aboutsummaryrefslogtreecommitdiff
path: root/vendor/exr/src/image/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/exr/src/image/mod.rs')
-rw-r--r--vendor/exr/src/image/mod.rs1326
1 files changed, 1326 insertions, 0 deletions
diff --git a/vendor/exr/src/image/mod.rs b/vendor/exr/src/image/mod.rs
new file mode 100644
index 0000000..db75050
--- /dev/null
+++ b/vendor/exr/src/image/mod.rs
@@ -0,0 +1,1326 @@
+
+//! Data structures that represent a complete exr image.
+//! Contains generic structs that must be nested to obtain a complete image type.
+//!
+//!
+//! For example, an rgba image containing multiple layers
+//! can be represented using `Image<Layers<SpecificChannels<MyPixelStorage>>>`.
+//! An image containing a single layer with arbitrary channels and no deep data
+//! can be represented using `Image<Layer<AnyChannels<FlatSamples>>>`.
+//!
+//!
+//! These and other predefined types are included in this module as
+//! 1. `PixelImage`: A single layer, fixed set of arbitrary channels.
+//! 1. `PixelLayersImage`: Multiple layers, fixed set of arbitrary channels.
+//! 1. `RgbaImage`: A single layer, fixed set of channels: rgb, optional a.
+//! 1. `RgbaLayersImage`: Multiple layers, fixed set of channels: rgb, optional a.
+//! 1. `FlatImage`: Multiple layers, any channels, no deep data.
+//! 1. `AnyImage`: All supported data (multiple layers, arbitrary channels, no deep data yet)
+//!
+//! You can also use your own types inside an image,
+//! for example if you want to use a custom sample storage.
+//!
+//! This is the high-level interface for the pixels of an image.
+//! See `exr::blocks` module for a low-level interface.
+
+pub mod read;
+pub mod write;
+pub mod crop;
+pub mod pixel_vec;
+pub mod recursive;
+// pub mod channel_groups;
+
+
+use crate::meta::header::{ImageAttributes, LayerAttributes};
+use crate::meta::attribute::{Text, LineOrder};
+use half::f16;
+use crate::math::{Vec2, RoundingMode};
+use crate::compression::Compression;
+use smallvec::{SmallVec};
+use crate::error::Error;
+
+/// Don't do anything
+pub(crate) fn ignore_progress(_progress: f64){}
+
+/// This image type contains all supported exr features and can represent almost any image.
+/// It currently does not support deep data yet.
+pub type AnyImage = Image<Layers<AnyChannels<Levels<FlatSamples>>>>;
+
+/// This image type contains the most common exr features and can represent almost any plain image.
+/// Does not contain resolution levels. Does not support deep data.
+pub type FlatImage = Image<Layers<AnyChannels<FlatSamples>>>;
+
+/// This image type contains multiple layers, with each layer containing a user-defined type of pixels.
+pub type PixelLayersImage<Storage, Channels> = Image<Layers<SpecificChannels<Storage, Channels>>>;
+
+/// This image type contains a single layer containing a user-defined type of pixels.
+pub type PixelImage<Storage, Channels> = Image<Layer<SpecificChannels<Storage, Channels>>>;
+
+/// This image type contains multiple layers, with each layer containing a user-defined type of rgba pixels.
+pub type RgbaLayersImage<Storage> = PixelLayersImage<Storage, RgbaChannels>;
+
+/// This image type contains a single layer containing a user-defined type of rgba pixels.
+pub type RgbaImage<Storage> = PixelImage<Storage, RgbaChannels>;
+
+/// Contains information about the channels in an rgba image, in the order `(red, green, blue, alpha)`.
+/// The alpha channel is not required. May be `None` if the image did not contain an alpha channel.
+pub type RgbaChannels = (ChannelDescription, ChannelDescription, ChannelDescription, Option<ChannelDescription>);
+
+/// Contains information about the channels in an rgb image, in the order `(red, green, blue)`.
+pub type RgbChannels = (ChannelDescription, ChannelDescription, ChannelDescription);
+
+/// The complete exr image.
+/// `Layers` can be either a single `Layer` or `Layers`.
+#[derive(Debug, Clone, PartialEq)]
+pub struct Image<Layers> {
+
+ /// Attributes that apply to the whole image file.
+ /// These attributes appear in each layer of the file.
+ /// Excludes technical meta data.
+ /// Each layer in this image also has its own attributes.
+ pub attributes: ImageAttributes,
+
+ /// The layers contained in the image file.
+ /// Can be either a single `Layer` or a list of layers.
+ pub layer_data: Layers,
+}
+
+/// A list of layers. `Channels` can be `SpecificChannels` or `AnyChannels`.
+pub type Layers<Channels> = SmallVec<[Layer<Channels>; 2]>;
+
+/// A single Layer, including fancy attributes and compression settings.
+/// `Channels` can be either `SpecificChannels` or `AnyChannels`
+#[derive(Debug, Clone, PartialEq)]
+pub struct Layer<Channels> {
+
+ /// The actual pixel data. Either `SpecificChannels` or `AnyChannels`
+ pub channel_data: Channels,
+
+ /// Attributes that apply to this layer.
+ /// May still contain attributes that should be considered global for an image file.
+ /// Excludes technical meta data: Does not contain data window size, line order, tiling, or compression attributes.
+ /// The image also has attributes, which do not differ per layer.
+ pub attributes: LayerAttributes,
+
+ /// The pixel resolution of this layer.
+ /// See `layer.attributes` for more attributes, like for example layer position.
+ pub size: Vec2<usize>,
+
+ /// How the pixels are split up and compressed.
+ pub encoding: Encoding
+}
+
+/// How the pixels are split up and compressed.
+#[derive(Copy, Clone, Debug, PartialEq)]
+pub struct Encoding {
+
+ /// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`.
+ /// See `layer.attributes` for more attributes.
+ pub compression: Compression,
+
+ /// Describes how the pixels of this layer are divided into smaller blocks.
+ /// Either splits the image into its scan lines or splits the image into tiles of the specified size.
+ /// A single block can be loaded without processing all bytes of a file.
+ pub blocks: Blocks,
+
+ /// In what order the tiles of this header occur in the file.
+ /// Does not change any actual image orientation.
+ /// See `layer.attributes` for more attributes.
+ pub line_order: LineOrder,
+}
+
+/// How the image pixels are split up into separate blocks.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum Blocks {
+
+ /// The image is divided into scan line blocks.
+ /// The number of scan lines in a block depends on the compression method.
+ ScanLines,
+
+ /// The image is divided into tile blocks.
+ /// Also specifies the size of each tile in the image
+ /// and whether this image contains multiple resolution levels.
+ ///
+ /// The inner `Vec2` describes the size of each tile.
+ /// Stays the same number of pixels across all levels.
+ Tiles (Vec2<usize>)
+}
+
+
+/// A grid of pixels. The pixels are written to your custom pixel storage.
+/// `PixelStorage` can be anything, from a flat `Vec<f16>` to `Vec<Vec<AnySample>>`, as desired.
+/// In order to write this image to a file, your `PixelStorage` must implement [`GetPixel`].
+#[derive(Debug, Clone, PartialEq, Eq)]
+pub struct SpecificChannels<Pixels, ChannelsDescription> {
+
+ /// A description of the channels in the file, as opposed to the channels in memory.
+ /// Should always be a tuple containing `ChannelDescription`s, one description for each channel.
+ pub channels: ChannelsDescription, // TODO this is awkward. can this be not a type parameter please? maybe vec<option<chan_info>> ??
+
+ /// Your custom pixel storage
+ // TODO should also support `Levels<YourStorage>`, where levels are desired!
+ pub pixels: Pixels, // TODO rename to "pixels"?
+}
+
+
+/// A dynamic list of arbitrary channels.
+/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`.
+#[derive(Debug, Clone, PartialEq)]
+pub struct AnyChannels<Samples> {
+
+ /// This list must be sorted alphabetically, by channel name.
+ /// Use `AnyChannels::sorted` for automatic sorting.
+ pub list: SmallVec<[AnyChannel<Samples>; 4]>
+}
+
+/// A single arbitrary channel.
+/// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`
+#[derive(Debug, Clone, PartialEq)]
+pub struct AnyChannel<Samples> {
+
+ /// One of "R", "G", or "B" most of the time.
+ pub name: Text,
+
+ /// The actual pixel data.
+ /// Can be `FlatSamples` or `Levels<FlatSamples>`.
+ pub sample_data: Samples,
+
+ /// This attribute only tells lossy compression methods
+ /// whether this value should be quantized exponentially or linearly.
+ ///
+ /// Should be `false` for red, green, blue and luma channels, as they are not perceived linearly.
+ /// Should be `true` for hue, chroma, saturation, and alpha channels.
+ pub quantize_linearly: bool,
+
+ /// How many of the samples are skipped compared to the other channels in this layer.
+ ///
+ /// Can be used for chroma subsampling for manual lossy data compression.
+ /// Values other than 1 are allowed only in flat, scan-line based images.
+ /// If an image is deep or tiled, the sampling rates for all of its channels must be 1.
+ pub sampling: Vec2<usize>,
+}
+
+/// One or multiple resolution levels of the same image.
+/// `Samples` can be `FlatSamples`.
+#[derive(Debug, Clone, PartialEq, Eq)]
+pub enum Levels<Samples> {
+
+ /// A single image without smaller versions of itself.
+ /// If you only want to handle exclusively this case, use `Samples` directly, and not `Levels<Samples>`.
+ Singular(Samples),
+
+ /// Contains uniformly scaled smaller versions of the original.
+ Mip
+ {
+ /// Whether to round up or down when calculating Mip/Rip levels.
+ rounding_mode: RoundingMode,
+
+ /// The smaller versions of the original.
+ level_data: LevelMaps<Samples>
+ },
+
+ /// Contains any possible combination of smaller versions of the original.
+ Rip
+ {
+ /// Whether to round up or down when calculating Mip/Rip levels.
+ rounding_mode: RoundingMode,
+
+ /// The smaller versions of the original.
+ level_data: RipMaps<Samples>
+ },
+}
+
+/// A list of resolution levels. `Samples` can currently only be `FlatSamples`.
+// or `DeepAndFlatSamples` (not yet implemented).
+pub type LevelMaps<Samples> = Vec<Samples>;
+
+/// In addition to the full resolution image,
+/// this layer also contains smaller versions,
+/// and each smaller version has further versions with varying aspect ratios.
+/// `Samples` can currently only be `FlatSamples`.
+#[derive(Debug, Clone, PartialEq, Eq)]
+pub struct RipMaps<Samples> {
+
+ /// A flattened list containing the individual levels
+ pub map_data: LevelMaps<Samples>,
+
+ /// The number of levels that were generated along the x-axis and y-axis.
+ pub level_count: Vec2<usize>,
+}
+
+
+// TODO deep data
+/*#[derive(Clone, PartialEq)]
+pub enum DeepAndFlatSamples {
+ Deep(DeepSamples),
+ Flat(FlatSamples)
+}*/
+
+/// A vector of non-deep values (one value per pixel per channel).
+/// Stores row after row in a single vector.
+/// The precision of all values is either `f16`, `f32` or `u32`.
+///
+/// Since this is close to the pixel layout in the byte file,
+/// this will most likely be the fastest storage.
+/// Using a different storage, for example `SpecificChannels`,
+/// will probably be slower.
+#[derive(Clone, PartialEq)] // debug is implemented manually
+pub enum FlatSamples {
+
+ /// A vector of non-deep `f16` values.
+ F16(Vec<f16>),
+
+ /// A vector of non-deep `f32` values.
+ F32(Vec<f32>),
+
+ /// A vector of non-deep `u32` values.
+ U32(Vec<u32>),
+}
+
+
+/*#[derive(Clone, PartialEq)]
+pub enum DeepSamples {
+ F16(Vec<Vec<f16>>),
+ F32(Vec<Vec<f32>>),
+ U32(Vec<Vec<u32>>),
+}*/
+
+use crate::block::samples::*;
+use crate::meta::attribute::*;
+use crate::error::Result;
+use crate::block::samples::Sample;
+use crate::image::write::channels::*;
+use crate::image::write::layers::WritableLayers;
+use crate::image::write::samples::{WritableSamples};
+use crate::meta::{mip_map_levels, rip_map_levels};
+use crate::io::Data;
+use crate::image::recursive::{NoneMore, Recursive, IntoRecursive};
+use std::marker::PhantomData;
+use std::ops::Not;
+use crate::image::validate_results::{ValidationOptions};
+
+
+impl<Channels> Layer<Channels> {
+ /// Sometimes called "data window"
+ pub fn absolute_bounds(&self) -> IntegerBounds {
+ IntegerBounds::new(self.attributes.layer_position, self.size)
+ }
+}
+
+
+impl<SampleStorage, Channels> SpecificChannels<SampleStorage, Channels> {
+ /// Create some pixels with channel information.
+ /// The `Channels` must be a tuple containing either `ChannelDescription` or `Option<ChannelDescription>`.
+ /// The length of the tuple dictates the number of channels in the sample storage.
+ pub fn new(channels: Channels, source_samples: SampleStorage) -> Self
+ where
+ SampleStorage: GetPixel,
+ SampleStorage::Pixel: IntoRecursive,
+ Channels: Sync + Clone + IntoRecursive,
+ <Channels as IntoRecursive>::Recursive: WritableChannelsDescription<<SampleStorage::Pixel as IntoRecursive>::Recursive>,
+ {
+ SpecificChannels { channels, pixels: source_samples }
+ }
+}
+
+/// Convert this type into one of the known sample types.
+/// Also specify the preferred native type, which dictates the default sample type in the image.
+pub trait IntoSample: IntoNativeSample {
+
+ /// The native sample types that this type should be converted to.
+ const PREFERRED_SAMPLE_TYPE: SampleType;
+}
+
+impl IntoSample for f16 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F16; }
+impl IntoSample for f32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F32; }
+impl IntoSample for u32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::U32; }
+
+/// Used to construct a `SpecificChannels`.
+/// Call `with_named_channel` as many times as desired,
+/// and then call `with_pixels` to define the colors.
+#[derive(Debug)]
+pub struct SpecificChannelsBuilder<RecursiveChannels, RecursivePixel> {
+ channels: RecursiveChannels,
+ px: PhantomData<RecursivePixel>
+}
+
+/// This check can be executed at compile time
+/// if the channel names are `&'static str` and the compiler is smart enough.
+pub trait CheckDuplicates {
+
+ /// Check for duplicate channel names.
+ fn already_contains(&self, name: &Text) -> bool;
+}
+
+impl CheckDuplicates for NoneMore {
+ fn already_contains(&self, _: &Text) -> bool { false }
+}
+
+impl<Inner: CheckDuplicates> CheckDuplicates for Recursive<Inner, ChannelDescription> {
+ fn already_contains(&self, name: &Text) -> bool {
+ &self.value.name == name || self.inner.already_contains(name)
+ }
+}
+
+impl SpecificChannels<(),()>
+{
+ /// Start building some specific channels. On the result of this function,
+ /// call `with_named_channel` as many times as desired,
+ /// and then call `with_pixels` to define the colors.
+ pub fn build() -> SpecificChannelsBuilder<NoneMore, NoneMore> {
+ SpecificChannelsBuilder { channels: NoneMore, px: Default::default() }
+ }
+}
+
+impl<RecursiveChannels: CheckDuplicates, RecursivePixel> SpecificChannelsBuilder<RecursiveChannels, RecursivePixel>
+{
+ /// Add another channel to this image. Does not add the actual pixels,
+ /// but instead only declares the presence of the channel.
+ /// Panics if the name contains unsupported characters.
+ /// Panics if a channel with the same name already exists.
+ /// Use `Text::new_or_none()` to manually handle these cases.
+ /// Use `with_channel_details` instead if you want to specify more options than just the name of the channel.
+ /// The generic parameter can usually be inferred from the closure in `with_pixels`.
+ pub fn with_channel<Sample: IntoSample>(self, name: impl Into<Text>)
+ -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
+ {
+ self.with_channel_details::<Sample>(ChannelDescription::named(name, Sample::PREFERRED_SAMPLE_TYPE))
+ }
+
+ /// Add another channel to this image. Does not add the actual pixels,
+ /// but instead only declares the presence of the channel.
+ /// Use `with_channel` instead if you only want to specify the name of the channel.
+ /// Panics if a channel with the same name already exists.
+ /// The generic parameter can usually be inferred from the closure in `with_pixels`.
+ pub fn with_channel_details<Sample: Into<Sample>>(self, channel: ChannelDescription)
+ -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
+ {
+ // duplicate channel names are checked later, but also check now to make sure there are no problems with the `SpecificChannelsWriter`
+ assert!(self.channels.already_contains(&channel.name).not(), "channel name `{}` is duplicate", channel.name);
+
+ SpecificChannelsBuilder {
+ channels: Recursive::new(self.channels, channel),
+ px: PhantomData::default()
+ }
+ }
+
+ /// Specify the actual pixel contents of the image.
+ /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> Pixel`),
+ /// or you can pass your own image if it implements `GetPixel`.
+ /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
+ /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
+ /// Use `with_pixel_fn` instead of this function, to get extra type safety for your pixel closure.
+ pub fn with_pixels<Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
+ where Pixels: GetPixel, <Pixels as GetPixel>::Pixel: IntoRecursive<Recursive=RecursivePixel>,
+ {
+ SpecificChannels {
+ channels: self.channels,
+ pixels: get_pixel
+ }
+ }
+
+ /// Specify the contents of the image.
+ /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
+ /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
+ /// Use `with_pixels` instead of this function, if you want to pass an object that is not a closure.
+ ///
+ /// Usually, the compiler can infer the type of the pixel (for example, `f16,f32,f32`) from the closure.
+ /// If that's not possible, you can specify the type of the channels
+ /// when declaring the channel (for example, `with_named_channel::<f32>("R")`).
+ pub fn with_pixel_fn<Pixel, Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
+ where Pixels: Sync + Fn(Vec2<usize>) -> Pixel, Pixel: IntoRecursive<Recursive=RecursivePixel>,
+ {
+ SpecificChannels {
+ channels: self.channels,
+ pixels: get_pixel
+ }
+ }
+}
+
+impl<SampleStorage> SpecificChannels<
+ SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription, ChannelDescription)
+>
+{
+
+ /// Create an image with red, green, blue, and alpha channels.
+ /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B,A)`),
+ /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B,A)>`.
+ /// Each of `R`, `G`, `B` and `A` can be either `f16`, `f32`, `u32`, or `Sample`.
+ pub fn rgba<R, G, B, A>(source_samples: SampleStorage) -> Self
+ where R: IntoSample, G: IntoSample,
+ B: IntoSample, A: IntoSample,
+ SampleStorage: GetPixel<Pixel=(R, G, B, A)>
+ {
+ SpecificChannels {
+ channels: (
+ ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
+ ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
+ ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
+ ChannelDescription::named("A", A::PREFERRED_SAMPLE_TYPE),
+ ),
+ pixels: source_samples
+ }
+ }
+}
+
+impl<SampleStorage> SpecificChannels<
+ SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription)
+>
+{
+
+ /// Create an image with red, green, and blue channels.
+ /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B)`),
+ /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B)>`.
+ /// Each of `R`, `G` and `B` can be either `f16`, `f32`, `u32`, or `Sample`.
+ pub fn rgb<R, G, B>(source_samples: SampleStorage) -> Self
+ where R: IntoSample, G: IntoSample, B: IntoSample,
+ SampleStorage: GetPixel<Pixel=(R, G, B)>
+ {
+ SpecificChannels {
+ channels: (
+ ChannelDescription::named("R", R::PREFERRED_SAMPLE_TYPE),
+ ChannelDescription::named("G", G::PREFERRED_SAMPLE_TYPE),
+ ChannelDescription::named("B", B::PREFERRED_SAMPLE_TYPE),
+ ),
+ pixels: source_samples
+ }
+ }
+}
+
+
+/// A list of samples representing a single pixel.
+/// Does not heap allocate for images with 8 or fewer channels.
+pub type FlatSamplesPixel = SmallVec<[Sample; 8]>;
+
+// TODO also deep samples?
+impl Layer<AnyChannels<FlatSamples>> {
+
+ /// Use `samples_at` if you can borrow from this layer
+ pub fn sample_vec_at(&self, position: Vec2<usize>) -> FlatSamplesPixel {
+ self.samples_at(position).collect()
+ }
+
+ /// Lookup all channels of a single pixel in the image
+ pub fn samples_at(&self, position: Vec2<usize>) -> FlatSampleIterator<'_> {
+ FlatSampleIterator {
+ layer: self,
+ channel_index: 0,
+ position
+ }
+ }
+}
+
+/// Iterate over all channels of a single pixel in the image
+#[derive(Debug, Copy, Clone, PartialEq)]
+pub struct FlatSampleIterator<'s> {
+ layer: &'s Layer<AnyChannels<FlatSamples>>,
+ channel_index: usize,
+ position: Vec2<usize>,
+}
+
+impl Iterator for FlatSampleIterator<'_> {
+ type Item = Sample;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.channel_index < self.layer.channel_data.list.len() {
+ let channel = &self.layer.channel_data.list[self.channel_index];
+ let sample = channel.sample_data.value_by_flat_index(self.position.flat_index_for_size(self.layer.size));
+ self.channel_index += 1;
+ Some(sample)
+ }
+ else { None }
+ }
+
+ fn nth(&mut self, pos: usize) -> Option<Self::Item> {
+ self.channel_index += pos;
+ self.next()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let remaining = self.layer.channel_data.list.len().saturating_sub(self.channel_index);
+ (remaining, Some(remaining))
+ }
+}
+
+impl ExactSizeIterator for FlatSampleIterator<'_> {}
+
+impl<SampleData> AnyChannels<SampleData>{
+
+ /// A new list of arbitrary channels. Sorts the list to make it alphabetically stable.
+ pub fn sort(mut list: SmallVec<[AnyChannel<SampleData>; 4]>) -> Self {
+ list.sort_unstable_by_key(|channel| channel.name.clone()); // TODO no clone?
+ Self { list }
+ }
+}
+
+// FIXME check content size of layer somewhere??? before writing?
+impl<LevelSamples> Levels<LevelSamples> {
+
+ /// Get a resolution level by index, sorted by size, decreasing.
+ pub fn get_level(&self, level: Vec2<usize>) -> Result<&LevelSamples> {
+ match self {
+ Levels::Singular(block) => {
+ debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
+ Ok(block)
+ },
+
+ Levels::Mip { level_data, .. } => {
+ debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
+ level_data.get(level.x()).ok_or(Error::invalid("block mip level index"))
+ },
+
+ Levels::Rip { level_data, .. } => {
+ level_data.get_by_level(level).ok_or(Error::invalid("block rip level index"))
+ }
+ }
+ }
+
+ /// Get a resolution level by index, sorted by size, decreasing.
+ // TODO storage order for RIP maps?
+ pub fn get_level_mut(&mut self, level: Vec2<usize>) -> Result<&mut LevelSamples> {
+ match self {
+ Levels::Singular(ref mut block) => {
+ debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug");
+ Ok(block)
+ },
+
+ Levels::Mip { level_data, .. } => {
+ debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug");
+ level_data.get_mut(level.x()).ok_or(Error::invalid("block mip level index"))
+ },
+
+ Levels::Rip { level_data, .. } => {
+ level_data.get_by_level_mut(level).ok_or(Error::invalid("block rip level index"))
+ }
+ }
+ }
+
+ /// Get a slice of all resolution levels, sorted by size, decreasing.
+ pub fn levels_as_slice(&self) -> &[LevelSamples] {
+ match self {
+ Levels::Singular(data) => std::slice::from_ref(data),
+ Levels::Mip { level_data, .. } => level_data,
+ Levels::Rip { level_data, .. } => &level_data.map_data,
+ }
+ }
+
+ /// Get a mutable slice of all resolution levels, sorted by size, decreasing.
+ pub fn levels_as_slice_mut(&mut self) -> &mut [LevelSamples] {
+ match self {
+ Levels::Singular(data) => std::slice::from_mut(data),
+ Levels::Mip { level_data, .. } => level_data,
+ Levels::Rip { level_data, .. } => &mut level_data.map_data,
+ }
+ }
+
+ // TODO simplify working with levels in general! like level_size_by_index and such
+
+ /*pub fn levels_with_size(&self, rounding: RoundingMode, max_resolution: Vec2<usize>) -> Vec<(Vec2<usize>, &S)> {
+ match self {
+ Levels::Singular(ref data) => vec![ (max_resolution, data) ],
+ Levels::Mip(ref maps) => mip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(maps).collect(),
+ Levels::Rip(ref rip_maps) => rip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(&rip_maps.map_data).collect(),
+ }
+ }*/
+
+ /// Whether this stores multiple resolution levels.
+ pub fn level_mode(&self) -> LevelMode {
+ match self {
+ Levels::Singular(_) => LevelMode::Singular,
+ Levels::Mip { .. } => LevelMode::MipMap,
+ Levels::Rip { .. } => LevelMode::RipMap,
+ }
+ }
+}
+
+impl<Samples> RipMaps<Samples> {
+
+ /// Flatten the 2D level index to a one dimensional index.
+ pub fn get_level_index(&self, level: Vec2<usize>) -> usize {
+ level.flat_index_for_size(self.level_count)
+ }
+
+ /// Return a level by level index. Level `0` has the largest resolution.
+ pub fn get_by_level(&self, level: Vec2<usize>) -> Option<&Samples> {
+ self.map_data.get(self.get_level_index(level))
+ }
+
+ /// Return a mutable level reference by level index. Level `0` has the largest resolution.
+ pub fn get_by_level_mut(&mut self, level: Vec2<usize>) -> Option<&mut Samples> {
+ let index = self.get_level_index(level);
+ self.map_data.get_mut(index)
+ }
+}
+
+impl FlatSamples {
+
+ /// The number of samples in the image. Should be the width times the height.
+ /// Might vary when subsampling is used.
+ pub fn len(&self) -> usize {
+ match self {
+ FlatSamples::F16(vec) => vec.len(),
+ FlatSamples::F32(vec) => vec.len(),
+ FlatSamples::U32(vec) => vec.len(),
+ }
+ }
+
+ /// Views all samples in this storage as f32.
+ /// Matches the underlying sample type again for every sample,
+ /// match yourself if performance is critical! Does not allocate.
+ pub fn values_as_f32<'s>(&'s self) -> impl 's + Iterator<Item = f32> {
+ self.values().map(|sample| sample.to_f32())
+ }
+
+ /// All samples in this storage as iterator.
+ /// Matches the underlying sample type again for every sample,
+ /// match yourself if performance is critical! Does not allocate.
+ pub fn values<'s>(&'s self) -> impl 's + Iterator<Item = Sample> {
+ (0..self.len()).map(move |index| self.value_by_flat_index(index))
+ }
+
+ /// Lookup a single value, by flat index.
+ /// The flat index can be obtained using `Vec2::flatten_for_width`
+ /// which computes the index in a flattened array of pixel rows.
+ pub fn value_by_flat_index(&self, index: usize) -> Sample {
+ match self {
+ FlatSamples::F16(vec) => Sample::F16(vec[index]),
+ FlatSamples::F32(vec) => Sample::F32(vec[index]),
+ FlatSamples::U32(vec) => Sample::U32(vec[index]),
+ }
+ }
+}
+
+
+impl<'s, ChannelData:'s> Layer<ChannelData> {
+
+ /// Create a layer with the specified size, attributes, encoding and channels.
+ /// The channels can be either `SpecificChannels` or `AnyChannels`.
+ pub fn new(
+ dimensions: impl Into<Vec2<usize>>,
+ attributes: LayerAttributes,
+ encoding: Encoding,
+ channels: ChannelData
+ ) -> Self
+ where ChannelData: WritableChannels<'s>
+ {
+ Layer { channel_data: channels, attributes, size: dimensions.into(), encoding }
+ }
+
+ // TODO test pls wtf
+ /// Panics for images with Scanline encoding.
+ pub fn levels_with_resolution<'l, L>(&self, levels: &'l Levels<L>) -> Box<dyn 'l + Iterator<Item=(&'l L, Vec2<usize>)>> {
+ match levels {
+ Levels::Singular(level) => Box::new(std::iter::once((level, self.size))),
+
+ Levels::Mip { rounding_mode, level_data } => Box::new(level_data.iter().zip(
+ mip_map_levels(*rounding_mode, self.size)
+ .map(|(_index, size)| size)
+ )),
+
+ Levels::Rip { rounding_mode, level_data } => Box::new(level_data.map_data.iter().zip(
+ rip_map_levels(*rounding_mode, self.size)
+ .map(|(_index, size)| size)
+ )),
+ }
+ }
+}
+
+impl Encoding {
+
+ /// No compression. Massive space requirements.
+ /// Fast, because it minimizes data shuffling and reallocation.
+ pub const UNCOMPRESSED: Encoding = Encoding {
+ compression: Compression::Uncompressed,
+ blocks: Blocks::ScanLines, // longest lines, faster memcpy
+ line_order: LineOrder::Increasing // presumably fastest?
+ };
+
+ /// Run-length encoding with tiles of 64x64 pixels. This is the recommended default encoding.
+ /// Almost as fast as uncompressed data, but optimizes single-colored areas such as mattes and masks.
+ pub const FAST_LOSSLESS: Encoding = Encoding {
+ compression: Compression::RLE,
+ blocks: Blocks::Tiles(Vec2(64, 64)), // optimize for RLE compression
+ line_order: LineOrder::Unspecified
+ };
+
+ /// ZIP compression with blocks of 16 lines. Slow, but produces small files without visible artefacts.
+ pub const SMALL_LOSSLESS: Encoding = Encoding {
+ compression: Compression::ZIP16,
+ blocks: Blocks::ScanLines, // largest possible, but also with high probability of parallel workers
+ line_order: LineOrder::Increasing
+ };
+
+ /// PIZ compression with tiles of 256x256 pixels. Small images, not too slow.
+ pub const SMALL_FAST_LOSSLESS: Encoding = Encoding {
+ compression: Compression::PIZ,
+ blocks: Blocks::Tiles(Vec2(256, 256)),
+ line_order: LineOrder::Unspecified
+ };
+}
+
+impl Default for Encoding {
+ fn default() -> Self { Encoding::FAST_LOSSLESS }
+}
+
+impl<'s, LayerData: 's> Image<LayerData> where LayerData: WritableLayers<'s> {
+ /// Create an image with one or multiple layers. The layer can be a `Layer`, or `Layers` small vector, or `Vec<Layer>` or `&[Layer]`.
+ pub fn new(image_attributes: ImageAttributes, layer_data: LayerData) -> Self {
+ Image { attributes: image_attributes, layer_data }
+ }
+}
+
+// explorable constructor alias
+impl<'s, Channels: 's> Image<Layers<Channels>> where Channels: WritableChannels<'s> {
+ /// Create an image with multiple layers. The layer can be a `Vec<Layer>` or `Layers` (a small vector).
+ pub fn from_layers(image_attributes: ImageAttributes, layer_data: impl Into<Layers<Channels>>) -> Self {
+ Self::new(image_attributes, layer_data.into())
+ }
+}
+
+
+impl<'s, ChannelData:'s> Image<Layer<ChannelData>> where ChannelData: WritableChannels<'s> {
+
+ /// Uses the display position and size to the channel position and size of the layer.
+ pub fn from_layer(layer: Layer<ChannelData>) -> Self {
+ let bounds = IntegerBounds::new(layer.attributes.layer_position, layer.size);
+ Self::new(ImageAttributes::new(bounds), layer)
+ }
+
+ /// Uses empty attributes.
+ pub fn from_encoded_channels(size: impl Into<Vec2<usize>>, encoding: Encoding, channels: ChannelData) -> Self {
+ // layer name is not required for single-layer images
+ Self::from_layer(Layer::new(size, LayerAttributes::default(), encoding, channels))
+ }
+
+ /// Uses empty attributes and fast compression.
+ pub fn from_channels(size: impl Into<Vec2<usize>>, channels: ChannelData) -> Self {
+ Self::from_encoded_channels(size, Encoding::default(), channels)
+ }
+}
+
+
+impl Image<NoneMore> {
+
+ /// Create an empty image, to be filled with layers later on. Add at least one layer to obtain a valid image.
+ /// Call `with_layer(another_layer)` for each layer you want to add to this image.
+ pub fn empty(attributes: ImageAttributes) -> Self { Self { attributes, layer_data: NoneMore } }
+}
+
+impl<'s, InnerLayers: 's> Image<InnerLayers> where
+ InnerLayers: WritableLayers<'s>,
+{
+ /// Add another layer to this image. The layer type does
+ /// not have to equal the existing layers in this image.
+ pub fn with_layer<NewChannels>(self, layer: Layer<NewChannels>)
+ -> Image<Recursive<InnerLayers, Layer<NewChannels>>>
+ where NewChannels: 's + WritableChannels<'s>
+ {
+ Image {
+ attributes: self.attributes,
+ layer_data: Recursive::new(self.layer_data, layer)
+ }
+ }
+}
+
+
+impl<'s, SampleData: 's> AnyChannel<SampleData> {
+
+ /// Create a new channel without subsampling.
+ ///
+ /// Automatically flags this channel for specialized compression
+ /// if the name is "R", "G", "B", "Y", or "L",
+ /// as they typically encode values that are perceived non-linearly.
+ /// Construct the value yourself using `AnyChannel { .. }`, if you want to control this flag.
+ pub fn new(name: impl Into<Text>, sample_data: SampleData) -> Self where SampleData: WritableSamples<'s> {
+ let name: Text = name.into();
+
+ AnyChannel {
+ quantize_linearly: ChannelDescription::guess_quantization_linearity(&name),
+ name, sample_data,
+ sampling: Vec2(1, 1),
+ }
+ }
+
+ /*/// This is the same as `AnyChannel::new()`, but additionally ensures that the closure type is correct.
+ pub fn from_closure<V>(name: Text, sample_data: S) -> Self
+ where S: Sync + Fn(Vec2<usize>) -> V, V: InferSampleType + Data
+ {
+ Self::new(name, sample_data)
+ }*/
+}
+
+impl std::fmt::Debug for FlatSamples {
+ fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ if self.len() <= 6 {
+ match self {
+ FlatSamples::F16(vec) => vec.fmt(formatter),
+ FlatSamples::F32(vec) => vec.fmt(formatter),
+ FlatSamples::U32(vec) => vec.fmt(formatter),
+ }
+ }
+ else {
+ match self {
+ FlatSamples::F16(vec) => write!(formatter, "[f16; {}]", vec.len()),
+ FlatSamples::F32(vec) => write!(formatter, "[f32; {}]", vec.len()),
+ FlatSamples::U32(vec) => write!(formatter, "[u32; {}]", vec.len()),
+ }
+ }
+ }
+}
+
+
+
+/// Compare the result of a round trip test with the original method.
+/// Supports lossy compression methods.
+// #[cfg(test)] TODO do not ship this code
+pub mod validate_results {
+ use crate::prelude::*;
+ use smallvec::Array;
+ use crate::prelude::recursive::*;
+ use crate::image::write::samples::WritableSamples;
+ use std::ops::Not;
+ use crate::block::samples::IntoNativeSample;
+
+
+ /// Compare two objects, but with a few special quirks.
+ /// Intended mainly for unit testing.
+ pub trait ValidateResult {
+
+ /// Compare self with the other. Panics if not equal.
+ ///
+ /// Exceptional behaviour:
+ /// This does not work the other way around! This method is not symmetrical!
+ /// Returns whether the result is correct for this image.
+ /// For lossy compression methods, uses approximate equality.
+ /// Intended for unit testing.
+ ///
+ /// Warning: If you use `SpecificChannels`, the comparison might be inaccurate
+ /// for images with mixed compression methods. This is to be used with `AnyChannels` mainly.
+ fn assert_equals_result(&self, result: &Self) {
+ self.validate_result(result, ValidationOptions::default(), || String::new()).unwrap();
+ }
+
+ /// Compare self with the other.
+ /// Exceptional behaviour:
+ /// - Any two NaN values are considered equal, regardless of bit representation.
+ /// - If a `lossy` is specified, any two values that differ only by a small amount will be considered equal.
+ /// - If `nan_to_zero` is true, and __self is NaN/Infinite and the other value is zero, they are considered equal__
+ /// (because some compression methods replace nan with zero)
+ ///
+ /// This does not work the other way around! This method is not symmetrical!
+ fn validate_result(
+ &self, lossy_result: &Self,
+ options: ValidationOptions,
+ // this is a lazy string, because constructing a string is only necessary in the case of an error,
+ // but eats up memory and allocation time every time. this was measured.
+ context: impl Fn() -> String
+ ) -> ValidationResult;
+ }
+
+ /// Whether to do accurate or approximate comparison.
+ #[derive(Default, Debug, Eq, PartialEq, Hash, Copy, Clone)]
+ pub struct ValidationOptions {
+ allow_lossy: bool,
+ nan_converted_to_zero: bool,
+ }
+
+ /// If invalid, contains the error message.
+ pub type ValidationResult = std::result::Result<(), String>;
+
+
+ impl<C> ValidateResult for Image<C> where C: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self.attributes != other.attributes { Err(location() + "| image > attributes") }
+ else { self.layer_data.validate_result(&other.layer_data, options, || location() + "| image > layer data") }
+ }
+ }
+
+ impl<S> ValidateResult for Layer<AnyChannels<S>>
+ where AnyChannel<S>: ValidateResult, S: for<'a> WritableSamples<'a>
+ {
+ fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
+ if self.attributes != other.attributes { Err(location() + " > attributes") }
+ else if self.encoding != other.encoding { Err(location() + " > encoding") }
+ else if self.size != other.size { Err(location() + " > size") }
+ else if self.channel_data.list.len() != other.channel_data.list.len() { Err(location() + " > channel count") }
+ else {
+ for (own_chan, other_chan) in self.channel_data.list.iter().zip(other.channel_data.list.iter()) {
+ own_chan.validate_result(
+ other_chan,
+
+ ValidationOptions {
+ // no tolerance for lossless channels
+ allow_lossy: other.encoding.compression
+ .is_lossless_for(other_chan.sample_data.sample_type()).not(),
+
+ // consider nan and zero equal if the compression method does not support nan
+ nan_converted_to_zero: other.encoding.compression.supports_nan().not()
+ },
+
+ || format!("{} > channel `{}`", location(), own_chan.name)
+ )?;
+ }
+ Ok(())
+ }
+ }
+ }
+
+ impl<Px, Desc> ValidateResult for Layer<SpecificChannels<Px, Desc>>
+ where SpecificChannels<Px, Desc>: ValidateResult
+ {
+ /// This does an approximate comparison for all channels,
+ /// even if some channels can be compressed without loss.
+ fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ let location = || format!("{} (layer `{:?}`)", location(), self.attributes.layer_name);
+
+ // TODO dedup with above
+ if self.attributes != other.attributes { Err(location() + " > attributes") }
+ else if self.encoding != other.encoding { Err(location() + " > encoding") }
+ else if self.size != other.size { Err(location() + " > size") }
+ else {
+ let options = ValidationOptions {
+ // no tolerance for lossless channels
+ // pxr only looses data for f32 values, B44 only for f16, not other any other types
+ allow_lossy: other.encoding.compression.may_loose_data(),// TODO check specific channels sample types
+
+ // consider nan and zero equal if the compression method does not support nan
+ nan_converted_to_zero: other.encoding.compression.supports_nan().not()
+ };
+
+ self.channel_data.validate_result(&other.channel_data, options, || location() + " > channel_data")?;
+ Ok(())
+ }
+ }
+ }
+
+ impl<S> ValidateResult for AnyChannels<S> where S: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.list.validate_result(&other.list, options, location)
+ }
+ }
+
+ impl<S> ValidateResult for AnyChannel<S> where S: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self.name != other.name { Err(location() + " > name") }
+ else if self.quantize_linearly != other.quantize_linearly { Err(location() + " > quantize_linearly") }
+ else if self.sampling != other.sampling { Err(location() + " > sampling") }
+ else {
+ self.sample_data.validate_result(&other.sample_data, options, || location() + " > sample_data")
+ }
+ }
+ }
+
+ impl<Pxs, Chans> ValidateResult for SpecificChannels<Pxs, Chans> where Pxs: ValidateResult, Chans: Eq {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self.channels != other.channels { Err(location() + " > specific channels") }
+ else { self.pixels.validate_result(&other.pixels, options, || location() + " > specific pixels") }
+ }
+ }
+
+ impl<S> ValidateResult for Levels<S> where S: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.levels_as_slice().validate_result(&other.levels_as_slice(), options, || location() + " > levels")
+ }
+ }
+
+ impl ValidateResult for FlatSamples {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ use FlatSamples::*;
+ match (self, other) {
+ (F16(values), F16(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f16 samples"),
+ (F32(values), F32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f32 samples"),
+ (U32(values), U32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > u32 samples"),
+ (own, other) => Err(format!("{}: samples type mismatch. expected {:?}, found {:?}", location(), own.sample_type(), other.sample_type()))
+ }
+ }
+ }
+
+ impl<T> ValidateResult for &[T] where T: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self.len() != other.len() { Err(location() + " count") }
+ else {
+ for (index, (slf, other)) in self.iter().zip(other.iter()).enumerate() {
+ slf.validate_result(other, options, ||format!("{} element [{}] of {}", location(), index, self.len()))?;
+ }
+ Ok(())
+ }
+ }
+ }
+
+ impl<A: Array> ValidateResult for SmallVec<A> where A::Item: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.as_slice().validate_result(&other.as_slice(), options, location)
+ }
+ }
+
+ impl<A> ValidateResult for Vec<A> where A: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.as_slice().validate_result(&other.as_slice(), options, location)
+ }
+ }
+
+ impl<A,B,C,D> ValidateResult for (A, B, C, D) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult, D: Clone+ ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
+ }
+ }
+
+ impl<A,B,C> ValidateResult for (A, B, C) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
+ }
+ }
+
+ // // (low priority because it is only used in the tests)
+ /*TODO
+ impl<Tuple> SimilarToLossy for Tuple where
+ Tuple: Clone + IntoRecursive,
+ <Tuple as IntoRecursive>::Recursive: SimilarToLossy,
+ {
+ fn similar_to_lossy(&self, other: &Self, max_difference: f32) -> bool {
+ self.clone().into_recursive().similar_to_lossy(&other.clone().into_recursive(), max_difference)
+ } // TODO no clone?
+ }*/
+
+
+ // implement for recursive types
+ impl ValidateResult for NoneMore {
+ fn validate_result(&self, _: &Self, _: ValidationOptions, _: impl Fn()->String) -> ValidationResult { Ok(()) }
+ }
+
+ impl<Inner, T> ValidateResult for Recursive<Inner, T> where Inner: ValidateResult, T: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ self.value.validate_result(&other.value, options, &location).and_then(|()|
+ self.inner.validate_result(&other.inner, options, &location)
+ )
+ }
+ }
+
+ impl<S> ValidateResult for Option<S> where S: ValidateResult {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ match (self, other) {
+ (None, None) => Ok(()),
+ (Some(value), Some(other)) => value.validate_result(other, options, location),
+ _ => Err(location() + ": option mismatch")
+ }
+ }
+ }
+
+ impl ValidateResult for f32 {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self == other || (self.is_nan() && other.is_nan()) || (options.nan_converted_to_zero && !self.is_normal() && *other == 0.0) {
+ return Ok(());
+ }
+
+ if options.allow_lossy {
+ let epsilon = 0.06;
+ let max_difference = 0.1;
+
+ let adaptive_threshold = epsilon * (self.abs() + other.abs());
+ let tolerance = adaptive_threshold.max(max_difference);
+ let difference = (self - other).abs();
+
+ return if difference <= tolerance { Ok(()) }
+ else { Err(format!("{}: expected ~{}, found {} (adaptive tolerance {})", location(), self, other, tolerance)) };
+ }
+
+ Err(format!("{}: expected exactly {}, found {}", location(), self, other))
+ }
+ }
+
+ impl ValidateResult for f16 {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self.to_bits() == other.to_bits() { Ok(()) } else {
+ self.to_f32().validate_result(&other.to_f32(), options, location)
+ }
+ }
+ }
+
+ impl ValidateResult for u32 {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ if self == other { Ok(()) } else { // todo to float conversion resulting in nan/infinity?
+ self.to_f32().validate_result(&other.to_f32(), options, location)
+ }
+ }
+ }
+
+ impl ValidateResult for Sample {
+ fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
+ use Sample::*;
+ match (self, other) {
+ (F16(a), F16(b)) => a.validate_result(b, options, ||location() + " (f16)"),
+ (F32(a), F32(b)) => a.validate_result(b, options, ||location() + " (f32)"),
+ (U32(a), U32(b)) => a.validate_result(b, options, ||location() + " (u32)"),
+ (_,_) => Err(location() + ": sample type mismatch")
+ }
+ }
+ }
+
+
+ #[cfg(test)]
+ mod test_value_result {
+ use std::f32::consts::*;
+ use std::io::Cursor;
+ use crate::image::pixel_vec::PixelVec;
+ use crate::image::validate_results::{ValidateResult, ValidationOptions};
+ use crate::meta::attribute::LineOrder::Increasing;
+ use crate::image::{FlatSamples};
+
+ fn expect_valid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
+ original.validate_result(
+ result,
+ ValidationOptions { allow_lossy, nan_converted_to_zero },
+ || String::new()
+ ).unwrap();
+ }
+
+ fn expect_invalid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
+ assert!(original.validate_result(
+ result,
+ ValidationOptions { allow_lossy, nan_converted_to_zero },
+ || String::new()
+ ).is_err());
+ }
+
+ #[test]
+ fn test_f32(){
+ let original:&[f32] = &[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, -20.4, f32::NAN];
+ let lossy:&[f32] = &[0.0, 0.2, 0.2, 0.3, 0.4, 0.5, -20.5, f32::NAN];
+
+ expect_valid(&original, &original, true, true);
+ expect_valid(&original, &original, true, false);
+ expect_valid(&original, &original, false, true);
+ expect_valid(&original, &original, false, false);
+
+ expect_invalid(&original, &lossy, false, false);
+ expect_valid(&original, &lossy, true, false);
+
+ expect_invalid(&original, &&original[..original.len()-2], true, true);
+
+ // test relative comparison with some large values
+ expect_valid(&1_000_f32, &1_001_f32, true, false);
+ expect_invalid(&1_000_f32, &1_200_f32, true, false);
+
+ expect_valid(&10_000_f32, &10_100_f32, true, false);
+ expect_invalid(&10_000_f32, &12_000_f32, true, false);
+
+ expect_valid(&33_120_f32, &30_120_f32, true, false);
+ expect_invalid(&33_120_f32, &20_120_f32, true, false);
+ }
+
+ #[test]
+ fn test_nan(){
+ let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
+ let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
+
+ expect_valid(&original, &lossy, true, true);
+ expect_invalid(&lossy, &original, true, true);
+
+ expect_valid(&lossy, &lossy, true, true);
+ expect_valid(&lossy, &lossy, false, true);
+ }
+
+ #[test]
+ fn test_error(){
+
+ fn print_error<T: ValidateResult>(original: &T, lossy: &T, allow_lossy: bool){
+ let message = original
+ .validate_result(
+ &lossy,
+ ValidationOptions { allow_lossy, .. Default::default() },
+ || String::new() // type_name::<T>().to_string()
+ )
+ .unwrap_err();
+
+ println!("message: {}", message);
+ }
+
+ let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
+ let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
+ print_error(&original, &lossy, false);
+
+ print_error(&2.0, &1.0, true);
+ print_error(&2.0, &1.0, false);
+
+ print_error(&FlatSamples::F32(vec![0.1,0.1]), &FlatSamples::F32(vec![0.1,0.2]), false);
+ print_error(&FlatSamples::U32(vec![0,0]), &FlatSamples::F32(vec![0.1,0.2]), false);
+
+ {
+ let image = crate::prelude::read_all_data_from_file("tests/images/valid/openexr/MultiResolution/Kapaa.exr").unwrap();
+
+ let mut mutated = image.clone();
+ let samples = mutated.layer_data.first_mut().unwrap()
+ .channel_data.list.first_mut().unwrap().sample_data.levels_as_slice_mut().first_mut().unwrap();
+
+ match samples {
+ FlatSamples::F16(vals) => vals[100] = vals[1],
+ FlatSamples::F32(vals) => vals[100] = vals[1],
+ FlatSamples::U32(vals) => vals[100] = vals[1],
+ }
+
+ print_error(&image, &mutated, false);
+ }
+
+ // TODO check out more nested behaviour!
+ }
+
+ #[test]
+ fn test_uncompressed(){
+ use crate::prelude::*;
+
+ let original_pixels: [(f32,f32,f32); 4] = [
+ (0.0, -1.1, PI),
+ (0.0, -1.1, TAU),
+ (0.0, -1.1, f32::EPSILON),
+ (f32::NAN, 10000.1, -1024.009),
+ ];
+
+ let mut file_bytes = Vec::new();
+ let original_image = Image::from_encoded_channels(
+ (2,2),
+ Encoding {
+ compression: Compression::Uncompressed,
+ line_order: Increasing, // FIXME unspecified may be optimized to increasing, which destroys test eq
+ .. Encoding::default()
+ },
+ SpecificChannels::rgb(PixelVec::new(Vec2(2,2), original_pixels.to_vec()))
+ );
+
+ original_image.write().to_buffered(Cursor::new(&mut file_bytes)).unwrap();
+
+ let lossy_image = read().no_deep_data().largest_resolution_level()
+ .rgb_channels(PixelVec::<(f32,f32,f32)>::constructor, PixelVec::set_pixel)
+ .first_valid_layer().all_attributes().from_buffered(Cursor::new(&file_bytes)).unwrap();
+
+ original_image.assert_equals_result(&original_image);
+ lossy_image.assert_equals_result(&lossy_image);
+ original_image.assert_equals_result(&lossy_image);
+ lossy_image.assert_equals_result(&original_image);
+ }
+
+ #[test]
+ fn test_compiles(){
+ use crate::prelude::*;
+
+ fn accepts_validatable_value(_: &impl ValidateResult){}
+
+ let object: Levels<FlatSamples> = Levels::Singular(FlatSamples::F32(Vec::default()));
+ accepts_validatable_value(&object);
+
+ let object: AnyChannels<Levels<FlatSamples>> = AnyChannels::sort(SmallVec::default());
+ accepts_validatable_value(&object);
+
+ let layer: Layer<AnyChannels<Levels<FlatSamples>>> = Layer::new((0,0), Default::default(), Default::default(), object);
+ accepts_validatable_value(&layer);
+
+ let layers: Layers<AnyChannels<Levels<FlatSamples>>> = Default::default();
+ accepts_validatable_value(&layers);
+
+ let object: Image<Layer<AnyChannels<Levels<FlatSamples>>>> = Image::from_layer(layer);
+ object.assert_equals_result(&object);
+ }
+ }
+}
+
+