diff options
Diffstat (limited to 'vendor/exr/src/image/crop.rs')
-rw-r--r-- | vendor/exr/src/image/crop.rs | 801 |
1 files changed, 801 insertions, 0 deletions
diff --git a/vendor/exr/src/image/crop.rs b/vendor/exr/src/image/crop.rs new file mode 100644 index 0000000..63aadbf --- /dev/null +++ b/vendor/exr/src/image/crop.rs @@ -0,0 +1,801 @@ +//! Crop away unwanted pixels. Includes automatic detection of bounding rectangle. +//! Currently does not support deep data and resolution levels. + +use crate::meta::attribute::{IntegerBounds, LevelMode, ChannelList}; +use crate::math::{Vec2, RoundingMode}; +use crate::image::{Layer, FlatSamples, SpecificChannels, AnyChannels, FlatSamplesPixel, AnyChannel}; +use crate::image::write::channels::{GetPixel, WritableChannels, ChannelsWriter}; +use crate::meta::header::{LayerAttributes, Header}; +use crate::block::BlockIndex; + +/// Something that has a two-dimensional rectangular shape +pub trait GetBounds { + + /// The bounding rectangle of this pixel grid. + fn bounds(&self) -> IntegerBounds; +} + +/// Inspect the pixels in this image to determine where to crop some away +pub trait InspectSample: GetBounds { + + /// The type of pixel in this pixel grid. + type Sample; + + /// Index is not in world coordinates, but within the data window. + /// Position `(0,0)` always represents the top left pixel. + fn inspect_sample(&self, local_index: Vec2<usize>) -> Self::Sample; +} + +/// Crop some pixels ways when specifying a smaller rectangle +pub trait Crop: Sized { + + /// The type of this image after cropping (probably the same as before) + type Cropped; + + /// Crop the image to exclude unwanted pixels. + /// Panics for invalid (larger than previously) bounds. + /// The bounds are specified in absolute coordinates. + /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers. + /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint. + fn crop(self, bounds: IntegerBounds) -> Self::Cropped; + + /// Reduce your image to a smaller part, usually to save memory. + /// Crop if bounds are specified, return the original if no bounds are specified. + /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers. + /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint. + fn try_crop(self, bounds: Option<IntegerBounds>) -> CropResult<Self::Cropped, Self> { + match bounds { + Some(bounds) => CropResult::Cropped(self.crop(bounds)), + None => CropResult::Empty { original: self }, + } + } +} + +/// Cropping an image fails if the image is fully transparent. +/// Use [`or_crop_to_1x1_if_empty`] or [`or_none_if_empty`] to obtain a normal image again. +#[must_use] +#[derive(Debug, Clone, Copy, Eq, PartialEq)] +pub enum CropResult<Cropped, Old> { + + /// The image contained some pixels and has been cropped or left untouched + Cropped (Cropped), + + /// All pixels in the image would be discarded, removing the whole image + Empty { + + /// The fully discarded image which caused the cropping to fail + original: Old + } +} + +/// Crop away unwanted pixels from the border if they match the specified rule. +pub trait CropWhere<Sample>: Sized { + + /// The type of the cropped image (probably the same as the original image). + type Cropped; + + /// Crop away unwanted pixels from the border if they match the specified rule. + /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers. + /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint. + fn crop_where(self, discard_if: impl Fn(Sample) -> bool) -> CropResult<Self::Cropped, Self>; + + /// Crop away unwanted pixels from the border if they match the specified color. + /// If you want discard based on a rule, use `crop_where` with a closure instead. + /// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers. + /// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint. + fn crop_where_eq(self, discard_color: impl Into<Sample>) -> CropResult<Self::Cropped, Self> where Sample: PartialEq; + + /// Convert this data to cropped data without discarding any pixels. + fn crop_nowhere(self) -> Self::Cropped; +} + +impl<Channels> Crop for Layer<Channels> { + type Cropped = Layer<CroppedChannels<Channels>>; + + fn crop(self, bounds: IntegerBounds) -> Self::Cropped { + CroppedChannels::crop_layer(bounds, self) + } +} + +impl<T> CropWhere<T::Sample> for T where T: Crop + InspectSample { + type Cropped = <Self as Crop>::Cropped; + + fn crop_where(self, discard_if: impl Fn(T::Sample) -> bool) -> CropResult<Self::Cropped, Self> { + let smaller_bounds = { + let keep_if = |position| !discard_if(self.inspect_sample(position)); + try_find_smaller_bounds(self.bounds(), keep_if) + }; + + self.try_crop(smaller_bounds) + } + + fn crop_where_eq(self, discard_color: impl Into<T::Sample>) -> CropResult<Self::Cropped, Self> where T::Sample: PartialEq { + let discard_color: T::Sample = discard_color.into(); + self.crop_where(|sample| sample == discard_color) + } + + fn crop_nowhere(self) -> Self::Cropped { + let current_bounds = self.bounds(); + self.crop(current_bounds) + } +} + +/// A smaller window into an existing pixel storage +#[derive(Debug, Clone, Eq, PartialEq)] +pub struct CroppedChannels<Channels> { + + /// The uncropped pixel storage + pub full_channels: Channels, + + /// The uncropped pixel storage bounds + pub full_bounds: IntegerBounds, + + /// The cropped pixel storage bounds + pub cropped_bounds: IntegerBounds, +} + +impl<Channels> CroppedChannels<Channels> { + + /// Wrap a layer in a cropped view with adjusted bounds, but without reallocating your pixels + pub fn crop_layer(new_bounds: IntegerBounds, layer: Layer<Channels>) -> Layer<CroppedChannels<Channels>> { + Layer { + channel_data: CroppedChannels { + cropped_bounds: new_bounds, + full_bounds: layer.absolute_bounds(), + full_channels: layer.channel_data, + }, + + size: new_bounds.size, + + attributes: LayerAttributes { + layer_position: new_bounds.position, + .. layer.attributes + }, + + encoding: layer.encoding + } + } +} + +// TODO make cropped view readable if you only need a specific section of the image? + +// make cropped view writable: + +impl<'slf, Channels:'slf> WritableChannels<'slf> for CroppedChannels<Channels> where Channels: WritableChannels<'slf> { + fn infer_channel_list(&self) -> ChannelList { + self.full_channels.infer_channel_list() // no need for adjustments, as the layer content already reflects the changes + } + + fn infer_level_modes(&self) -> (LevelMode, RoundingMode) { + self.full_channels.infer_level_modes() + } + + type Writer = CroppedWriter<Channels::Writer>; + + fn create_writer(&'slf self, header: &Header) -> Self::Writer { + let offset = (self.cropped_bounds.position - self.full_bounds.position) + .to_usize("invalid cropping bounds for cropped view").unwrap(); + + CroppedWriter { channels: self.full_channels.create_writer(header), offset } + } +} + +/// A writer for the cropped view layer +#[derive(Debug, Clone, PartialEq)] +pub struct CroppedWriter<ChannelsWriter> { + channels: ChannelsWriter, + offset: Vec2<usize> +} + +impl<'c, Channels> ChannelsWriter for CroppedWriter<Channels> where Channels: ChannelsWriter { + fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8> { + let block = BlockIndex { + pixel_position: block.pixel_position + self.offset, + .. block + }; + + self.channels.extract_uncompressed_block(header, block) + } +} + +impl<Samples, Channels> InspectSample for Layer<SpecificChannels<Samples, Channels>> where Samples: GetPixel { + type Sample = Samples::Pixel; + fn inspect_sample(&self, local_index: Vec2<usize>) -> Samples::Pixel { + self.channel_data.pixels.get_pixel(local_index) + } +} + +impl InspectSample for Layer<AnyChannels<FlatSamples>> { + type Sample = FlatSamplesPixel; + + fn inspect_sample(&self, local_index: Vec2<usize>) -> FlatSamplesPixel { + self.sample_vec_at(local_index) + } +} + +// ALGORITHM IDEA: for arbitrary channels, find the most desired channel, +// and process that first, keeping the processed bounds as starting point for the other layers + +/// Realize a cropped view of the original data, +/// by actually removing the unwanted original pixels, +/// reducing the memory consumption. +/// Currently not supported for `SpecificChannels`. +pub trait ApplyCroppedView { + + /// The simpler type after cropping is realized + type Reallocated; + + /// Make the cropping real by reallocating the underlying storage, + /// with the goal of reducing total memory usage. + /// Currently not supported for `SpecificChannels`. + fn reallocate_cropped(self) -> Self::Reallocated; +} + +impl ApplyCroppedView for Layer<CroppedChannels<AnyChannels<FlatSamples>>> { + type Reallocated = Layer<AnyChannels<FlatSamples>>; + + fn reallocate_cropped(self) -> Self::Reallocated { + let cropped_absolute_bounds = self.channel_data.cropped_bounds; + let cropped_relative_bounds = cropped_absolute_bounds.with_origin(-self.channel_data.full_bounds.position); + + assert!(self.absolute_bounds().contains(cropped_absolute_bounds), "bounds not valid for layer dimensions"); + assert!(cropped_relative_bounds.size.area() > 0, "the cropped image would be empty"); + + Layer { + channel_data: if cropped_relative_bounds.size == self.channel_data.full_bounds.size { + assert_eq!(cropped_absolute_bounds.position, self.channel_data.full_bounds.position, "crop bounds size equals, but position does not"); + + // the cropping would not remove any pixels + self.channel_data.full_channels + } + else { + let start_x = cropped_relative_bounds.position.x() as usize; // safe, because just checked above + let start_y = cropped_relative_bounds.position.y() as usize; // safe, because just checked above + let x_range = start_x .. start_x + cropped_relative_bounds.size.width(); + let old_width = self.channel_data.full_bounds.size.width(); + let new_height = cropped_relative_bounds.size.height(); + + let channels = self.channel_data.full_channels.list.into_iter().map(|channel: AnyChannel<FlatSamples>| { + fn crop_samples<T:Copy>(samples: Vec<T>, old_width: usize, new_height: usize, x_range: std::ops::Range<usize>, y_start: usize) -> Vec<T> { + let filtered_lines = samples.chunks_exact(old_width).skip(y_start).take(new_height); + let trimmed_lines = filtered_lines.map(|line| &line[x_range.clone()]); + trimmed_lines.flatten().map(|x|*x).collect() // TODO does this use memcpy? + } + + let samples = match channel.sample_data { + FlatSamples::F16(samples) => FlatSamples::F16(crop_samples( + samples, old_width, new_height, x_range.clone(), start_y + )), + + FlatSamples::F32(samples) => FlatSamples::F32(crop_samples( + samples, old_width, new_height, x_range.clone(), start_y + )), + + FlatSamples::U32(samples) => FlatSamples::U32(crop_samples( + samples, old_width, new_height, x_range.clone(), start_y + )), + }; + + AnyChannel { sample_data: samples, ..channel } + }).collect(); + + AnyChannels { list: channels } + }, + + attributes: self.attributes, + encoding: self.encoding, + size: self.size, + } + } +} + + + +/// Return the smallest bounding rectangle including all pixels that satisfy the predicate. +/// Worst case: Fully transparent image, visits each pixel once. +/// Best case: Fully opaque image, visits two pixels. +/// Returns `None` if the image is fully transparent. +/// Returns `[(0,0), size]` if the image is fully opaque. +/// Designed to be cache-friendly linear search. Optimized for row-major image vectors. +pub fn try_find_smaller_bounds(current_bounds: IntegerBounds, pixel_at: impl Fn(Vec2<usize>) -> bool) -> Option<IntegerBounds> { + assert_ne!(current_bounds.size.area(), 0, "cannot find smaller bounds of an image with zero width or height"); + let Vec2(width, height) = current_bounds.size; + + // scans top to bottom (left to right) + let first_top_left_pixel = (0 .. height) + .flat_map(|y| (0 .. width).map(move |x| Vec2(x,y))) + .find(|&position| pixel_at(position))?; // return none if no pixel should be kept + + // scans bottom to top (right to left) + let first_bottom_right_pixel = (first_top_left_pixel.y() + 1 .. height) // excluding the top line + .flat_map(|y| (0 .. width).map(move |x| Vec2(x, y))) // x search cannot start at first_top.x, because this must catch all bottom pixels + .rev().find(|&position| pixel_at(position)) + .unwrap_or(first_top_left_pixel); // did not find any at bottom, but we know top has some pixel + + // now we know exactly how much we can throw away top and bottom, + // but we don't know exactly about left or right + let top = first_top_left_pixel.y(); + let bottom = first_bottom_right_pixel.y(); + + // we only now some arbitrary left and right bounds which we need to refine. + // because the actual image contents might be wider than the corner points. + // we know that we do not need to look in the center between min x and max x, + // as these must be included in any case. + let mut min_left_x = first_top_left_pixel.x().min(first_bottom_right_pixel.x()); + let mut max_right_x = first_bottom_right_pixel.x().max(first_top_left_pixel.x()); + + // requires for loop, because bounds change while searching + for y in top ..= bottom { + + // escape the loop if there is nothing left to crop + if min_left_x == 0 && max_right_x == width - 1 { break; } + + // search from right image edge towards image center, until known max x, for existing pixels, + // possibly including some pixels that would have been cropped otherwise + if max_right_x != width - 1 { + max_right_x = (max_right_x + 1 .. width).rev() // excluding current max + .find(|&x| pixel_at(Vec2(x, y))) + .unwrap_or(max_right_x); + } + + // search from left image edge towards image center, until known min x, for existing pixels, + // possibly including some pixels that would have been cropped otherwise + if min_left_x != 0 { + min_left_x = (0 .. min_left_x) // excluding current min + .find(|&x| pixel_at(Vec2(x, y))) + .unwrap_or(min_left_x); + } + } + + // TODO add 1px margin to avoid interpolation issues? + let local_start = Vec2(min_left_x, top); + let local_end = Vec2(max_right_x + 1, bottom + 1); + Some(IntegerBounds::new( + current_bounds.position + local_start.to_i32(), + local_end - local_start + )) +} + +impl<S> GetBounds for Layer<S> { + fn bounds(&self) -> IntegerBounds { + self.absolute_bounds() + } +} + +impl<Cropped, Original> CropResult<Cropped, Original> { + + /// If the image was fully empty, return `None`, otherwise return `Some(cropped_image)`. + pub fn or_none_if_empty(self) -> Option<Cropped> { + match self { + CropResult::Cropped (cropped) => Some(cropped), + CropResult::Empty { .. } => None, + } + } + + /// If the image was fully empty, crop to one single pixel of all the transparent pixels instead, + /// leaving the layer intact while reducing memory usage. + pub fn or_crop_to_1x1_if_empty(self) -> Cropped where Original: Crop<Cropped=Cropped> + GetBounds { + match self { + CropResult::Cropped (cropped) => cropped, + CropResult::Empty { original } => { + let bounds = original.bounds(); + if bounds.size == Vec2(0,0) { panic!("layer has width and height of zero") } + original.crop(IntegerBounds::new(bounds.position, Vec2(1,1))) + }, + } + } +} + + + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn find_bounds() { + fn find_bounds(offset: Vec2<i32>, lines: &Vec<Vec<i32>>) -> IntegerBounds { + if let Some(first_line) = lines.first() { + assert!(lines.iter().all(|line| line.len() == first_line.len()), "invalid test input"); + IntegerBounds::new(offset, (first_line.len(), lines.len())) + } + else { + IntegerBounds::new(offset, (0,0)) + } + } + + fn assert_found_smaller_bounds(offset: Vec2<i32>, uncropped_lines: Vec<Vec<i32>>, expected_cropped_lines: Vec<Vec<i32>>) { + let old_bounds = find_bounds(offset, &uncropped_lines); + + let found_bounds = try_find_smaller_bounds( + old_bounds, + |position| uncropped_lines[position.y()][position.x()] != 0 + ).unwrap(); + + let found_bounds = found_bounds.with_origin(-offset); // make indices local + + let cropped_lines: Vec<Vec<i32>> = + uncropped_lines[found_bounds.position.y() as usize .. found_bounds.end().y() as usize] + .iter().map(|uncropped_line|{ + uncropped_line[found_bounds.position.x() as usize .. found_bounds.end().x() as usize].to_vec() + }).collect(); + + assert_eq!(cropped_lines, expected_cropped_lines); + } + + assert_found_smaller_bounds( + Vec2(-3,-3), + + vec![ + vec![ 2, 3, 4 ], + vec![ 2, 3, 4 ], + ], + + vec![ + vec![ 2, 3, 4 ], + vec![ 2, 3, 4 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-3,-3), + + vec![ + vec![ 2 ], + ], + + vec![ + vec![ 2 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-3,-3), + + vec![ + vec![ 0 ], + vec![ 2 ], + vec![ 0 ], + vec![ 0 ], + ], + + vec![ + vec![ 2 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-3,-3), + + vec![ + vec![ 0, 0, 0, 3, 0 ], + ], + + vec![ + vec![ 3 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(3,3), + + vec![ + vec![ 0, 1, 1, 2, 1, 0 ], + vec![ 0, 1, 3, 1, 1, 0 ], + vec![ 0, 1, 1, 1, 1, 0 ], + ], + + vec![ + vec![ 1, 1, 2, 1 ], + vec![ 1, 3, 1, 1 ], + vec![ 1, 1, 1, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(3,3), + + vec![ + vec![ 0, 0, 0, 0 ], + vec![ 1, 1, 2, 1 ], + vec![ 1, 3, 1, 1 ], + vec![ 1, 1, 1, 1 ], + vec![ 0, 0, 0, 0 ], + ], + + vec![ + vec![ 1, 1, 2, 1 ], + vec![ 1, 3, 1, 1 ], + vec![ 1, 1, 1, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(3,3), + + vec![ + vec![ 0, 1, 1, 2, 1, 0 ], + vec![ 0, 0, 3, 1, 0, 0 ], + vec![ 0, 1, 1, 1, 1, 0 ], + ], + + vec![ + vec![ 1, 1, 2, 1 ], + vec![ 0, 3, 1, 0 ], + vec![ 1, 1, 1, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(3,3), + + vec![ + vec![ 0, 0, 1, 2, 0, 0 ], + vec![ 0, 1, 3, 1, 1, 0 ], + vec![ 0, 0, 1, 1, 0, 0 ], + ], + + vec![ + vec![ 0, 1, 2, 0 ], + vec![ 1, 3, 1, 1 ], + vec![ 0, 1, 1, 0 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(1,3), + + vec![ + vec![ 1, 0, 0, 0, ], + vec![ 0, 0, 0, 0, ], + vec![ 0, 0, 0, 0, ], + ], + + vec![ + vec![ 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(1,3), + + vec![ + vec![ 0, 0, 0, 0, ], + vec![ 0, 1, 0, 0, ], + vec![ 0, 0, 0, 0, ], + ], + + vec![ + vec![ 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-1,-3), + + vec![ + vec![ 0, 0, 0, 0, ], + vec![ 0, 0, 0, 1, ], + vec![ 0, 0, 0, 0, ], + ], + + vec![ + vec![ 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-1,-3), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 1, 1, 0, 0 ], + vec![ 0, 0, 1, 1, 1, 0, 0 ], + vec![ 0, 0, 1, 1, 1, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 1, 1, 1 ], + vec![ 1, 1, 1 ], + vec![ 1, 1, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(1000,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 1, 1, 0, 0 ], + vec![ 0, 1, 1, 1, 1, 1, 0 ], + vec![ 0, 0, 1, 1, 1, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 0, 1, 1, 1, 0 ], + vec![ 1, 1, 1, 1, 1 ], + vec![ 0, 1, 1, 1, 0 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-10,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 1, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 1, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 1, 0, 1 ], + vec![ 0, 0, 0 ], + vec![ 1, 0, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-10,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 1, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 1, 0, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-10,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 1, 0, 0, 0 ], + vec![ 0, 0, 0, 2, 0, 0, 0 ], + vec![ 0, 0, 3, 3, 3, 0, 0 ], + vec![ 0, 0, 0, 4, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 0, 1, 0 ], + vec![ 0, 2, 0 ], + vec![ 3, 3, 3 ], + vec![ 0, 4, 0 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-10,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 1, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 0, 0, 1 ], + vec![ 0, 0, 0 ], + vec![ 0, 0, 0 ], + vec![ 1, 0, 0 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-10,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 1, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 1, 0, 0, 0 ], + vec![ 0, 0, 0, 0 ], + vec![ 0, 0, 0, 1 ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-10,-300), + + vec![ + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + vec![ 0, 0, 1, 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0, 0, 0, 0 ], + ], + + vec![ + vec![ 1 ], + vec![ 0 ], + vec![ 0 ], + vec![ 1 ], + ] + ); + + + assert_found_smaller_bounds( + Vec2(-1,-3), + + vec![ + vec![ 0, 0, 1, 0, ], + vec![ 0, 0, 0, 1, ], + vec![ 0, 0, 0, 0, ], + ], + + vec![ + vec![ 1, 0, ], + vec![ 0, 1, ], + ] + ); + + assert_found_smaller_bounds( + Vec2(-1,-3), + + vec![ + vec![ 1, 0, 0, 0, ], + vec![ 0, 1, 0, 0, ], + vec![ 0, 0, 0, 0, ], + vec![ 0, 0, 0, 0, ], + ], + + vec![ + vec![ 1, 0, ], + vec![ 0, 1, ], + ] + ); + } + + + #[test] + fn find_no_bounds() { + let pixels = vec![ + vec![ 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0 ], + vec![ 0, 0, 0, 0 ], + ]; + + let bounds = try_find_smaller_bounds( + IntegerBounds::new((0,0), (4,3)), + |position| pixels[position.y()][position.x()] != 0 + ); + + assert_eq!(bounds, None) + } + +} + + + + |