0x7f, 0xff, 0xff, 0xff, 0xfd, 0xec, 0x7f, 0xff, 0xff, + 0xff, 0xfe, 0xd0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0x6c, 0x7f, 0xcb, 0x47, 0xff, 0xff, 0xf3, + 0x61, 0xff, 0xff, 0xff, 0x80, 0x7f, 0xe1, 0xc7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, + 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x18, 0x1f, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xfd, 0xcc, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf8, 0x11, 0xff, 0xff, + 0xff, 0xff, 0xf8, 0x41, 0xff, 0xbc, 0x1f, 0xff, 0xff, 0xc4, 0x47, 0xff, 0xff, 0xf2, 0x91, + 0xff, 0xe0, 0x1f, 0xff, 0xff, 0xff, 0xff, 0x6d, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0x2, 0x1f, 0xf9, 0xe1, 0xff, 0xff, 0xff, 0xff, 0xfc, 0xe1, + 0xff, 0xff, 0xfd, 0xb0, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe1, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x5a, 0x1f, 0xfc, 0x81, 0xbf, 0x29, 0x1b, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xf3, 0x61, 0xbf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc8, 0x1b, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xb1, 0xbf, 0xff, 0xfd, 0x80, 0x6f, 0xff, + 0xff, 0xf, 0x1b, 0xf8, 0xc1, 0xbf, 0xff, 0xfc, 0xb4, 0x6f, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xda, 0x46, 0xfc, 0x54, 0x6f, 0xc9, 0x6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x21, 0x1b, 0xff, 0xff, 0xe0, 0x86, 0xff, 0xff, + 0xff, 0xff, 0xe2, 0xc6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x91, 0xbf, 0xff, 0xfe, 0x24, 0x6f, 0xff, 0xff, 0x6b, + 0x1b, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xb1, 0xbf, 0xfa, 0x1b, 0xfb, 0x11, + 0xbf, 0xff, 0xfe, 0x8, 0x6f, 0xff, 0xff, 0x42, 0x1b, 0xff, 0xff, 0xff, 0xff, 0xb9, 0x1b, + 0xff, 0xff, 0xcf, 0xc6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x31, + 0x86, 0x10, 0x9, 0xb4, 0xe4, 0x4c, 0xf7, 0xef, 0x42, 0x87, 0x6a, 0xb5, 0xc2, 0x34, 0x9e, + 0x2f, 0x12, 0xae, 0x21, 0x68, 0xf2, 0xa8, 0x74, 0x37, 0xe1, 0x98, 0x14, 0x59, 0x57, 0x2c, + 0x24, 0x3b, 0x35, 0x6c, 0x1b, 0x8b, 0xcc, 0xe6, 0x13, 0x38, 0xc, 0x8e, 0xe2, 0xc, 0xfe, + 0x49, 0x73, 0xbc, 0x2b, 0x7b, 0x9, 0x27, 0x79, 0x14, 0xc, 0x94, 0x42, 0xf8, 0x7c, 0x1, + 0x8d, 0x26, 0xde, 0x87, 0x26, 0x71, 0x50, 0x45, 0xc6, 0x28, 0x40, 0xd5, 0xe, 0x8d, 0x8, + 0x1e, 0x4c, 0xa4, 0x79, 0x57, 0xf0, 0xc3, 0x6d, 0x5c, 0x6d, 0xc0, + ]; + + fn fill(rng: &mut impl Rng, size: usize) -> Vec<u16> { + if rng.gen_bool(0.2) { + let value = if rng.gen_bool(0.5) { 0 } else { u16::MAX }; + return vec![ value; size ]; + } + + let mut data = vec![0_u16; size]; + + data.iter_mut().for_each(|v| { + *v = rng.gen_range(0_u16 .. u16::MAX); + }); + + data + } + + /// Test using both input and output from a custom ILM OpenEXR test. + #[test] + fn compression_comparation() { + let raw = compress(&UNCOMPRESSED_ARRAY).unwrap(); + assert_eq!(raw, COMPRESSED_ARRAY.to_vec()); + } + + #[test] + fn round_trip() { + let mut random = rand::rngs::StdRng::from_seed(SEED); + let raw = fill(&mut random, u16::MAX as usize); + + let compressed = compress(&raw).unwrap(); + let uncompressed = decompress(&compressed, raw.len()).unwrap(); + + assert_eq!(uncompressed, raw); + } + + #[test] + fn repetitions_special() { + let raw = UNCOMPRESSED_ARRAY_SPECIAL; + + let compressed = compress(&raw).unwrap(); + let uncompressed = decompress(&compressed, raw.len()).unwrap(); + + assert_eq!(uncompressed, raw.to_vec()); + } + + #[test] + fn round_trip100() { + let mut random = rand::rngs::StdRng::from_seed(SEED); + + for size_multiplier in 1..10 { + let raw = fill(&mut random, size_multiplier * 50_000); + + let compressed = compress(&raw).unwrap(); + let uncompressed = decompress(&compressed, raw.len()).unwrap(); + + assert_eq!(uncompressed, raw); + } + } + + #[test] + fn test_zeroes(){ + let uncompressed: &[u16] = &[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; + + let compressed = compress(uncompressed).unwrap(); + let decompressed = decompress(&compressed, uncompressed.len()).unwrap(); + + assert_eq!(uncompressed, decompressed.as_slice()); + } + + const SEED: [u8; 32] = [ + 12,155,32,34,112,109,98,54, + 12,255,32,34,112,109,98,55, + 12,155,32,34,12,109,98,54, + 12,35,32,34,112,109,48,54, + ]; +} diff --git a/vendor/exr/src/compression/piz/mod.rs b/vendor/exr/src/compression/piz/mod.rs new file mode 100644 index 0000000..1d77663 --- /dev/null +++ b/vendor/exr/src/compression/piz/mod.rs @@ -0,0 +1,437 @@ + + +//! The PIZ compression method is a wavelet compression, +//! based on the PIZ image format, customized for OpenEXR. +// inspired by https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImf/ImfPizCompressor.cpp + +mod huffman; +mod wavelet; + +use crate::prelude::*; +use crate::io::Data; +use crate::meta::attribute::*; +use crate::compression::{ByteVec, Bytes, mod_p}; +use crate::error::{usize_to_i32, usize_to_u16}; +use std::convert::TryFrom; + + +const U16_RANGE: usize = (1_i32 << 16_i32) as usize; +const BITMAP_SIZE: usize = (U16_RANGE as i32 >> 3_i32) as usize; + +#[derive(Debug)] +struct ChannelData { + tmp_start_index: usize, + tmp_end_index: usize, + + resolution: Vec2<usize>, + y_sampling: usize, + samples_per_pixel: usize, +} + + +pub fn decompress( + channels: &ChannelList, + compressed: ByteVec, + rectangle: IntegerBounds, + expected_byte_size: usize, // TODO remove expected byte size as it can be computed with `rectangle.size.area() * channels.bytes_per_pixel` + pedantic: bool +) -> Result<ByteVec> +{ + let expected_u16_count = expected_byte_size / 2; + debug_assert_eq!(expected_byte_size, rectangle.size.area() * channels.bytes_per_pixel); + debug_assert!(!channels.list.is_empty()); + + if compressed.is_empty() { + return Ok(Vec::new()); + } + + debug_assert_ne!(expected_u16_count, 0); + + let mut bitmap = vec![0_u8; BITMAP_SIZE]; // FIXME use bit_vec! + + let mut remaining_input = compressed.as_slice(); + let min_non_zero = u16::read(&mut remaining_input)? as usize; + let max_non_zero = u16::read(&mut remaining_input)? as usize; + + if max_non_zero >= BITMAP_SIZE || min_non_zero >= BITMAP_SIZE { + return Err(Error::invalid("compression data")); + } + + if min_non_zero <= max_non_zero { + u8::read_slice(&mut remaining_input, &mut bitmap[min_non_zero ..= max_non_zero])?; + } + + let (lookup_table, max_value) = reverse_lookup_table_from_bitmap(&bitmap); + + { + let length = i32::read(&mut remaining_input)?; + if pedantic && length as i64 != remaining_input.len() as i64 { + // TODO length might be smaller than remaining?? + return Err(Error::invalid("compression data")); + } + } + + let mut tmp_u16_buffer = huffman::decompress(remaining_input, expected_u16_count)?; + + let mut channel_data: SmallVec<[ChannelData; 6]> = { + let mut tmp_read_index = 0; + + let channel_data = channels.list.iter().map(|channel| { + let channel_data = ChannelData { + tmp_start_index: tmp_read_index, + tmp_end_index: tmp_read_index, + y_sampling: channel.sampling.y(), + resolution: channel.subsampled_resolution(rectangle.size), + samples_per_pixel: channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample() + }; + + tmp_read_index += channel_data.resolution.area() * channel_data.samples_per_pixel; + channel_data + }).collect(); + + debug_assert_eq!(tmp_read_index, expected_u16_count); + channel_data + }; + + for channel in &channel_data { + let u16_count = channel.resolution.area() * channel.samples_per_pixel; + let u16s = &mut tmp_u16_buffer[channel.tmp_start_index .. channel.tmp_start_index + u16_count]; + + for offset in 0..channel.samples_per_pixel { // if channel is 32 bit, compress interleaved as two 16 bit values + wavelet::decode( + &mut u16s[offset..], + channel.resolution, + Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel), + max_value + )?; + } + } + + // Expand the pixel data to their original range + apply_lookup_table(&mut tmp_u16_buffer, &lookup_table); + + // let out_buffer_size = (max_scan_line_size * scan_line_count) + 65536 + 8192; // TODO not use expected byte size? + let mut out = Vec::with_capacity(expected_byte_size); + + for y in rectangle.position.y() .. rectangle.end().y() { + for channel in &mut channel_data { + if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { + continue; + } + + let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel; + let next_tmp_end_index = channel.tmp_end_index + u16s_per_line; + let values = &tmp_u16_buffer[channel.tmp_end_index .. next_tmp_end_index]; + channel.tmp_end_index = next_tmp_end_index; + + // TODO do not convert endianness for f16-only images + // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 + // We can support uncompressed data in the machine's native format + // if all image channels are of type HALF, and if the Xdr and the + // native representations of a half have the same size. + u16::write_slice(&mut out, values).expect("write to in-memory failed"); + } + } + + for (previous, current) in channel_data.iter().zip(channel_data.iter().skip(1)) { + debug_assert_eq!(previous.tmp_end_index, current.tmp_start_index); + } + + debug_assert_eq!(channel_data.last().unwrap().tmp_end_index, tmp_u16_buffer.len()); + debug_assert_eq!(out.len(), expected_byte_size); + + // TODO optimize for when all channels are f16! + // we should be able to omit endianness conversions in that case + // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 + Ok(super::convert_little_endian_to_current(out, channels, rectangle)) +} + + + +pub fn compress( + channels: &ChannelList, + uncompressed: ByteVec, + rectangle: IntegerBounds +) -> Result<ByteVec> +{ + if uncompressed.is_empty() { + return Ok(Vec::new()); + } + + // TODO do not convert endianness for f16-only images + // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 + let uncompressed = super::convert_current_to_little_endian(uncompressed, channels, rectangle); + let uncompressed = uncompressed.as_slice();// TODO no alloc + + let mut tmp = vec![0_u16; uncompressed.len() / 2 ]; + let mut channel_data: SmallVec<[ChannelData; 6]> = { + let mut tmp_end_index = 0; + + let vec = channels.list.iter().map(|channel| { + let number_samples = channel.subsampled_resolution(rectangle.size); + let byte_size = channel.sample_type.bytes_per_sample() / SampleType::F16.bytes_per_sample(); + let byte_count = byte_size * number_samples.area(); + + let channel = ChannelData { + tmp_end_index, + tmp_start_index: tmp_end_index, + y_sampling: channel.sampling.y(), + resolution: number_samples, + samples_per_pixel: byte_size, + }; + + tmp_end_index += byte_count; + channel + }).collect(); + + debug_assert_eq!(tmp_end_index, tmp.len()); + vec + }; + + let mut remaining_uncompressed_bytes = uncompressed; + for y in rectangle.position.y() .. rectangle.end().y() { + for channel in &mut channel_data { + if mod_p(y, usize_to_i32(channel.y_sampling)) != 0 { continue; } + let u16s_per_line = channel.resolution.x() * channel.samples_per_pixel; + let next_tmp_end_index = channel.tmp_end_index + u16s_per_line; + let target = &mut tmp[channel.tmp_end_index .. next_tmp_end_index]; + channel.tmp_end_index = next_tmp_end_index; + + // TODO do not convert endianness for f16-only images + // see https://github.com/AcademySoftwareFoundation/openexr/blob/3bd93f85bcb74c77255f28cdbb913fdbfbb39dfe/OpenEXR/IlmImf/ImfTiledOutputFile.cpp#L750-L842 + // We can support uncompressed data in the machine's native format + // if all image channels are of type HALF, and if the Xdr and the + // native representations of a half have the same size. + u16::read_slice(&mut remaining_uncompressed_bytes, target).expect("in-memory read failed"); + } + } + + + let (min_non_zero, max_non_zero, bitmap) = bitmap_from_data(&tmp); + let (max_value, table) = forward_lookup_table_from_bitmap(&bitmap); + apply_lookup_table(&mut tmp, &table); + + let mut piz_compressed = Vec::with_capacity(uncompressed.len() / 2); + u16::try_from(min_non_zero)?.write(&mut piz_compressed)?; + u16::try_from(max_non_zero)?.write(&mut piz_compressed)?; + + if min_non_zero <= max_non_zero { + piz_compressed.extend_from_slice(&bitmap[min_non_zero ..= max_non_zero]); + } + + for channel in channel_data { + for offset in 0 .. channel.samples_per_pixel { + wavelet::encode( + &mut tmp[channel.tmp_start_index + offset .. channel.tmp_end_index], + channel.resolution, + Vec2(channel.samples_per_pixel, channel.resolution.x() * channel.samples_per_pixel), + max_value + )?; + } + } + + let huffman_compressed: Vec<u8> = huffman::compress(&tmp)?; + u8::write_i32_sized_slice(&mut piz_compressed, &huffman_compressed).expect("in-memory write failed"); + + Ok(piz_compressed) +} + + +pub fn bitmap_from_data(data: &[u16]) -> (usize, usize, Vec<u8>) { + let mut bitmap = vec![0_u8; BITMAP_SIZE]; + + for value in data { + bitmap[*value as usize >> 3] |= 1 << (*value as u8 & 7); + } + + bitmap[0] = bitmap[0] & !1; // zero is not explicitly stored in the bitmap; we assume that the data always contain zeroes + + let min_index = bitmap.iter().position(|&value| value != 0); + let max_index = min_index.map(|min| // only if min was found + min + bitmap[min..].iter().rposition(|&value| value != 0).expect("[min] not found") + ); + + (min_index.unwrap_or(0), max_index.unwrap_or(0), bitmap) +} + +pub fn forward_lookup_table_from_bitmap(bitmap: &[u8]) -> (u16, Vec<u16>) { + debug_assert_eq!(bitmap.len(), BITMAP_SIZE); + + let mut table = vec![0_u16; U16_RANGE]; + let mut count = 0_usize; + + for (index, entry) in table.iter_mut().enumerate() { + if index == 0 || bitmap[index >> 3] as usize & (1 << (index & 7)) != 0 { + *entry = usize_to_u16(count).unwrap(); + count += 1; + } + } + + (usize_to_u16(count - 1).unwrap(), table) +} + +fn reverse_lookup_table_from_bitmap(bitmap: Bytes<'_>) -> (Vec<u16>, u16) { + let mut table = Vec::with_capacity(U16_RANGE); + + for index in 0 .. U16_RANGE { // cannot use iter because filter removes capacity sizehint + if index == 0 || ((bitmap[index >> 3] as usize & (1 << (index & 7))) != 0) { + table.push(usize_to_u16(index).unwrap()); + } + } + + debug_assert!(!table.is_empty()); + let max_value = usize_to_u16(table.len() - 1).unwrap(); + + // fill remaining up to u16 range + assert!(table.len() <= U16_RANGE); + table.resize(U16_RANGE, 0); + + (table, max_value) +} + +fn apply_lookup_table(data: &mut [u16], table: &[u16]) { + for data in data { + *data = table[*data as usize]; + } +} + +#[cfg(test)] +mod test { + use crate::prelude::*; + use crate::compression::ByteVec; + use crate::compression::piz; + use crate::meta::attribute::*; + + fn test_roundtrip_noise_with(channels: ChannelList, rectangle: IntegerBounds){ + let pixel_bytes: ByteVec = (0 .. 37).map(|_| rand::random()).collect::<Vec<u8>>().into_iter() + .cycle().take(channels.bytes_per_pixel * rectangle.size.area()) + .collect(); + + let compressed = piz::compress(&channels, pixel_bytes.clone(), rectangle).unwrap(); + let decompressed = piz::decompress(&channels, compressed, rectangle, pixel_bytes.len(), true).unwrap(); + + assert_eq!(pixel_bytes, decompressed); + } + + + #[test] + fn roundtrip_any_sample_type(){ + for &sample_type in &[SampleType::F16, SampleType::F32, SampleType::U32] { + let channel = ChannelDescription { + sample_type, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }; + + let channels = ChannelList::new(smallvec![ channel.clone(), channel ]); + + let rectangle = IntegerBounds { + position: Vec2(-30, 100), + size: Vec2(1080, 720), + }; + + test_roundtrip_noise_with(channels, rectangle); + } + } + + #[test] + fn roundtrip_two_channels(){ + let channel = ChannelDescription { + sample_type: SampleType::F16, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }; + + let channel2 = ChannelDescription { + sample_type: SampleType::F32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }; + + let channels = ChannelList::new(smallvec![ channel, channel2 ]); + + let rectangle = IntegerBounds { + position: Vec2(-3, 1), + size: Vec2(223, 3132), + }; + + test_roundtrip_noise_with(channels, rectangle); + } + + + + #[test] + fn roundtrip_seven_channels(){ + let channels = ChannelList::new(smallvec![ + ChannelDescription { + sample_type: SampleType::F32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + + ChannelDescription { + sample_type: SampleType::F32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + + ChannelDescription { + sample_type: SampleType::F32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + + ChannelDescription { + sample_type: SampleType::F16, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + + ChannelDescription { + sample_type: SampleType::F32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + + ChannelDescription { + sample_type: SampleType::F32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + + ChannelDescription { + sample_type: SampleType::U32, + + name: Default::default(), + quantize_linearly: false, + sampling: Vec2(1,1) + }, + ]); + + let rectangle = IntegerBounds { + position: Vec2(-3, 1), + size: Vec2(1323, 132), + }; + + test_roundtrip_noise_with(channels, rectangle); + } + +}
\ No newline at end of file diff --git a/vendor/exr/src/compression/piz/wavelet.rs b/vendor/exr/src/compression/piz/wavelet.rs new file mode 100644 index 0000000..76f996e --- /dev/null +++ b/vendor/exr/src/compression/piz/wavelet.rs @@ -0,0 +1,422 @@ + +//! Wavelet encoding and decoding. +// see https://github.com/AcademySoftwareFoundation/openexr/blob/8cd1b9210855fa4f6923c1b94df8a86166be19b1/OpenEXR/IlmImf/ImfWav.cpp + +use crate::error::IoResult; +use crate::math::Vec2; + +#[allow(unused)] +#[inline] +pub fn encode(buffer: &mut [u16], count: Vec2<usize>, size: Vec2<usize>, max_value: u16) -> IoResult<()> { + if is_14_bit(max_value) { encode_14_or_16_bit(buffer, count, size, true) } + else { encode_14_or_16_bit(buffer, count, size, false) } +} + +#[allow(unused)] +#[inline] +pub fn encode_14_or_16_bit( + buffer: &mut [u16], + Vec2(count_x, count_y): Vec2<usize>, + Vec2(offset_x, offset_y): Vec2<usize>, + is_14_bit: bool // true if maximum buffer[i] value < (1 << 14) +) -> IoResult<()> +{ + let count = count_x.min(count_y); + let encode = if is_14_bit { encode_14bit } else { encode_16bit }; // assume inlining and constant propagation + + let mut p: usize = 1; // TODO i32? + let mut p2: usize = 2; // TODO what is p?? + + while p2 <= count { + + let mut position_y = 0; + let end_y = 0 + offset_y * (count_y - p2); + let (offset1_x, offset1_y) = (offset_x * p, offset_y * p); + let (offset2_x, offset2_y) = (offset_x * p2, offset_y * p2); + + // y-loop + while position_y <= end_y { // TODO: for py in (index..ey).nth(offset_2.0) + + let mut position_x = position_y; + let end_x = position_x + offset_x * (count_x - p2); + + // x-loop + while position_x <= end_x { + let pos_right = position_x + offset1_x; + let pos_top = position_x + offset1_y; + let pos_top_right = pos_top + offset1_x; + + assert!(position_x < buffer.len()); + assert!(pos_right < buffer.len()); + assert!(pos_top < buffer.len()); + assert!(pos_top_right < buffer.len()); + + if is_14_bit { + debug_assert!(self::is_14_bit(buffer[position_x])); + debug_assert!(self::is_14_bit(buffer[pos_right])); + } + + let (center, right) = encode(buffer[position_x], buffer[pos_right]); + let (top, top_right) = encode(buffer[pos_top], buffer[pos_top_right]); + + let (center, top) = encode(center, top); + let (right, top_right) = encode(right, top_right); + + buffer[position_x] = center; // TODO rustify + buffer[pos_top] = top; + buffer[pos_right] = right; + buffer[pos_top_right] = top_right; + + position_x += offset2_x; + } + + // encode remaining odd pixel column + if count_x & p != 0 { + let pos_top = position_x + offset1_y; + let (center, top) = encode(buffer[position_x], buffer[pos_top]); + + buffer[position_x] = center; + buffer[pos_top] = top; + } + + position_y += offset2_y; + } + + // encode possibly remaining odd row + if count_y & p != 0 { + let mut position_x = position_y; + let end_x = position_y + offset_x * (count_x - p2); + + while position_x <= end_x { + let pos_right = position_x + offset1_x; + let (center, right) = encode(buffer[position_x], buffer[pos_right]); + + buffer[pos_right] = right; + buffer[position_x] = center; + + position_x += offset2_x; + } + } + + p = p2; + p2 <<= 1; + } + + Ok(()) +} + +#[inline] +pub fn decode(buffer: &mut [u16], count: Vec2<usize>, size: Vec2<usize>, max_value: u16) -> IoResult<()> { + if is_14_bit(max_value) { decode_14_or_16_bit(buffer, count, size, true) } + else { decode_14_or_16_bit(buffer, count, size, false) } +} + +#[inline] +pub fn decode_14_or_16_bit( + buffer: &mut [u16], + Vec2(count_x, count_y): Vec2<usize>, + Vec2(offset_x, offset_y): Vec2<usize>, + is_14_bit: bool // true if maximum buffer[i] value < (1 << 14) +) -> IoResult<()> +{ + let count = count_x.min(count_y); + let decode = if is_14_bit { decode_14bit } else { decode_16bit }; // assume inlining and constant propagation + + let mut p: usize = 1; // TODO i32? + let mut p2: usize; // TODO i32? + + // search max level + while p <= count { + p <<= 1; + } + + p >>= 1; + p2 = p; + p >>= 1; + + while p >= 1 { + + let mut position_y = 0; + let end_y = 0 + offset_y * (count_y - p2); + + let (offset1_x, offset1_y) = (offset_x * p, offset_y * p); + let (offset2_x, offset2_y) = (offset_x * p2, offset_y * p2); + + debug_assert_ne!(offset_x, 0, "offset should not be zero"); + debug_assert_ne!(offset_y, 0, "offset should not be zero"); + + while position_y <= end_y { + let mut position_x = position_y; + let end_x = position_x + offset_x * (count_x - p2); + + while position_x <= end_x { + let pos_right = position_x + offset1_x; + let pos_top = position_x + offset1_y; + let pos_top_right = pos_top + offset1_x; + + assert!(position_x < buffer.len()); + assert!(pos_right < buffer.len()); + assert!(pos_top < buffer.len()); + assert!(pos_top_right < buffer.len()); + + let (center, top) = decode(buffer[position_x], buffer[pos_top]); + let (right, top_right) = decode(buffer[pos_right], buffer[pos_top_right]); + + let (center, right) = decode(center, right); + let (top, top_right) = decode(top, top_right); + + buffer[position_x] = center; // TODO rustify + buffer[pos_top] = top; + buffer[pos_right] = right; + buffer[pos_top_right] = top_right; + + position_x += offset2_x; + } + + // decode last odd remaining x value + if count_x & p != 0 { + let pos_top = position_x + offset1_y; + let (center, top) = decode(buffer[position_x], buffer[pos_top]); + + buffer[position_x] = center; + buffer[pos_top] = top; + } + + position_y += offset2_y; + } + + // decode remaining odd row + if count_y & p != 0 { + let mut position_x = position_y; + let end_x = position_x + offset_x * (count_x - p2); + + while position_x <= end_x { + let pos_right = position_x + offset1_x; + let (center, right) = decode(buffer[position_x], buffer[pos_right]); + + buffer[position_x] = center; + buffer[pos_right] = right; + + position_x += offset2_x; + } + } + + p2 = p; + p >>= 1; + } + + Ok(()) +} + +#[inline] +fn is_14_bit(value: u16) -> bool { + value < (1 << 14) +} + +/// Untransformed data values should be less than (1 << 14). +#[inline] +#[allow(unused)] +fn encode_14bit(a: u16, b: u16) -> (u16, u16) { + let (a, b) = (a as i16, b as i16); + + let m = (a + b) >> 1; + let d = a - b; + + (m as u16, d as u16) // TODO explicitly wrap? +} + +#[inline] +#[allow(unused)] +fn decode_14bit(l: u16, h: u16) -> (u16, u16) { + let (l, h) = (l as i16, h as i16); + + let hi = h as i32; + let ai = l as i32 + (hi & 1) + (hi >> 1); + + let a = ai as i16; // TODO explicitly wrap? + let b = (ai - hi) as i16; // TODO explicitly wrap? + + (a as u16, b as u16) // TODO explicitly wrap? +} + + +const BIT_COUNT: i32 = 16; +const OFFSET: i32 = 1 << (BIT_COUNT - 1); +const MOD_MASK: i32 = (1 << BIT_COUNT) - 1; + +#[inline] +fn encode_16bit(a: u16, b: u16) -> (u16, u16) { + let (a, b) = (a as i32, b as i32); + + let a_offset = (a + OFFSET) & MOD_MASK; + let mut m = (a_offset + b) >> 1; + let d = a_offset - b; + + if d < 0 { m = (m + OFFSET) & MOD_MASK; } + let d = d & MOD_MASK; + + (m as u16, d as u16) // TODO explicitly wrap? +} + +#[inline] +fn decode_16bit(l: u16, h: u16) -> (u16, u16) { + let (m, d) = (l as i32, h as i32); + + let b = (m - (d >> 1)) & MOD_MASK; + let a = (d + b - OFFSET) & MOD_MASK; + + (a as u16, b as u16) // TODO explicitly wrap? +} + + + +#[cfg(test)] +mod test { + use crate::math::Vec2; + use crate::compression::piz::wavelet::is_14_bit; + + #[test] + fn roundtrip_14_bit_values(){ + let data = [ + (13, 54), (3, 123), (423, 53), (1, 23), (23, 515), (513, 43), + (16374, 16381), (16284, 3), (2, 1), (0, 0), (0, 4), (3, 0) + ]; + + for &values in &data { + let (l, h) = super::encode_14bit(values.0, values.1); + let result = super::decode_14bit(l, h); + assert_eq!(values, result); + } + } + + #[test] + fn roundtrip_16_bit_values(){ + let data = [ + (13, 54), (3, 123), (423, 53), (1, 23), (23, 515), (513, 43), + (16385, 56384), (18384, 36384), (2, 1), (0, 0), (0, 4), (3, 0) + ]; + + for &values in &data { + let (l, h) = super::encode_16bit(values.0, values.1); + let result = super::decode_16bit(l, h); + assert_eq!(values, result); + } + } + + #[test] + fn roundtrip_14bit_image(){ + let data: [u16; 6 * 4] = [ + 13, 54, 3, 123, 423, 53, + 1, 23, 23, 515, 513, 43, + 16374, 16381, 16284, 3, 2, 1, + 0, 0, 0, 4, 3, 0, + ]; + + let max = *data.iter().max().unwrap(); + debug_assert!(is_14_bit(max)); + + let mut transformed = data.clone(); + + super::encode(&mut transformed, Vec2(6, 4), Vec2(1,6), max).unwrap(); + super::decode(&mut transformed, Vec2(6, 4), Vec2(1,6), max).unwrap(); + + assert_eq!(data, transformed); + } + + #[test] + fn roundtrip_16bit_image(){ + let data: [u16; 6 * 4] = [ + 13, 54, 3, 123, 423, 53, + 1, 23, 23, 515, 513, 43, + 16385, 56384, 18384, 36384, 2, 1, + 0, 0, 0, 4, 3, 0, + ]; + + let max = *data.iter().max().unwrap(); + debug_assert!(!is_14_bit(max)); + + let mut transformed = data.clone(); + + super::encode(&mut transformed, Vec2(6, 4), Vec2(1,6), max).unwrap(); + super::decode(&mut transformed, Vec2(6, 4), Vec2(1,6), max).unwrap(); + + assert_eq!(data, transformed); + } + + /// inspired by https://github.com/AcademySoftwareFoundation/openexr/blob/master/OpenEXR/IlmImfTest/testWav.cpp + #[test] + fn ground_truth(){ + test_size(1, 1); + test_size(2, 2); + test_size(32, 32); + test_size(1024, 16); + test_size(16, 1024); + test_size(997, 37); + test_size(37, 997); + test_size(1024, 1024); + test_size(997, 997); + + fn test_size(x: usize, y: usize) { + let xy = Vec2(x, y); + roundtrip(noise_14bit(xy), xy); + roundtrip(noise_16bit(xy), xy); + roundtrip(solid(xy, 0), xy); + roundtrip(solid(xy, 1), xy); + roundtrip(solid(xy, 0xffff), xy); + roundtrip(solid(xy, 0x3fff), xy); + roundtrip(solid(xy, 0x3ffe), xy); + roundtrip(solid(xy, 0x3fff), xy); + roundtrip(solid(xy, 0xfffe), xy); + roundtrip(solid(xy, 0xffff), xy); + roundtrip(verticals(xy, 0xffff), xy); + roundtrip(verticals(xy, 0x3fff), xy); + roundtrip(horizontals(xy, 0xffff), xy); + roundtrip(horizontals(xy, 0x3fff), xy); + roundtrip(diagonals(xy, 0xffff), xy); + roundtrip(diagonals(xy, 0x3fff), xy); + } + + fn roundtrip(data: Vec<u16>, size: Vec2<usize>){ + assert_eq!(data.len(), size.area()); + + let max = *data.iter().max().unwrap(); + let offset = Vec2(1, size.0); + + let mut transformed = data.clone(); + super::encode(&mut transformed, size, offset, max).unwrap(); + super::decode(&mut transformed, size, offset, max).unwrap(); + + assert_eq!(data, transformed); + } + + fn noise_14bit(size: Vec2<usize>) -> Vec<u16> { + (0..size.area()).map(|_| (rand::random::<i32>() & 0x3fff) as u16).collect() + } + + fn noise_16bit(size: Vec2<usize>) -> Vec<u16> { + (0..size.area()).map(|_| rand::random::<u16>()).collect() + } + + fn solid(size: Vec2<usize>, value: u16) -> Vec<u16> { + vec![value; size.area()] + } + + fn verticals(size: Vec2<usize>, max_value: u16) -> Vec<u16> { + std::iter::repeat_with(|| (0 .. size.0).map(|x| if x & 1 != 0 { 0 } else { max_value })) + .take(size.1).flatten().collect() + } + + fn horizontals(size: Vec2<usize>, max_value: u16) -> Vec<u16> { + (0 .. size.1) + .flat_map(|y| std::iter::repeat(if y & 1 != 0 { 0 } else { max_value }).take(size.0)) + .collect() + } + + fn diagonals(size: Vec2<usize>, max_value: u16) -> Vec<u16> { + (0 .. size.1).flat_map(|y| { + (0 .. size.0).map(move |x| if (x + y) & 1 != 0 { 0 } else { max_value }) + }).collect() + } + + } +}
\ No newline at end of file |